gtkradiant/plugins/entity/light.cpp

1915 lines
54 KiB
C++
Raw Normal View History

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
///\file
///\brief Represents any light entity (e.g. light).
///
/// This entity dislays a special 'light' model.
/// The "origin" key directly controls the position of the light model in local space.
/// The "_color" key controls the colour of the light model.
/// The "light" key is visualised with a sphere representing the approximate coverage of the light (except Doom3).
/// Doom3 special behaviour:
/// The entity behaves as a group.
/// The "origin" key is the translation to be applied to all brushes (not patches) grouped under this entity.
/// The "light_center" and "light_radius" keys are visualised with a point and a box when the light is selected.
/// The "rotation" key directly controls the orientation of the light bounding box in local space.
/// The "light_origin" key controls the position of the light independently of the "origin" key if it is specified.
/// The "light_rotation" key duplicates the behaviour of the "rotation" key if it is specified. This appears to be an unfinished feature in Doom3.
#include "light.h"
#include <stdlib.h>
#include "cullable.h"
#include "renderable.h"
#include "editable.h"
#include "math/frustum.h"
#include "selectionlib.h"
#include "instancelib.h"
#include "transformlib.h"
#include "entitylib.h"
#include "render.h"
#include "eclasslib.h"
#include "render.h"
#include "stringio.h"
#include "traverselib.h"
#include "dragplanes.h"
#include "targetable.h"
#include "origin.h"
#include "colour.h"
#include "filters.h"
#include "namedentity.h"
#include "keyobservers.h"
#include "namekeys.h"
#include "rotation.h"
#include "entity.h"
extern bool g_newLightDraw;
void sphere_draw_fill(const Vector3& origin, float radius, int sides)
{
if (radius <= 0)
return;
const double dt = c_2pi / static_cast<double>(sides);
const double dp = c_pi / static_cast<double>(sides);
glBegin(GL_TRIANGLES);
for (int i = 0; i <= sides - 1; ++i)
{
for (int j = 0; j <= sides - 2; ++j)
{
const double t = i * dt;
const double p = (j * dp) - (c_pi / 2.0);
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t, p), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t, p + dp), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p + dp), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t, p), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p + dp), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p), radius)));
glVertex3fv(vector3_to_array(v));
}
}
}
{
const double p = (sides - 1) * dp - (c_pi / 2.0);
for (int i = 0; i <= sides - 1; ++i)
{
const double t = i * dt;
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t, p), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p + dp), radius)));
glVertex3fv(vector3_to_array(v));
}
{
Vector3 v(vector3_added(origin, vector3_scaled(vector3_for_spherical(t + dt, p), radius)));
glVertex3fv(vector3_to_array(v));
}
}
}
glEnd();
}
void sphere_draw_wire(const Vector3& origin, float radius, int sides)
{
{
glBegin(GL_LINE_LOOP);
for (int i = 0; i <= sides; i++)
{
double ds = sin((i * 2 * c_pi) / sides);
