mirror of
https://github.com/TTimo/GtkRadiant.git
synced 2025-01-27 03:41:03 +00:00
a16ee23adf
into trunk. Right now all the new code that fixes problems is turned off. There are three new #defines in q3map2.h: EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES, EXPERIMENTAL_SNAP_NORMAL_FIX, and EXPERIMENTAL_SNAP_PLANE_FIX. All of these are currently set to 0, which means don't enable that new code. You can easily edit these to be 1 in order to enable the new code. There are very very minor changes to the code even with these three #defines disabled. They are as follows. - In PlaneEqual() in map.c, now considering deltas equal to given epsilon values as "far enough to be different". Previously, the '<=' operation was used, now '<' is being used. - In FindFloatPlane() in map.c, considering delta equal to distanceEpsilon (for plane distance) to be sufficiently far away. Before, delta had to be strictly greater than distanceEpsilon. - VectorNormalize() in mathlib.c is more accurate now. This change itself causes at least one regression test to succeed. The previous implementation of VectorNormalize() caused excessive errors to be introduced due to sloppy arithmetic. Note, the epsilon changes account for the possibility that the epsilons are set to 0.0 on the command-line. git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/trunk@416 8a3a26a2-13c4-0310-b231-cf6edde360e5
800 lines
16 KiB
C
800 lines
16 KiB
C
/*
|
|
Copyright (C) 1999-2007 id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
// mathlib.c -- math primitives
|
|
#include "mathlib.h"
|
|
// we use memcpy and memset
|
|
#include <memory.h>
|
|
|
|
vec3_t vec3_origin = {0.0f,0.0f,0.0f};
|
|
|
|
/*
|
|
================
|
|
VectorIsOnAxis
|
|
================
|
|
*/
|
|
qboolean VectorIsOnAxis(vec3_t v)
|
|
{
|
|
int i, zeroComponentCount;
|
|
|
|
zeroComponentCount = 0;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (v[i] == 0.0)
|
|
{
|
|
zeroComponentCount++;
|
|
}
|
|
}
|
|
|
|
if (zeroComponentCount > 1)
|
|
{
|
|
// The zero vector will be on axis.
|
|
return qtrue;
|
|
}
|
|
|
|
return qfalse;
|
|
}
|
|
|
|
/*
|
|
================
|
|
VectorIsOnAxialPlane
|
|
================
|
|
*/
|
|
qboolean VectorIsOnAxialPlane(vec3_t v)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (v[i] == 0.0)
|
|
{
|
|
// The zero vector will be on axial plane.
|
|
return qtrue;
|
|
}
|
|
}
|
|
|
|
return qfalse;
|
|
}
|
|
|
|
/*
|
|
================
|
|
MakeNormalVectors
|
|
|
|
Given a normalized forward vector, create two
|
|
other perpendicular vectors
|
|
================
|
|
*/
|
|
void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float d;
|
|
|
|
// this rotate and negate guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right, right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|
|
vec_t VectorLength(vec3_t v)
|
|
{
|
|
int i;
|
|
float length;
|
|
|
|
length = 0.0f;
|
|
for (i=0 ; i< 3 ; i++)
|
|
length += v[i]*v[i];
|
|
length = (float)sqrt (length);
|
|
|
|
return length;
|
|
}
|
|
|
|
qboolean VectorCompare (vec3_t v1, vec3_t v2)
|
|
{
|
|
int i;
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
|
|
return qfalse;
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
// FIXME TTimo this implementation has to be particular to radiant
|
|
// through another name I'd say
|
|
vec_t Q_rint (vec_t in)
|
|
{
|
|
if (g_PrefsDlg.m_bNoClamp)
|
|
return in;
|
|
else
|
|
return (float)floor (in + 0.5);
|
|
}
|
|
*/
|
|
|
|
void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc )
|
|
{
|
|
vc[0] = va[0] + scale*vb[0];
|
|
vc[1] = va[1] + scale*vb[1];
|
|
vc[2] = va[2] + scale*vb[2];
|
|
}
|
|
|
|
void _CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
|
|
{
|
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
vec_t _DotProduct (vec3_t v1, vec3_t v2)
|
|
{
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
|
|
{
|
|
out[0] = va[0]-vb[0];
|
|
out[1] = va[1]-vb[1];
|
|
out[2] = va[2]-vb[2];
|
|
}
|
|
|
|
void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
|
|
{
|
|
out[0] = va[0]+vb[0];
|
|
out[1] = va[1]+vb[1];
|
|
out[2] = va[2]+vb[2];
|
|
}
|
|
|
|
void _VectorCopy (vec3_t in, vec3_t out)
|
|
{
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
|
|
|
|
// The sqrt() function takes double as an input and returns double as an
|
|
// output according the the man pages on Debian and on FreeBSD. Therefore,
|
|
// I don't see a reason why using a double outright (instead of using the
|
|
// vec_accu_t alias for example) could possibly be frowned upon.
