gtkradiant/tools/urt/libs/splines/math_matrix.h

226 lines
8.3 KiB
C++

/*
This code is based on source provided under the terms of the Id Software
LIMITED USE SOFTWARE LICENSE AGREEMENT, a copy of which is included with the
GtkRadiant sources (see LICENSE_ID). If you did not receive a copy of
LICENSE_ID, please contact Id Software immediately at info@idsoftware.com.
All changes and additions to the original source which have been developed by
other contributors (see CONTRIBUTORS) are provided under the terms of the
license the contributors choose (see LICENSE), to the extent permitted by the
LICENSE_ID. If you did not receive a copy of the contributor license,
please contact the GtkRadiant maintainers at info@gtkradiant.com immediately.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __MATH_MATRIX_H__
#define __MATH_MATRIX_H__
#include <string.h>
#include "math_vector.h"
#ifndef ID_INLINE
#ifdef _WIN32
#define ID_INLINE __inline
#else
#define ID_INLINE inline
#endif
#endif
class quat_t;
class angles_t;
class mat3_t {
public:
idVec3 mat[ 3 ];
mat3_t();
mat3_t( float src[ 3 ][ 3 ] );
mat3_t( idVec3 const &x, idVec3 const &y, idVec3 const &z );
mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz );
friend void toMatrix( quat_t const &src, mat3_t &dst );
friend void toMatrix( angles_t const &src, mat3_t &dst );
friend void toMatrix( idVec3 const &src, mat3_t &dst );
idVec3 operator[]( int index ) const;
idVec3 &operator[]( int index );
idVec3 operator*( const idVec3 &vec ) const;
mat3_t operator*( const mat3_t &a ) const;
mat3_t operator*( float a ) const;
mat3_t operator+( mat3_t const &a ) const;
mat3_t operator-( mat3_t const &a ) const;
friend idVec3 operator*( const idVec3 &vec, const mat3_t &mat );
friend mat3_t operator*( float a, mat3_t const &b );
mat3_t &operator*=( float a );
mat3_t &operator+=( mat3_t const &a );
mat3_t &operator-=( mat3_t const &a );
void Clear( void );
void ProjectVector( const idVec3 &src, idVec3 &dst ) const;
void UnprojectVector( const idVec3 &src, idVec3 &dst ) const;
void OrthoNormalize( void );
void Transpose( mat3_t &matrix );
void Transpose( void );
mat3_t Inverse( void ) const;
void Identity( void );
friend void InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst );
friend mat3_t SkewSymmetric( idVec3 const &src );
};
ID_INLINE mat3_t::mat3_t() {
}
ID_INLINE mat3_t::mat3_t( float src[ 3 ][ 3 ] ) {
memcpy( mat, src, sizeof( src ) );
}
ID_INLINE mat3_t::mat3_t( idVec3 const &x, idVec3 const &y, idVec3 const &z ) {
mat[ 0 ].x = x.x; mat[ 0 ].y = x.y; mat[ 0 ].z = x.z;
mat[ 1 ].x = y.x; mat[ 1 ].y = y.y; mat[ 1 ].z = y.z;
mat[ 2 ].x = z.x; mat[ 2 ].y = z.y; mat[ 2 ].z = z.z;
}
ID_INLINE mat3_t::mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz ) {
mat[ 0 ].x = xx; mat[ 0 ].y = xy; mat[ 0 ].z = xz;
mat[ 1 ].x = yx; mat[ 1 ].y = yy; mat[ 1 ].z = yz;
mat[ 2 ].x = zx; mat[ 2 ].y = zy; mat[ 2 ].z = zz;
}
ID_INLINE idVec3 mat3_t::operator[]( int index ) const {
assert( ( index >= 0 ) && ( index < 3 ) );
return mat[ index ];
}
ID_INLINE idVec3& mat3_t::operator[]( int index ) {
assert( ( index >= 0 ) && ( index < 3 ) );
return mat[ index ];
}
ID_INLINE idVec3 mat3_t::operator*( const idVec3 &vec ) const {
return idVec3(
mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z,
mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z,
mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z );
}
ID_INLINE mat3_t mat3_t::operator*( const mat3_t &a ) const {
return mat3_t(
mat[0].x * a[0].x + mat[0].y * a[1].x + mat[0].z * a[2].x,
mat[0].x * a[0].y + mat[0].y * a[1].y + mat[0].z * a[2].y,
