gtkradiant/tools/urt/libs/mathlib/mathlib.c

581 lines
13 KiB
C

/*
This code is based on source provided under the terms of the Id Software
LIMITED USE SOFTWARE LICENSE AGREEMENT, a copy of which is included with the
GtkRadiant sources (see LICENSE_ID). If you did not receive a copy of
LICENSE_ID, please contact Id Software immediately at info@idsoftware.com.
All changes and additions to the original source which have been developed by
other contributors (see CONTRIBUTORS) are provided under the terms of the
license the contributors choose (see LICENSE), to the extent permitted by the
LICENSE_ID. If you did not receive a copy of the contributor license,
please contact the GtkRadiant maintainers at info@gtkradiant.com immediately.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// mathlib.c -- math primitives
#include "mathlib.h"
// we use memcpy and memset
#include <memory.h>
const vec3_t vec3_origin = {0.0f,0.0f,0.0f};
const vec3_t g_vec3_axis_x = { 1, 0, 0, };
const vec3_t g_vec3_axis_y = { 0, 1, 0, };
const vec3_t g_vec3_axis_z = { 0, 0, 1, };
/*
================
MakeNormalVectors
Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
{
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct (right, forward);
VectorMA (right, -d, forward, right);
VectorNormalize (right, right);
CrossProduct (right, forward, up);
}
vec_t VectorLength(const vec3_t v)
{
int i;
float length;
length = 0.0f;
for (i=0 ; i< 3 ; i++)
length += v[i]*v[i];
length = (float)sqrt (length);
return length;
}
qboolean VectorCompare (const vec3_t v1, const vec3_t v2)
{
int i;
for (i=0 ; i<3 ; i++)
if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
return qfalse;
return qtrue;
}
void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc )
{
vc[0] = va[0] + scale*vb[0];
vc[1] = va[1] + scale*vb[1];
vc[2] = va[2] + scale*vb[2];
}
void _CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
{
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
vec_t _DotProduct (vec3_t v1, vec3_t v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]-vb[0];
out[1] = va[1]-vb[1];
out[2] = va[2]-vb[2];
}
void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]+vb[0];
out[1] = va[1]+vb[1];
out[2] = va[2]+vb[2];
}
void _VectorCopy (vec3_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
vec_t length, ilength;
length = (vec_t)sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
if (length == 0)
{
VectorClear (out);
return 0;
}
ilength = 1.0f/length;
out[0] = in[0]*ilength;
out[1] = in[1]*ilength;
out[2] = in[2]*ilength;
return length;
}
vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
float max, scale;
max = in[0];
if (in[1] > max)
max = in[1];
if (in[2] > max)
max = in[2];
if (max == 0) {
out[0] = out[1] = out[2] = 1.0;
return 0;
}
scale = 1.0f / max;
VectorScale (in, scale, out);
return max;
}
void VectorInverse (vec3_t v)
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
/*
void VectorScale (vec3_t v, vec_t scale, vec3_t out)
{
out[0] = v[0] * scale;
out[1] = v[1] * scale;
out[2] = v[2] * scale;
}
*/
void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out)
{
vec3_t vWork, va;
int nIndex[3][2];
int i;
VectorCopy(vIn, va);
VectorCopy(va, vWork);
nIndex[0][0] = 1; nIndex[0][1] = 2;
nIndex[1][0] = 2; nIndex[1][1] = 0;
nIndex[2][0] = 0; nIndex[2][1] = 1;
for (i = 0; i < 3; i++)
{
if (vRotation[i] != 0)
{
float dAngle = vRotation[i] * Q_PI / 180.0f;
float c = (vec_t)cos(dAngle);
float s = (vec_t)sin(dAngle);
vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s;
vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c;
}
VectorCopy(vWork, va);
}
VectorCopy(vWork, out);
}
void VectorRotateOrigin (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out)
{
vec3_t vTemp, vTemp2;
VectorSubtract(vIn, vOrigin, vTemp);
VectorRotate(vTemp, vRotation, vTemp2);
VectorAdd(vTemp2, vOrigin, out);
}
void VectorPolar(vec3_t v, float radius, float theta, float phi)
{
v[0]=(float)(radius * cos(theta) * cos(phi));
v[1]=(float)(radius * sin(theta) * cos(phi));
v[2]=(float)(radius * sin(phi));
}
void VectorSnap(vec3_t v)
{
int i;
for (i = 0; i < 3; i++)
{
v[i] = (vec_t)FLOAT_TO_INTEGER(v[i]);
