gtkradiant/tools/quake2/q2map/qrad.c
TTimo 8037810110 transfer from internal tree r5311 branches/1.4-gpl
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/branches/ZeroRadiant@177 8a3a26a2-13c4-0310-b231-cf6edde360e5
2007-09-12 18:54:28 +00:00

647 lines
12 KiB
C

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
// qrad.c
#include "qrad.h"
/*
NOTES
-----
every surface must be divided into at least two patches each axis
*/
patch_t *face_patches[MAX_MAP_FACES];
entity_t *face_entity[MAX_MAP_FACES];
patch_t patches[MAX_PATCHES];
unsigned num_patches;
vec3_t radiosity[MAX_PATCHES]; // light leaving a patch
vec3_t illumination[MAX_PATCHES]; // light arriving at a patch
vec3_t face_offset[MAX_MAP_FACES]; // for rotating bmodels
dplane_t backplanes[MAX_MAP_PLANES];
char inbase[32], outbase[32];
int fakeplanes; // created planes for origin offset
int numbounce = 8;
qboolean extrasamples;
float subdiv = 64;
qboolean dumppatches;
void BuildLightmaps (void);
int TestLine (vec3_t start, vec3_t stop);
int junk;
float ambient = 0;
float maxlight = 196;
float lightscale = 1.0;
qboolean glview;
qboolean nopvs;
char source[1024];
float direct_scale = 0.4;
float entity_scale = 1.0;
/*
===================================================================
MISC
===================================================================
*/
/*
=============
MakeBackplanes
=============
*/
void MakeBackplanes (void)
{
int i;
for (i=0 ; i<numplanes ; i++)
{
backplanes[i].dist = -dplanes[i].dist;
VectorSubtract (vec3_origin, dplanes[i].normal, backplanes[i].normal);
}
}
int leafparents[MAX_MAP_LEAFS];
int nodeparents[MAX_MAP_NODES];
/*
=============
MakeParents
=============
*/
void MakeParents (int nodenum, int parent)
{
int i, j;
dnode_t *node;
nodeparents[nodenum] = parent;
node = &dnodes[nodenum];
for (i=0 ; i<2 ; i++)
{
j = node->children[i];
if (j < 0)
leafparents[-j - 1] = nodenum;
else
MakeParents (j, nodenum);
}
}
/*
===================================================================
TRANSFER SCALES
===================================================================
*/
int PointInLeafnum (vec3_t point)
{
int nodenum;
vec_t dist;
dnode_t *node;
dplane_t *plane;
nodenum = 0;
while (nodenum >= 0)
{
node = &dnodes[nodenum];
plane = &dplanes[node->planenum];
dist = DotProduct (point, plane->normal) - plane->dist;
if (dist > 0)
nodenum = node->children[0];
else
nodenum = node->children[1];
}
return -nodenum - 1;
}
dleaf_t *Rad_PointInLeaf (vec3_t point)
{
int num;
num = PointInLeafnum (point);
return &dleafs[num];
}
qboolean PvsForOrigin (vec3_t org, byte *pvs)
{
dleaf_t *leaf;
if (!visdatasize)
{
memset (pvs, 255, (numleafs+7)/8 );
return true;
}
leaf = Rad_PointInLeaf (org);
if (leaf->cluster == -1)
return false; // in solid leaf
DecompressVis (dvisdata + dvis->bitofs[leaf->cluster][DVIS_PVS], pvs);
return true;
}
/*
=============
MakeTransfers
=============
*/
int total_transfer;
void MakeTransfers (int i)
{
int j;
vec3_t delta;
vec_t dist, scale;
float trans;
int itrans;
patch_t *patch, *patch2;
float total;
dplane_t plane;
vec3_t origin;
float transfers[MAX_PATCHES], *all_transfers;
int s;
int itotal;
byte pvs[(MAX_MAP_LEAFS+7)/8];
int cluster;
patch = patches + i;
total = 0;
VectorCopy (patch->origin, origin);
plane = *patch->plane;
if (!PvsForOrigin (patch->origin, pvs))
return;
// find out which patch2s will collect light
// from patch
all_transfers = transfers;
patch->numtransfers = 0;
for (j=0, patch2 = patches ; j<num_patches ; j++, patch2++)
{
transfers[j] = 0;
if (j == i)
continue;
// check pvs bit
if (!nopvs)
{
cluster = patch2->cluster;
if (cluster == -1)
continue;
if ( ! ( pvs[cluster>>3] & (1<<(cluster&7)) ) )
continue; // not in pvs
}
// calculate vector
VectorSubtract (patch2->origin, origin, delta);
dist = VectorNormalize (delta, delta);
if (!dist)
continue; // should never happen
// reletive angles
scale = DotProduct (delta, plane.normal);
scale *= -DotProduct (delta, patch2->plane->normal);
if (scale <= 0)
continue;
// check exact tramsfer
if (TestLine_r (0, patch->origin, patch2->origin) )
continue;
trans = scale * patch2->area / (dist*dist);
if (trans < 0)
trans = 0; // rounding errors...