mat[0].x * a[0].z + mat[0].y * a[1].z + mat[0].z * a[2].z,
mat[1].x * a[0].x + mat[1].y * a[1].x + mat[1].z * a[2].x,
mat[1].x * a[0].y + mat[1].y * a[1].y + mat[1].z * a[2].y,
mat[1].x * a[0].z + mat[1].y * a[1].z + mat[1].z * a[2].z,
mat[2].x * a[0].x + mat[2].y * a[1].x + mat[2].z * a[2].x,
mat[2].x * a[0].y + mat[2].y * a[1].y + mat[2].z * a[2].y,
mat[2].x * a[0].z + mat[2].y * a[1].z + mat[2].z * a[2].z );
}
ID_INLINE mat3_t mat3_t::operator*( float a ) const {
return mat3_t(
mat[0].x * a, mat[0].y * a, mat[0].z * a,
mat[1].x * a, mat[1].y * a, mat[1].z * a,
mat[2].x * a, mat[2].y * a, mat[2].z * a );
}
ID_INLINE mat3_t mat3_t::operator+( mat3_t const &a ) const {
return mat3_t(
mat[0].x + a[0].x, mat[0].y + a[0].y, mat[0].z + a[0].z,
mat[1].x + a[1].x, mat[1].y + a[1].y, mat[1].z + a[1].z,
mat[2].x + a[2].x, mat[2].y + a[2].y, mat[2].z + a[2].z );
}
ID_INLINE mat3_t mat3_t::operator-( mat3_t const &a ) const {
return mat3_t(
mat[0].x - a[0].x, mat[0].y - a[0].y, mat[0].z - a[0].z,
mat[1].x - a[1].x, mat[1].y - a[1].y, mat[1].z - a[1].z,
mat[2].x - a[2].x, mat[2].y - a[2].y, mat[2].z - a[2].z );
}
ID_INLINE idVec3 operator*( const idVec3 &vec, const mat3_t &mat ) {
return idVec3(
mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z,
mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z,
mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z );
}
ID_INLINE mat3_t operator*( float a, mat3_t const &b ) {
return mat3_t(
b[0].x * a, b[0].y * a, b[0].z * a,
b[1].x * a, b[1].y * a, b[1].z * a,
b[2].x * a, b[2].y * a, b[2].z * a );
}
ID_INLINE mat3_t &mat3_t::operator*=( float a ) {
mat[0].x *= a; mat[0].y *= a; mat[0].z *= a;
mat[1].x *= a; mat[1].y *= a; mat[1].z *= a;
mat[2].x *= a; mat[2].y *= a; mat[2].z *= a;
return *this;
}
ID_INLINE mat3_t &mat3_t::operator+=( mat3_t const &a ) {
mat[0].x += a[0].x; mat[0].y += a[0].y; mat[0].z += a[0].z;
mat[1].x += a[1].x; mat[1].y += a[1].y; mat[1].z += a[1].z;
mat[2].x += a[2].x; mat[2].y += a[2].y; mat[2].z += a[2].z;
return *this;
}
ID_INLINE mat3_t &mat3_t::operator-=( mat3_t const &a ) {
mat[0].x -= a[0].x; mat[0].y -= a[0].y; mat[0].z -= a[0].z;
mat[1].x -= a[1].x; mat[1].y -= a[1].y; mat[1].z -= a[1].z;
mat[2].x -= a[2].x; mat[2].y -= a[2].y; mat[2].z -= a[2].z;
return *this;
}
ID_INLINE void mat3_t::OrthoNormalize( void ) {
mat[ 0 ].Normalize();
mat[ 2 ].Cross( mat[ 0 ], mat[ 1 ] );
mat[ 2 ].Normalize();
mat[ 1 ].Cross( mat[ 2 ], mat[ 0 ] );
mat[ 1 ].Normalize();
}
ID_INLINE void mat3_t::Identity( void ) {
mat[ 0 ].x = 1.f; mat[ 0 ].y = 0.f; mat[ 0 ].z = 0.f;
mat[ 1 ].x = 0.f; mat[ 1 ].y = 1.f; mat[ 1 ].z = 0.f;
mat[ 2 ].x = 0.f; mat[ 2 ].y = 0.f; mat[ 2 ].z = 1.f;
}
ID_INLINE void InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst ) {
dst[0].x = inv[0].x * b[0].x + inv[1].x * b[1].x + inv[2].x * b[2].x;
dst[0].y = inv[0].x * b[0].y + inv[1].x * b[1].y + inv[2].x * b[2].y;
dst[0].z = inv[0].x * b[0].z + inv[1].x * b[1].z + inv[2].x * b[2].z;
dst[1].x = inv[0].y * b[0].x + inv[1].y * b[1].x + inv[2].y * b[2].x;
dst[1].y = inv[0].y * b[0].y + inv[1].y * b[1].y + inv[2].y * b[2].y;
dst[1].z = inv[0].y * b[0].z + inv[1].y * b[1].z + inv[2].y * b[2].z;
dst[2].x = inv[0].z * b[0].x + inv[1].z * b[1].x + inv[2].z * b[2].x;
dst[2].y = inv[0].z * b[0].y + inv[1].z * b[1].y + inv[2].z * b[2].y;
dst[2].z = inv[0].z * b[0].z + inv[1].z * b[1].z + inv[2].z * b[2].z;
}
ID_INLINE mat3_t SkewSymmetric( idVec3 const &src ) {
return mat3_t( 0.0f, -src.z, src.y, src.z, 0.0f, -src.x, -src.y, src.x, 0.0f );
}
extern mat3_t mat3_default;
#endif /* !__MATH_MATRIX_H__ */