}
}
void VectorISnap(vec3_t point, int snap)
{
int i;
for (i = 0 ;i < 3 ; i++)
{
point[i] = (vec_t)FLOAT_SNAP(point[i], snap);
}
}
void VectorFSnap(vec3_t point, float snap)
{
int i;
for (i = 0 ;i < 3 ; i++)
{
point[i] = (vec_t)FLOAT_SNAP(point[i], snap);
}
}
void _Vector5Add (vec5_t va, vec5_t vb, vec5_t out)
{
out[0] = va[0]+vb[0];
out[1] = va[1]+vb[1];
out[2] = va[2]+vb[2];
out[3] = va[3]+vb[3];
out[4] = va[4]+vb[4];
}
void _Vector5Scale (vec5_t v, vec_t scale, vec5_t out)
{
out[0] = v[0] * scale;
out[1] = v[1] * scale;
out[2] = v[2] * scale;
out[3] = v[3] * scale;
out[4] = v[4] * scale;
}
void _Vector53Copy (vec5_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
// NOTE: added these from Ritual's Q3Radiant
void ClearBounds (vec3_t mins, vec3_t maxs)
{
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
{
int i;
vec_t val;
for (i=0 ; i<3 ; i++)
{
val = v[i];
if (val < mins[i])
mins[i] = val;
if (val > maxs[i])
maxs[i] = val;
}
}
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle;
static float sr, sp, sy, cr, cp, cy;
// static to help MS compiler fp bugs
angle = angles[YAW] * (Q_PI*2.0f / 360.0f);
sy = (vec_t)sin(angle);
cy = (vec_t)cos(angle);
angle = angles[PITCH] * (Q_PI*2.0f / 360.0f);
sp = (vec_t)sin(angle);
cp = (vec_t)cos(angle);
angle = angles[ROLL] * (Q_PI*2.0f / 360.0f);
sr = (vec_t)sin(angle);
cr = (vec_t)cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right)
{
right[0] = -sr*sp*cy+cr*sy;
right[1] = -sr*sp*sy-cr*cy;
right[2] = -sr*cp;
}
if (up)
{
up[0] = cr*sp*cy+sr*sy;
up[1] = cr*sp*sy-sr*cy;
up[2] = cr*cp;
}
}
void VectorToAngles( vec3_t vec, vec3_t angles )
{
float forward;
float yaw, pitch;
if ( ( vec[ 0 ] == 0 ) && ( vec[ 1 ] == 0 ) )
{
yaw = 0;
if ( vec[ 2 ] > 0 )
{
pitch = 90;
}
else
{
pitch = 270;
}
}
else
{
yaw = (vec_t)atan2( vec[ 1 ], vec[ 0 ] ) * 180 / Q_PI;
if ( yaw < 0 )
{
yaw += 360;
}
forward = ( float )sqrt( vec[ 0 ] * vec[ 0 ] + vec[ 1 ] * vec[ 1 ] );
pitch = (vec_t)atan2( vec[ 2 ], forward ) * 180 / Q_PI;
if ( pitch < 0 )
{
pitch += 360;
}
}
angles[ 0 ] = pitch;
angles[ 1 ] = yaw;
angles[ 2 ] = 0;
}
/*
=====================
PlaneFromPoints
Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane, plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/*
** NormalToLatLong
**
** We use two byte encoded normals in some space critical applications.
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
**
*/
void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
// check for singularities
if ( normal[0] == 0 && normal[1] == 0 ) {
if ( normal[2] > 0 ) {
bytes[0] = 0;
bytes[1] = 0; // lat = 0, long = 0
} else {
bytes[0] = 128;
bytes[1] = 0; // lat = 0, long = 128
}
} else {
int a, b;
a = (int)( RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ) );
a &= 0xff;
b = (int)( RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f ) );
b &= 0xff;
bytes[0] = b; // longitude
bytes[1] = a; // lattitude
}
}
/*
=================
PlaneTypeForNormal
=================
*/
int PlaneTypeForNormal (vec3_t normal) {
if (normal[0] == 1.0 || normal[0] == -1.0)
return PLANE_X;
if (normal[1] == 1.0 || normal[1] == -1.0)
return PLANE_Y;
if (normal[2] == 1.0 || normal[2] == -1.0)
return PLANE_Z;
return PLANE_NON_AXIAL;
}
/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int pos;
int i;
vec_t minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
*/
for ( pos = 0, i = 0; i < 3; i++ )
{
if ( fabs( src[i] ) < minelem )
{
pos = i;
minelem = (vec_t)fabs( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst, dst );
}
/*
===============
RotatePointAroundVector
This is not implemented very well...
===============
*/
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
float degrees ) {
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
float rad;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
rad = (float)DEG2RAD( degrees );
zrot[0][0] = (vec_t)cos( rad );
zrot[0][1] = (vec_t)sin( rad );
zrot[1][0] = (vec_t)-sin( rad );
zrot[1][1] = (vec_t)cos( rad );
MatrixMultiply( m, zrot, tmpmat );
MatrixMultiply( tmpmat, im, rot );
for ( i = 0; i < 3; i++ ) {
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}