|
|
|
|
double x, y, z, length;
|
|
|
|
x = (double) in[0];
|
|
y = (double) in[1];
|
|
z = (double) in[2];
|
|
|
|
length = sqrt((x * x) + (y * y) + (z * z));
|
|
if (length == 0)
|
|
{
|
|
VectorClear (out);
|
|
return 0;
|
|
}
|
|
|
|
out[0] = (vec_t) (x / length);
|
|
out[1] = (vec_t) (y / length);
|
|
out[2] = (vec_t) (z / length);
|
|
|
|
return (vec_t) length;
|
|
}
|
|
|
|
vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
|
|
float max, scale;
|
|
|
|
max = in[0];
|
|
if (in[1] > max)
|
|
max = in[1];
|
|
if (in[2] > max)
|
|
max = in[2];
|
|
|
|
if (max == 0) {
|
|
out[0] = out[1] = out[2] = 1.0;
|
|
return 0;
|
|
}
|
|
|
|
scale = 1.0f / max;
|
|
|
|
VectorScale (in, scale, out);
|
|
|
|
return max;
|
|
}
|
|
|
|
void VectorInverse (vec3_t v)
|
|
{
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
/*
|
|
void VectorScale (vec3_t v, vec_t scale, vec3_t out)
|
|
{
|
|
out[0] = v[0] * scale;
|
|
out[1] = v[1] * scale;
|
|
out[2] = v[2] * scale;
|
|
}
|
|
*/
|
|
|
|
void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out)
|
|
{
|
|
vec3_t vWork, va;
|
|
int nIndex[3][2];
|
|
int i;
|
|
|
|
VectorCopy(vIn, va);
|
|
VectorCopy(va, vWork);
|
|
nIndex[0][0] = 1; nIndex[0][1] = 2;
|
|
nIndex[1][0] = 2; nIndex[1][1] = 0;
|
|
nIndex[2][0] = 0; nIndex[2][1] = 1;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (vRotation[i] != 0)
|
|
{
|
|
float dAngle = vRotation[i] * Q_PI / 180.0f;
|
|
float c = (vec_t)cos(dAngle);
|
|
float s = (vec_t)sin(dAngle);
|
|
vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s;
|
|
vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c;
|
|
}
|
|
VectorCopy(vWork, va);
|
|
}
|
|
VectorCopy(vWork, out);
|
|
}
|
|
|
|
void VectorRotateOrigin (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out)
|
|
{
|
|
vec3_t vTemp, vTemp2;
|
|
|
|
VectorSubtract(vIn, vOrigin, vTemp);
|
|
VectorRotate(vTemp, vRotation, vTemp2);
|
|
VectorAdd(vTemp2, vOrigin, out);
|
|
}
|
|
|
|
void VectorPolar(vec3_t v, float radius, float theta, float phi)
|
|
{
|
|
v[0]=(float)(radius * cos(theta) * cos(phi));
|
|
v[1]=(float)(radius * sin(theta) * cos(phi));
|
|
v[2]=(float)(radius * sin(phi));
|
|
}
|
|
|
|
void VectorSnap(vec3_t v)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
v[i] = (vec_t)floor (v[i] + 0.5);
|
|
}
|
|
}
|
|
|
|
void VectorISnap(vec3_t point, int snap)
|
|
{
|
|
int i;
|
|
for (i = 0 ;i < 3 ; i++)
|
|
{
|
|
point[i] = (vec_t)floor (point[i] / snap + 0.5) * snap;
|
|
}
|
|
}
|
|
|
|
void VectorFSnap(vec3_t point, float snap)
|
|
{
|
|
int i;
|
|
for (i = 0 ;i < 3 ; i++)
|
|
{
|
|
point[i] = (vec_t)floor (point[i] / snap + 0.5) * snap;
|
|
}
|
|
}
|
|
|
|
void _Vector5Add (vec5_t va, vec5_t vb, vec5_t out)