double dc = cos((i * 2 * c_pi) / sides);
glVertex3f(
static_cast<float>(origin[0] + radius * dc),
static_cast<float>(origin[1] + radius * ds),
origin[2]
);
}
glEnd();
}
{
glBegin(GL_LINE_LOOP);
for (int i = 0; i <= sides; i++)
{
double ds = sin((i * 2 * c_pi) / sides);
double dc = cos((i * 2 * c_pi) / sides);
glVertex3f(
static_cast<float>(origin[0] + radius * dc),
origin[1],
static_cast<float>(origin[2] + radius * ds)
);
}
glEnd();
}
{
glBegin(GL_LINE_LOOP);
for (int i = 0; i <= sides; i++)
{
double ds = sin((i * 2 * c_pi) / sides);
double dc = cos((i * 2 * c_pi) / sides);
glVertex3f(
origin[0],
static_cast<float>(origin[1] + radius * dc),
static_cast<float>(origin[2] + radius * ds)
);
}
glEnd();
}
}
void light_draw_box_lines(const Vector3& origin, const Vector3 points[8])
{
//draw lines from the center of the bbox to the corners
glBegin(GL_LINES);
glVertex3fv(vector3_to_array(origin));
glVertex3fv(vector3_to_array(points[1]));
glVertex3fv(vector3_to_array(origin));
glVertex3fv(vector3_to_array(points[5]));
glVertex3fv(vector3_to_array(origin));
glVertex3fv(vector3_to_array(points[2]));
glVertex3fv(vector3_to_array(origin));
glVertex3fv(vector3_to_array(points[6]));
glVertex3fv(vector3_to_array(origin));
glVertex3fv(vector3_to_array(points[0]));
glVertex3fv(vector3_to_array(origin));
glVertex3fv(vector3_to_array(points[4]));
glVertex3fv(vector3_to_array(origin));
glVertex3fv(vector3_to_array(points[3]));
glVertex3fv(vector3_to_array(origin));
glVertex3fv(vector3_to_array(points[7]));
glEnd();
}
void light_draw_radius_wire(const Vector3& origin, const float envelope[3])
{
if(envelope[0] > 0)
sphere_draw_wire(origin, envelope[0], 24);
if(envelope[1] > 0)
sphere_draw_wire(origin, envelope[1], 24);
if(envelope[2] > 0)
sphere_draw_wire(origin, envelope[2], 24);
}
void light_draw_radius_fill(const Vector3& origin, const float envelope[3])
{
if(envelope[0] > 0)
sphere_draw_fill(origin, envelope[0], 16);
if(envelope[1] > 0)
sphere_draw_fill(origin, envelope[1], 16);
if(envelope[2] > 0)
sphere_draw_fill(origin, envelope[2], 16);
}
void light_vertices(const AABB& aabb_light, Vector3 points[6])
{
Vector3 max(vector3_added(aabb_light.origin, aabb_light.extents));
Vector3 min(vector3_subtracted(aabb_light.origin, aabb_light.extents));
Vector3 mid(aabb_light.origin);
// top, bottom, tleft, tright, bright, bleft
points[0] = Vector3(mid[0], mid[1], max[2]);
points[1] = Vector3(mid[0], mid[1], min[2]);
points[2] = Vector3(min[0], max[1], mid[2]);
points[3] = Vector3(max[0], max[1], mid[2]);
points[4] = Vector3(max[0], min[1], mid[2]);
points[5] = Vector3(min[0], min[1], mid[2]);
}
void light_draw(const AABB& aabb_light, RenderStateFlags state)
{
Vector3 points[6];
light_vertices(aabb_light, points);
if(state & RENDER_LIGHTING)
{
const float f = 0.70710678f;
// North, East, South, West
const Vector3 normals[8] = {
Vector3( 0, f, f ),
Vector3( f, 0, f ),
Vector3( 0,-f, f ),
Vector3(-f, 0, f ),
Vector3( 0, f,-f ),
Vector3( f, 0,-f ),
Vector3( 0,-f,-f ),
Vector3(-f, 0,-f ),
};
#if !defined(USE_TRIANGLE_FAN)
glBegin(GL_TRIANGLES);
#else
glBegin(GL_TRIANGLE_FAN);
#endif
glVertex3fv(vector3_to_array(points[0]));
glVertex3fv(vector3_to_array(points[2]));
