mirror of
https://github.com/TTimo/GtkRadiant.git
synced 2025-01-11 04:21:08 +00:00
199 lines
5.4 KiB
C
199 lines
5.4 KiB
C
|
/*
|
||
|
This code is based on source provided under the terms of the Id Software
|
||
|
LIMITED USE SOFTWARE LICENSE AGREEMENT, a copy of which is included with the
|
||
|
GtkRadiant sources (see LICENSE_ID). If you did not receive a copy of
|
||
|
LICENSE_ID, please contact Id Software immediately at info@idsoftware.com.
|
||
|
|
||
|
All changes and additions to the original source which have been developed by
|
||
|
other contributors (see CONTRIBUTORS) are provided under the terms of the
|
||
|
license the contributors choose (see LICENSE), to the extent permitted by the
|
||
|
LICENSE_ID. If you did not receive a copy of the contributor license,
|
||
|
please contact the GtkRadiant maintainers at info@gtkradiant.com immediately.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
|
||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
|
||
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#ifndef __MATH_ANGLES_H__
|
||
|
#define __MATH_ANGLES_H__
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <assert.h>
|
||
|
|
||
|
#include "math_vector.h"
|
||
|
|
||
|
class mat3_t;
|
||
|
class quat_t;
|
||
|
class idVec3;
|
||
|
typedef idVec3 &vec3_p;
|
||
|
|
||
|
class angles_t {
|
||
|
public:
|
||
|
float pitch;
|
||
|
float yaw;
|
||
|
float roll;
|
||
|
|
||
|
angles_t();
|
||
|
angles_t( float pitch, float yaw, float roll );
|
||
|
angles_t( const idVec3 &vec );
|
||
|
|
||
|
friend void toAngles( idVec3 &src, angles_t &dst );
|
||
|
friend void toAngles( quat_t &src, angles_t &dst );
|
||
|
friend void toAngles( mat3_t &src, angles_t &dst );
|
||
|
|
||
|
operator vec3_p();
|
||
|
|
||
|
float operator[]( int index ) const;
|
||
|
float& operator[]( int index );
|
||
|
|
||
|
void set( float pitch, float yaw, float roll );
|
||
|
|
||
|
void operator=( angles_t const &a );
|
||
|
void operator=( idVec3 const &a );
|
||
|
|
||
|
friend angles_t operator+( const angles_t &a, const angles_t &b );
|
||
|
angles_t &operator+=( angles_t const &a );
|
||
|
angles_t &operator+=( idVec3 const &a );
|
||
|
|
||
|
friend angles_t operator-( angles_t &a, angles_t &b );
|
||
|
angles_t &operator-=( angles_t &a );
|
||
|
|
||
|
friend angles_t operator*( const angles_t &a, float b );
|
||
|
friend angles_t operator*( float a, const angles_t &b );
|
||
|
angles_t &operator*=( float a );
|
||
|
|
||
|
friend int operator==( angles_t &a, angles_t &b );
|
||
|
|
||
|
friend int operator!=( angles_t &a, angles_t &b );
|
||
|
|
||
|
void toVectors( idVec3 *forward, idVec3 *right = NULL, idVec3 *up = NULL );
|
||
|
idVec3 toForward( void );
|
||
|
|
||
|
angles_t &Zero( void );
|
||
|
|
||
|
angles_t &Normalize360( void );
|
||
|
angles_t &Normalize180( void );
|
||
|
};
|
||
|
|
||
|
extern angles_t ang_zero;
|
||
|
|
||
|
inline angles_t::angles_t() {}
|
||
|
|
||
|
inline angles_t::angles_t( float pitch, float yaw, float roll ) {