transfers[j] = trans;
if (trans > 0)
{
total += trans;
patch->numtransfers++;
}
}
// copy the transfers out and normalize
// total should be somewhere near PI if everything went right
// because partial occlusion isn't accounted for, and nearby
// patches have underestimated form factors, it will usually
// be higher than PI
if (patch->numtransfers)
{
transfer_t *t;
if (patch->numtransfers < 0 || patch->numtransfers > MAX_PATCHES)
Error ("Weird numtransfers");
s = patch->numtransfers * sizeof(transfer_t);
patch->transfers = malloc (s);
if (!patch->transfers)
Error ("Memory allocation failure");
//
// normalize all transfers so all of the light
// is transfered to the surroundings
//
t = patch->transfers;
itotal = 0;
for (j=0 ; j<num_patches ; j++)
{
if (transfers[j] <= 0)
continue;
itrans = transfers[j]*0x10000 / total;
itotal += itrans;
t->transfer = itrans;
t->patch = j;
t++;
}
}
// don't bother locking around this. not that important.
total_transfer += patch->numtransfers;
}
/*
=============
FreeTransfers
=============
*/
void FreeTransfers (void)
{
int i;
for (i=0 ; i<num_patches ; i++)
{
free (patches[i].transfers);
patches[i].transfers = NULL;
}
}
//===================================================================
/*
=============
WriteWorld
=============
*/
void WriteWorld (char *name)
{
int i, j;
FILE *out;
patch_t *patch;
winding_t *w;
out = fopen (name, "w");
if (!out)
Error ("Couldn't open %s", name);
for (j=0, patch=patches ; j<num_patches ; j++, patch++)
{
w = patch->winding;
fprintf (out, "%i\n", w->numpoints);
for (i=0 ; i<w->numpoints ; i++)
{
fprintf (out, "%5.2f %5.2f %5.2f %5.3f %5.3f %5.3f\n",
w->p[i][0],
w->p[i][1],
w->p[i][2],
patch->totallight[0],
patch->totallight[1],
patch->totallight[2]);
}
fprintf (out, "\n");
}
fclose (out);
}
/*
=============
WriteGlView
=============
*/
void WriteGlView (void)
{
char name[1024];
FILE *f;
int i, j;
patch_t *p;
winding_t *w;
strcpy (name, source);
StripExtension (name);
strcat (name, ".glr");
f = fopen (name, "w");
if (!f)
Error ("Couldn't open %s", f);
for (j=0 ; j<num_patches ; j++)
{
p = &patches[j];
w = p->winding;
fprintf (f, "%i\n", w->numpoints);
for (i=0 ; i<w->numpoints ; i++)
{
fprintf (f, "%5.2f %5.2f %5.2f %5.3f %5.3f %5.3f\n",
w->p[i][0],
w->p[i][1],
w->p[i][2],
p->totallight[0]/128,
p->totallight[1]/128,
p->totallight[2]/128);
}
fprintf (f, "\n");
}
fclose (f);
}
//==============================================================
/*
=============
CollectLight
=============
*/
float CollectLight (void)
{
int i, j;
patch_t *patch;
vec_t total;
total = 0;
for (i=0, patch=patches ; i<num_patches ; i++, patch++)
{
// skys never collect light, it is just dropped
if (patch->sky)
{
VectorClear (radiosity[i]);
VectorClear (illumination[i]);
continue;
}
for (j=0 ; j<3 ; j++)
{
patch->totallight[j] += illumination[i][j] / patch->area;
radiosity[i][j] = illumination[i][j] * patch->reflectivity[j];
}
total += radiosity[i][0] + radiosity[i][1] + radiosity[i][2];
VectorClear (illumination[i]);
}
return total;
}
/*
=============
ShootLight
Send light out to other patches
Run multi-threaded
=============
*/
void ShootLight (int patchnum)
{
int k, l;
transfer_t *trans;
int num;
patch_t *patch;
vec3_t send;
// this is the amount of light we are distributing