glNormal3fv(vector3_to_array(normals[0]));
glVertex3fv(vector3_to_array(points[3]));
#if !defined(USE_TRIANGLE_FAN)
glVertex3fv(vector3_to_array(points[0]));
glVertex3fv(vector3_to_array(points[3]));
#endif
glNormal3fv(vector3_to_array(normals[1]));
glVertex3fv(vector3_to_array(points[4]));
#if !defined(USE_TRIANGLE_FAN)
glVertex3fv(vector3_to_array(points[0]));
glVertex3fv(vector3_to_array(points[4]));
#endif
glNormal3fv(vector3_to_array(normals[2]));
glVertex3fv(vector3_to_array(points[5]));
#if !defined(USE_TRIANGLE_FAN)
glVertex3fv(vector3_to_array(points[0]));
glVertex3fv(vector3_to_array(points[5]));
#endif
glNormal3fv(vector3_to_array(normals[3]));
glVertex3fv(vector3_to_array(points[2]));
#if defined(USE_TRIANGLE_FAN)
glEnd();
glBegin(GL_TRIANGLE_FAN);
#endif
glVertex3fv(vector3_to_array(points[1]));
glVertex3fv(vector3_to_array(points[2]));
glNormal3fv(vector3_to_array(normals[7]));
glVertex3fv(vector3_to_array(points[5]));
#if !defined(USE_TRIANGLE_FAN)
glVertex3fv(vector3_to_array(points[1]));
glVertex3fv(vector3_to_array(points[5]));
#endif
glNormal3fv(vector3_to_array(normals[6]));
glVertex3fv(vector3_to_array(points[4]));
#if !defined(USE_TRIANGLE_FAN)
glVertex3fv(vector3_to_array(points[1]));
glVertex3fv(vector3_to_array(points[4]));
#endif
glNormal3fv(vector3_to_array(normals[5]));
glVertex3fv(vector3_to_array(points[3]));
#if !defined(USE_TRIANGLE_FAN)
glVertex3fv(vector3_to_array(points[1]));
glVertex3fv(vector3_to_array(points[3]));
#endif
glNormal3fv(vector3_to_array(normals[4]));
glVertex3fv(vector3_to_array(points[2]));
glEnd();
}
else
{
typedef unsigned int index_t;
const index_t indices[24] = {
0, 2, 3,
0, 3, 4,
0, 4, 5,
0, 5, 2,
1, 2, 5,
1, 5, 4,
1, 4, 3,
1, 3, 2
};
#if 1
glVertexPointer(3, GL_FLOAT, 0, points);
glDrawElements(GL_TRIANGLES, sizeof(indices)/sizeof(index_t), RenderIndexTypeID, indices);
#else
glBegin(GL_TRIANGLES);
for(unsigned int i = 0; i < sizeof(indices)/sizeof(index_t); ++i)
{
glVertex3fv(points[indices[i]]);
}
glEnd();
#endif
}
// NOTE: prolly not relevant until some time..
// check for DOOM lights
#if 0
if (strlen(ValueForKey(e, "light_right")) > 0) {
vec3_t vRight, vUp, vTarget, vTemp;
GetVectorForKey (e, "light_right", vRight);
GetVectorForKey (e, "light_up", vUp);
GetVectorForKey (e, "light_target", vTarget);
glColor3f(0, 1, 0);
glBegin(GL_LINE_LOOP);
VectorAdd(vTarget, e->origin, vTemp);
VectorAdd(vTemp, vRight, vTemp);
VectorAdd(vTemp, vUp, vTemp);
glVertex3fv(e->origin);
glVertex3fv(vTemp);
VectorAdd(vTarget, e->origin, vTemp);
VectorAdd(vTemp, vUp, vTemp);
VectorSubtract(vTemp, vRight, vTemp);
glVertex3fv(e->origin);
glVertex3fv(vTemp);
VectorAdd(vTarget, e->origin, vTemp);
VectorAdd(vTemp, vRight, vTemp);
VectorSubtract(vTemp, vUp, vTemp);
glVertex3fv(e->origin);
glVertex3fv(vTemp);
VectorAdd(vTarget, e->origin, vTemp);
VectorSubtract(vTemp, vUp, vTemp);
VectorSubtract(vTemp, vRight, vTemp);
glVertex3fv(e->origin);
glVertex3fv(vTemp);
glEnd();
}
#endif
}
// These variables are tweakable on the q3map2 console, setting to q3map2
// default here as there is no way to find out what the user actually uses
// right now. Maybe move them to worldspawn?