|
|
{
|
|
out[0] = va[0]+vb[0];
|
|
out[1] = va[1]+vb[1];
|
|
out[2] = va[2]+vb[2];
|
|
out[3] = va[3]+vb[3];
|
|
out[4] = va[4]+vb[4];
|
|
}
|
|
|
|
void _Vector5Scale (vec5_t v, vec_t scale, vec5_t out)
|
|
{
|
|
out[0] = v[0] * scale;
|
|
out[1] = v[1] * scale;
|
|
out[2] = v[2] * scale;
|
|
out[3] = v[3] * scale;
|
|
out[4] = v[4] * scale;
|
|
}
|
|
|
|
void _Vector53Copy (vec5_t in, vec3_t out)
|
|
{
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
// NOTE: added these from Ritual's Q3Radiant
|
|
void ClearBounds (vec3_t mins, vec3_t maxs)
|
|
{
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
}
|
|
|
|
void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
|
|
{
|
|
int i;
|
|
vec_t val;
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
val = v[i];
|
|
if (val < mins[i])
|
|
mins[i] = val;
|
|
if (val > maxs[i])
|
|
maxs[i] = val;
|
|
}
|
|
}
|
|
|
|
#define PITCH 0 // up / down
|
|
#define YAW 1 // left / right
|
|
#define ROLL 2 // fall over
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846f // matches value in gcc v2 math.h
|
|
#endif
|
|
|
|
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float angle;
|
|
static float sr, sp, sy, cr, cp, cy;
|
|
// static to help MS compiler fp bugs
|
|
|
|
angle = angles[YAW] * (M_PI*2.0f / 360.0f);
|
|
sy = (vec_t)sin(angle);
|
|
cy = (vec_t)cos(angle);
|
|
angle = angles[PITCH] * (M_PI*2.0f / 360.0f);
|
|
sp = (vec_t)sin(angle);
|
|
cp = (vec_t)cos(angle);
|
|
angle = angles[ROLL] * (M_PI*2.0f / 360.0f);
|
|
sr = (vec_t)sin(angle);
|
|
cr = (vec_t)cos(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward[0] = cp*cy;
|
|
forward[1] = cp*sy;
|
|
forward[2] = -sp;
|
|
}
|
|
if (right)
|
|
{
|
|
right[0] = -sr*sp*cy+cr*sy;
|
|
right[1] = -sr*sp*sy-cr*cy;
|
|
right[2] = -sr*cp;
|
|
}
|
|
if (up)
|
|
{
|
|
up[0] = cr*sp*cy+sr*sy;
|
|
up[1] = cr*sp*sy-sr*cy;
|
|
up[2] = cr*cp;
|
|
}
|
|
}
|
|
|
|
void VectorToAngles( vec3_t vec, vec3_t angles )
|
|
{
|
|
float forward;
|
|
float yaw, pitch;
|
|
|
|
if ( ( vec[ 0 ] == 0 ) && ( vec[ 1 ] == 0 ) )
|
|
{
|
|
yaw = 0;
|
|
if ( vec[ 2 ] > 0 )
|
|
{
|
|
pitch = 90;
|
|
}
|
|
else
|
|
{
|
|
pitch = 270;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
yaw = (vec_t)atan2( vec[ 1 ], vec[ 0 ] ) * 180 / M_PI;
|
|
if ( yaw < 0 )
|
|
{
|
|
yaw += 360;
|
|
}
|
|
|
|
forward = ( float )sqrt( vec[ 0 ] * vec[ 0 ] + vec[ 1 ] * vec[ 1 ] );
|
|
pitch = (vec_t)atan2( vec[ 2 ], forward ) * 180 / M_PI;
|
|
if ( pitch < 0 )
|
|
{
|
|
pitch += 360;
|
|
}
|
|
}
|
|
|
|
angles[ 0 ] = pitch;
|
|
angles[ 1 ] = yaw;
|
|
angles[ 2 ] = 0;
|
|
}
|
|
|
|
/*
|
|
=====================
|
|
PlaneFromPoints
|
|
|
|
Returns false if the triangle is degenrate.