// prescale it so that multiplying by the 16 bit
// transfer values gives a proper output value
for (k=0 ; k<3 ; k++)
send[k] = radiosity[patchnum][k] / 0x10000;
patch = &patches[patchnum];
trans = patch->transfers;
num = patch->numtransfers;
for (k=0 ; k<num ; k++, trans++)
{
for (l=0 ; l<3 ; l++)
illumination[trans->patch][l] += send[l]*trans->transfer;
}
}
/*
=============
BounceLight
=============
*/
void BounceLight (void)
{
int i, j;
float added;
char name[64];
patch_t *p;
for (i=0 ; i<num_patches ; i++)
{
p = &patches[i];
for (j=0 ; j<3 ; j++)
{
// p->totallight[j] = p->samplelight[j];
radiosity[i][j] = p->samplelight[j] * p->reflectivity[j] * p->area;
}
}
for (i=0 ; i<numbounce ; i++)
{
RunThreadsOnIndividual (num_patches, false, ShootLight);
added = CollectLight ();
Sys_FPrintf( SYS_VRB, "bounce:%i added:%f\n", i, added);
if ( dumppatches && (i==0 || i == numbounce-1) )
{
sprintf (name, "bounce%i.txt", i);
WriteWorld (name);
}
}
}
//==============================================================
void CheckPatches (void)
{
int i;
patch_t *patch;
for (i=0 ; i<num_patches ; i++)
{
patch = &patches[i];
if (patch->totallight[0] < 0 || patch->totallight[1] < 0 || patch->totallight[2] < 0)
Error ("negative patch totallight\n");
}
}
/*
=============
RadWorld
=============
*/
void RadWorld (void)
{
if (numnodes == 0 || numfaces == 0)
Error ("Empty map");
MakeBackplanes ();
MakeParents (0, -1);
MakeTnodes (&dmodels[0]);
// turn each face into a single patch
MakePatches ();
// subdivide patches to a maximum dimension
SubdividePatches ();
// create directlights out of patches and lights
CreateDirectLights ();
// build initial facelights
RunThreadsOnIndividual (numfaces, true, BuildFacelights);
if (numbounce > 0)
{
// build transfer lists
RunThreadsOnIndividual (num_patches, true, MakeTransfers);
Sys_FPrintf( SYS_VRB, "transfer lists: %5.1f megs\n"
, (float)total_transfer * sizeof(transfer_t) / (1024*1024));
// spread light around
BounceLight ();
FreeTransfers ();
CheckPatches ();
}
if (glview)
WriteGlView ();
// blend bounced light into direct light and save
PairEdges ();
LinkPlaneFaces ();
lightdatasize = 0;
RunThreadsOnIndividual (numfaces, true, FinalLightFace);
}
/*
========
main
light modelfile
========
*/
int RAD_Main ()
{
double start, end;
char name[1024];
int total_rad_time;
Sys_Printf ("\n----- RAD ----\n\n");
if (maxlight > 255)
maxlight = 255;
start = I_FloatTime ();
if ( !strcmp( game, "heretic2" ) )
CalcTextureReflectivity = &CalcTextureReflectivity_Heretic2;
else
CalcTextureReflectivity = &CalcTextureReflectivity_Quake2;
SetQdirFromPath (mapname);
strcpy (source, ExpandArg(mapname));
StripExtension (source);
DefaultExtension (source, ".bsp");
// ReadLightFile ();
sprintf (name, "%s%s", inbase, source);
Sys_Printf ("reading %s\n", name);
LoadBSPFile (name);
ParseEntities ();
(*CalcTextureReflectivity) ();
if (!visdatasize)
{
Sys_Printf ("No vis information, direct lighting only.\n");
numbounce = 0;
ambient = 0.1;
}
RadWorld ();
sprintf (name, "%s%s", outbase, source);
Sys_Printf ("writing %s\n", name);
WriteBSPFile (name);
end = I_FloatTime ();
total_rad_time = (int) (end-start);
Sys_Printf("\nRAD Time: ");
if ( total_rad_time > 59 )
Sys_Printf("%d Minutes ", total_rad_time/60 );
Sys_Printf( "%d Seconds\n", total_rad_time%60 );
return 0;
}