float fPointScale = 7500.f;
float fLinearScale = 1.f / 8000.f;
float light_radius_linear(float fIntensity, float fFalloffTolerance)
{
return ((fIntensity * fPointScale * fLinearScale) - fFalloffTolerance);
}
float light_radius(float fIntensity, float fFalloffTolerance)
{
return sqrt(fIntensity * fPointScale / fFalloffTolerance);
}
LightType g_lightType = LIGHTTYPE_DEFAULT;
bool spawnflags_linear(int flags)
{
if( g_lightType == LIGHTTYPE_RTCW )
{
// Spawnflags :
// 1: nonlinear
// 2: angle
return !(flags & 1);
}
else
{
// Spawnflags :
// 1: linear
// 2: no angle
return (flags & 1);
}
}
class LightRadii
{
public:
float m_radii[3];
private:
float m_primaryIntensity;
float m_secondaryIntensity;
int m_flags;
float m_fade;
float m_scale;
void calculateRadii()
{
float intensity = 300.0f;
if(m_primaryIntensity != 0.0f)
{
intensity = m_primaryIntensity;
}
else if(m_secondaryIntensity != 0.0f)
{
intensity = m_secondaryIntensity;
}
intensity *= m_scale;
if(spawnflags_linear(m_flags))
{
m_radii[0] = light_radius_linear(intensity, 1.0f) / m_fade;
m_radii[1] = light_radius_linear(intensity, 48.0f) / m_fade;
m_radii[2] = light_radius_linear(intensity, 255.0f) / m_fade;
}
else
{
m_radii[0] = light_radius(intensity, 1.0f);
m_radii[1] = light_radius(intensity, 48.0f);
m_radii[2] = light_radius(intensity, 255.0f);
}
}
public:
LightRadii() : m_primaryIntensity(0), m_secondaryIntensity(0), m_flags(0), m_fade(1), m_scale(1)
{
}
void primaryIntensityChanged(const char* value)
{
m_primaryIntensity = string_read_float(value);
calculateRadii();
}
typedef MemberCaller1<LightRadii, const char*, &LightRadii::primaryIntensityChanged> PrimaryIntensityChangedCaller;
void secondaryIntensityChanged(const char* value)
{
m_secondaryIntensity = string_read_float(value);
calculateRadii();
}
typedef MemberCaller1<LightRadii, const char*, &LightRadii::secondaryIntensityChanged> SecondaryIntensityChangedCaller;
void scaleChanged(const char* value)
{
m_scale = string_read_float(value);
if(m_scale <= 0.0f)
{
m_scale = 1.0f;
}
calculateRadii();
}
typedef MemberCaller1<LightRadii, const char*, &LightRadii::scaleChanged> ScaleChangedCaller;
void fadeChanged(const char* value)
{
m_fade = string_read_float(value);
if(m_fade <= 0.0f)
{
m_fade = 1.0f;
}
calculateRadii();
}
typedef MemberCaller1<LightRadii, const char*, &LightRadii::fadeChanged> FadeChangedCaller;
void flagsChanged(const char* value)
{
m_flags = string_read_int(value);
calculateRadii();
}
typedef MemberCaller1<LightRadii, const char*, &LightRadii::flagsChanged> FlagsChangedCaller;
};
class Doom3LightRadius
{
public:
Vector3 m_defaultRadius;
Vector3 m_radius;
Vector3 m_radiusTransformed;
Vector3 m_center;
Callback m_changed;
bool m_useCenterKey;
Doom3LightRadius(const char* defaultRadius) : m_defaultRadius(300, 300, 300), m_center(0, 0, 0), m_useCenterKey(false)
{
if(!string_parse_vector3(defaultRadius, m_defaultRadius))
{
globalErrorStream() << "Doom3LightRadius: failed to parse default light radius\n";
}
m_radius = m_defaultRadius;
}
void lightRadiusChanged(const char* value)
{
if(!string_parse_vector3(value, m_radius))
{
m_radius = m_defaultRadius;
}
m_radiusTransformed = m_radius;
m_changed();
SceneChangeNotify();
}
typedef MemberCaller1<Doom3LightRadius, const char*, &Doom3LightRadius::lightRadiusChanged> LightRadiusChangedCaller;
void lightCenterChanged(const char* value)
{
m_useCenterKey = string_parse_vector3(value, m_center);
if(!m_useCenterKey)
{
m_center = Vector3(0, 0, 0);