|
|
The normal will point out of the clock for clockwise ordered points
|
|
=====================
|
|
*/
|
|
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
|
|
vec3_t d1, d2;
|
|
|
|
VectorSubtract( b, a, d1 );
|
|
VectorSubtract( c, a, d2 );
|
|
CrossProduct( d2, d1, plane );
|
|
if ( VectorNormalize( plane, plane ) == 0 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
plane[3] = DotProduct( a, plane );
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
** NormalToLatLong
|
|
**
|
|
** We use two byte encoded normals in some space critical applications.
|
|
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
|
|
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
|
|
**
|
|
*/
|
|
void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
|
|
// check for singularities
|
|
if ( normal[0] == 0 && normal[1] == 0 ) {
|
|
if ( normal[2] > 0 ) {
|
|
bytes[0] = 0;
|
|
bytes[1] = 0; // lat = 0, long = 0
|
|
} else {
|
|
bytes[0] = 128;
|
|
bytes[1] = 0; // lat = 0, long = 128
|
|
}
|
|
} else {
|
|
int a, b;
|
|
|
|
a = (int)( RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ) );
|
|
a &= 0xff;
|
|
|
|
b = (int)( RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f ) );
|
|
b &= 0xff;
|
|
|
|
bytes[0] = b; // longitude
|
|
bytes[1] = a; // lattitude
|
|
}
|
|
}
|
|
|
|
/*
|
|
=================
|
|
PlaneTypeForNormal
|
|
=================
|
|
*/
|
|
int PlaneTypeForNormal (vec3_t normal) {
|
|
if (normal[0] == 1.0 || normal[0] == -1.0)
|
|
return PLANE_X;
|
|
if (normal[1] == 1.0 || normal[1] == -1.0)
|
|
return PLANE_Y;
|
|
if (normal[2] == 1.0 || normal[2] == -1.0)
|
|
return PLANE_Z;
|
|
|
|
return PLANE_NON_AXIAL;
|
|
}
|
|
|
|
/*
|
|
================
|
|
MatrixMultiply
|
|
================
|
|
*/
|
|
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = 1.0F / DotProduct( normal, normal );
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
|
{
|
|
int pos;
|
|
int i;
|
|
vec_t minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for ( pos = 0, i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = (vec_t)fabs( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst, dst );
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotatePointAroundVector
|
|
|
|
This is not implemented very well...