|
||
|
this->pitch = pitch;
|
||
|
this->yaw = yaw;
|
||
|
this->roll = roll;
|
||
|
}
|
||
|
|
||
|
inline angles_t::angles_t( const idVec3 &vec ) {
|
||
|
this->pitch = vec.x;
|
||
|
this->yaw = vec.y;
|
||
|
this->roll = vec.z;
|
||
|
}
|
||
|
|
||
|
inline float angles_t::operator[]( int index ) const {
|
||
|
assert( ( index >= 0 ) && ( index < 3 ) );
|
||
|
return ( &pitch )[ index ];
|
||
|
}
|
||
|
|
||
|
inline float& angles_t::operator[]( int index ) {
|
||
|
assert( ( index >= 0 ) && ( index < 3 ) );
|
||
|
return ( &pitch )[ index ];
|
||
|
}
|
||
|
|
||
|
inline angles_t::operator vec3_p( void ) {
|
||
|
return *( idVec3 * )&pitch;
|
||
|
}
|
||
|
|
||
|
inline void angles_t::set( float pitch, float yaw, float roll ) {
|
||
|
this->pitch = pitch;
|
||
|
this->yaw = yaw;
|
||
|
this->roll = roll;
|
||
|
}
|
||
|
|
||
|
inline void angles_t::operator=( angles_t const &a ) {
|
||
|
pitch = a.pitch;
|
||
|
yaw = a.yaw;
|
||
|
roll = a.roll;
|
||
|
}
|
||
|
|
||
|
inline void angles_t::operator=( idVec3 const &a ) {
|
||
|
pitch = a[ 0 ];
|
||
|
yaw = a[ 1 ];
|
||
|
roll = a[ 2 ];
|
||
|
}
|
||
|
|
||
|
inline angles_t operator+( const angles_t &a, const angles_t &b ) {
|
||
|
return angles_t( a.pitch + b.pitch, a.yaw + b.yaw, a.roll + b.roll );
|
||
|
}
|
||
|
|
||
|
inline angles_t& angles_t::operator+=( angles_t const &a ) {
|
||
|
pitch += a.pitch;
|
||
|
yaw += a.yaw;
|
||
|
roll += a.roll;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
inline angles_t& angles_t::operator+=( idVec3 const &a ) {
|
||
|
pitch += a.x;
|
||
|
yaw += a.y;
|
||
|
roll += a.z;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
inline angles_t operator-( angles_t &a, angles_t &b ) {
|
||
|
return angles_t( a.pitch - b.pitch, a.yaw - b.yaw, a.roll - b.roll );
|
||
|
}
|
||
|
|
||
|
inline angles_t& angles_t::operator-=( angles_t &a ) {
|
||
|
pitch -= a.pitch;
|
||
|
yaw -= a.yaw;
|
||
|
roll -= a.roll;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
inline angles_t operator*( const angles_t &a, float b ) {
|
||
|
return angles_t( a.pitch * b, a.yaw * b, a.roll * b );
|
||
|
}
|
||
|
|
||
|
inline angles_t operator*( float a, const angles_t &b ) {
|
||
|
return angles_t( a * b.pitch, a * b.yaw, a * b.roll );
|
||
|
}
|
||
|
|
||
|
inline angles_t& angles_t::operator*=( float a ) {
|
||
|
pitch *= a;
|
||
|
yaw *= a;
|
||
|
roll *= a;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
inline int operator==( angles_t &a, angles_t &b ) {
|
||
|
return ( ( a.pitch == b.pitch ) && ( a.yaw == b.yaw ) && ( a.roll == b.roll ) );
|
||
|
}
|
||
|
|
||
|
inline int operator!=( angles_t &a, angles_t &b ) {
|
||
|
return ( ( a.pitch != b.pitch ) || ( a.yaw != b.yaw ) || ( a.roll != b.roll ) );
|
||
|
}
|
||
|
|
||
|
inline angles_t& angles_t::Zero( void ) {
|
||
|
pitch = 0.0f;
|
||
|
yaw = 0.0f;
|
||
|
roll = 0.0f;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
#endif /* !__MATH_ANGLES_H__ */
|