}
SceneChangeNotify();
}
typedef MemberCaller1<Doom3LightRadius, const char*, &Doom3LightRadius::lightCenterChanged> LightCenterChangedCaller;
};
class RenderLightRadiiWire : public OpenGLRenderable
{
LightRadii& m_radii;
const Vector3& m_origin;
public:
RenderLightRadiiWire(LightRadii& radii, const Vector3& origin) : m_radii(radii), m_origin(origin)
{
}
void render(RenderStateFlags state) const
{
light_draw_radius_wire(m_origin, m_radii.m_radii);
}
};
class RenderLightRadiiFill : public OpenGLRenderable
{
LightRadii& m_radii;
const Vector3& m_origin;
public:
static Shader* m_state;
RenderLightRadiiFill(LightRadii& radii, const Vector3& origin) : m_radii(radii), m_origin(origin)
{
}
void render(RenderStateFlags state) const
{
light_draw_radius_fill(m_origin, m_radii.m_radii);
}
};
class RenderLightRadiiBox : public OpenGLRenderable
{
const Vector3& m_origin;
public:
mutable Vector3 m_points[8];
static Shader* m_state;
RenderLightRadiiBox(const Vector3& origin) : m_origin(origin)
{
}
void render(RenderStateFlags state) const
{
//draw the bounding box of light based on light_radius key
if((state & RENDER_FILL) != 0)
{
aabb_draw_flatshade(m_points);
}
else
{
aabb_draw_wire(m_points);
}
#if 1 //disable if you dont want lines going from the center of the light bbox to the corners
light_draw_box_lines(m_origin, m_points);
#endif
}
};
Shader* RenderLightRadiiFill::m_state = 0;
class RenderLightCenter : public OpenGLRenderable
{
const Vector3& m_center;
EntityClass& m_eclass;
public:
static Shader* m_state;
RenderLightCenter(const Vector3& center, EntityClass& eclass) : m_center(center), m_eclass(eclass)
{
}
void render(RenderStateFlags state) const
{
glBegin(GL_POINTS);
glColor3fv(vector3_to_array(m_eclass.color));
glVertex3fv(vector3_to_array(m_center));
glEnd();
}
};
Shader* RenderLightCenter::m_state = 0;
class RenderLightProjection : public OpenGLRenderable
{
const Matrix4& m_projection;
public:
RenderLightProjection(const Matrix4& projection) : m_projection(projection)
{
}
void render(RenderStateFlags state) const
{
Matrix4 unproject(matrix4_full_inverse(m_projection));
Vector3 points[8];
aabb_corners(AABB(Vector3(0.5f, 0.5f, 0.5f), Vector3(0.5f, 0.5f, 0.5f)), points);
points[0] = vector4_projected(matrix4_transformed_vector4(unproject, Vector4(points[0], 1)));
points[1] = vector4_projected(matrix4_transformed_vector4(unproject, Vector4(points[1], 1)));
points[2] = vector4_projected(matrix4_transformed_vector4(unproject, Vector4(points[2], 1)));
points[3] = vector4_projected(matrix4_transformed_vector4(unproject, Vector4(points[3], 1)));
points[4] = vector4_projected(matrix4_transformed_vector4(unproject, Vector4(points[4], 1)));
points[5] = vector4_projected(matrix4_transformed_vector4(unproject, Vector4(points[5], 1)));
points[6] = vector4_projected(matrix4_transformed_vector4(unproject, Vector4(points[6], 1)));
points[7] = vector4_projected(matrix4_transformed_vector4(unproject, Vector4(points[7], 1)));
Vector4 test1 = matrix4_transformed_vector4(unproject, Vector4(0.5f, 0.5f, 0.5f, 1));
Vector3 test2 = vector4_projected(test1);
aabb_draw_wire(points);
}
};
inline void default_extents(Vector3& extents)
{
extents = Vector3(8, 8, 8);
}
class ShaderRef
{
CopiedString m_name;
Shader* m_shader;
void capture()
{
m_shader = GlobalShaderCache().capture(m_name.c_str());
}
void release()
{
GlobalShaderCache().release(m_name.c_str());
}
public:
ShaderRef()
{
capture();
}
~ShaderRef()
{