|
|
===============
|
|
*/
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
|
|
float degrees ) {
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
float rad;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
rad = DEG2RAD( degrees );
|
|
zrot[0][0] = (vec_t)cos( rad );
|
|
zrot[0][1] = (vec_t)sin( rad );
|
|
zrot[1][0] = (vec_t)-sin( rad );
|
|
zrot[1][1] = (vec_t)cos( rad );
|
|
|
|
MatrixMultiply( m, zrot, tmpmat );
|
|
MatrixMultiply( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ ) {
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Below is double-precision math stuff. This was initially needed by the new
|
|
// "base winding" code in q3map2 brush processing in order to fix the famous
|
|
// "disappearing triangles" issue. These definitions can be used wherever extra
|
|
// precision is needed.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
=================
|
|
VectorLengthAccu
|
|
=================
|
|
*/
|
|
vec_accu_t VectorLengthAccu(const vec3_accu_t v)
|
|
{
|
|
return (vec_accu_t) sqrt((v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2]));
|
|
}
|
|
|
|
/*
|
|
=================
|
|
DotProductAccu
|
|
=================
|
|
*/
|
|
vec_accu_t DotProductAccu(const vec3_accu_t a, const vec3_accu_t b)
|
|
{
|
|
return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
|
|
}
|
|
|
|
/*
|
|
=================
|
|
VectorSubtractAccu
|
|
=================
|
|
*/
|
|
void VectorSubtractAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
|
|
{
|
|
out[0] = a[0] - b[0];
|
|
out[1] = a[1] - b[1];
|
|
out[2] = a[2] - b[2];
|
|
}
|
|
|
|
/*
|
|
=================
|
|
VectorAddAccu
|
|
=================
|
|
*/
|
|
void VectorAddAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
|
|
{
|
|
out[0] = a[0] + b[0];
|
|
out[1] = a[1] + b[1];
|
|
out[2] = a[2] + b[2];
|
|
}
|
|
|
|
/*
|
|
=================
|
|
VectorCopyAccu
|
|
=================
|
|
*/
|
|
void VectorCopyAccu(const vec3_accu_t in, vec3_accu_t out)
|
|
{
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
/*
|
|
=================
|
|
VectorScaleAccu
|
|
=================
|
|
*/
|
|
void VectorScaleAccu(const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out)
|
|
{
|
|
out[0] = in[0] * scaleFactor;
|
|
out[1] = in[1] * scaleFactor;
|
|
out[2] = in[2] * scaleFactor;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
CrossProductAccu
|
|
=================
|
|
*/
|
|
void CrossProductAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
|
|
{
|
|
out[0] = (a[1] * b[2]) - (a[2] * b[1]);
|
|
out[1] = (a[2] * b[0]) - (a[0] * b[2]);
|
|
out[2] = (a[0] * b[1]) - (a[1] * b[0]);
|
|
}
|
|
|
|
/*
|
|
=================
|
|
Q_rintAccu
|
|
=================
|
|
*/
|
|
vec_accu_t Q_rintAccu(vec_accu_t val)
|
|
{
|
|
return (vec_accu_t) floor(val + 0.5);
|
|
}
|
|
|
|
/*
|
|
=================
|
|
VectorCopyAccuToRegular
|
|
=================
|
|
*/
|
|
void VectorCopyAccuToRegular(const vec3_accu_t in, vec3_t out)
|
|
{
|
|
out[0] = (vec_t) in[0];
|
|
out[1] = (vec_t) in[1];
|
|
out[2] = (vec_t) in[2];
|
|
}
|
|
|
|
/*
|
|
=================
|
|
VectorCopyRegularToAccu
|
|
=================
|
|
*/
|
|
void VectorCopyRegularToAccu(const vec3_t in, vec3_accu_t out)
|
|
{
|
|
out[0] = (vec_accu_t) in[0];
|
|
out[1] = (vec_accu_t) in[1];
|
|
out[2] = (vec_accu_t) in[2];
|
|
}
|
|
|
|
/*
|
|
=================
|
|
VectorNormalizeAccu
|
|
=================
|
|
*/
|
|
vec_accu_t VectorNormalizeAccu(const vec3_accu_t in, vec3_accu_t out)
|
|
{
|
|
// The sqrt() function takes double as an input and returns double as an
|
|
// output according the the man pages on Debian and on FreeBSD. Therefore,
|
|
// I don't see a reason why using a double outright (instead of using the
|
|
// vec_accu_t alias for example) could possibly be frowned upon.
|
|
|
|
vec_accu_t length;
|
|
|
|
length = (vec_accu_t) sqrt((in[0] * in[0]) + (in[1] * in[1]) + (in[2] * in[2]));
|
|
if (length == 0)
|
|
{
|
|
VectorClear(out);
|
|
return 0;
|
|
}
|
|
|
|
out[0] = in[0] / length;
|
|
out[1] = in[1] / length;
|
|
out[2] = in[2] / length;
|
|
|
|
return length;
|
|
}
|