release();
}
void setName(const char* name)
{
release();
m_name = name;
capture();
}
Shader* get() const
{
return m_shader;
}
};
class LightShader
{
ShaderRef m_shader;
void setDefault()
{
m_shader.setName(m_defaultShader);
}
public:
static const char* m_defaultShader;
LightShader()
{
setDefault();
}
void valueChanged(const char* value)
{
if(string_empty(value))
{
setDefault();
}
else
{
m_shader.setName(value);
}
SceneChangeNotify();
}
typedef MemberCaller1<LightShader, const char*, &LightShader::valueChanged> ValueChangedCaller;
Shader* get() const
{
return m_shader.get();
}
};
const char* LightShader::m_defaultShader = "";
inline const BasicVector4<double>& plane3_to_vector4(const Plane3& self)
{
return reinterpret_cast<const BasicVector4<double>&>(self);
}
inline BasicVector4<double>& plane3_to_vector4(Plane3& self)
{
return reinterpret_cast<BasicVector4<double>&>(self);
}
inline Matrix4 matrix4_from_planes(const Plane3& left, const Plane3& right, const Plane3& bottom, const Plane3& top, const Plane3& front, const Plane3& back)
{
return Matrix4(
(right.a - left.a) / 2,
(top.a - bottom.a) / 2,
(back.a - front.a) / 2,
right.a - (right.a - left.a) / 2,
(right.b - left.b) / 2,
(top.b - bottom.b) / 2,
(back.b - front.b) / 2,
right.b - (right.b - left.b) / 2,
(right.c - left.c) / 2,
(top.c - bottom.c) / 2,
(back.c - front.c) / 2,
right.c - (right.c - left.c) / 2,
(right.d - left.d) / 2,
(top.d - bottom.d) / 2,
(back.d - front.d) / 2,
right.d - (right.d - left.d) / 2
);
}
class Light :
public OpenGLRenderable,
public Cullable,
public Bounded,
public Editable,
public Snappable
{
EntityKeyValues m_entity;
KeyObserverMap m_keyObservers;
TraversableNodeSet m_traverse;
IdentityTransform m_transform;
OriginKey m_originKey;
RotationKey m_rotationKey;
Float9 m_rotation;
Colour m_colour;
ClassnameFilter m_filter;
NamedEntity m_named;
NameKeys m_nameKeys;
TraversableObserverPairRelay m_traverseObservers;
Doom3GroupOrigin m_funcStaticOrigin;
LightRadii m_radii;
Doom3LightRadius m_doom3Radius;
RenderLightRadiiWire m_radii_wire;
RenderLightRadiiFill m_radii_fill;
RenderLightRadiiBox m_radii_box;
RenderLightCenter m_render_center;
RenderableNamedEntity m_renderName;
Vector3 m_lightOrigin;
bool m_useLightOrigin;
Float9 m_lightRotation;
bool m_useLightRotation;
Vector3 m_lightTarget;
bool m_useLightTarget;
Vector3 m_lightUp;
bool m_useLightUp;
Vector3 m_lightRight;
bool m_useLightRight;
Vector3 m_lightStart;
bool m_useLightStart;
Vector3 m_lightEnd;
bool m_useLightEnd;
mutable AABB m_doom3AABB;
mutable Matrix4 m_doom3Rotation;
mutable Matrix4 m_doom3Projection;
mutable Frustum m_doom3Frustum;
mutable bool m_doom3ProjectionChanged;
RenderLightProjection m_renderProjection;
LightShader m_shader;
AABB m_aabb_light;
Callback m_transformChanged;
Callback m_boundsChanged;
Callback m_evaluateTransform;
void construct()
{
default_rotation(m_rotation);
m_aabb_light.origin = Vector3(0, 0, 0);
default_extents(m_aabb_light.extents);
m_keyObservers.insert("classname", ClassnameFilter::ClassnameChangedCaller(m_filter));
m_keyObservers.insert(Static<KeyIsName>::instance().m_nameKey, NamedEntity::IdentifierChangedCaller(m_named));
m_keyObservers.insert("_color", Colour::ColourChangedCaller(m_colour));
m_keyObservers.insert("origin", OriginKey::OriginChangedCaller(m_originKey));
m_keyObservers.insert("_light", LightRadii::PrimaryIntensityChangedCaller(m_radii));
m_keyObservers.insert("light", LightRadii::SecondaryIntensityChangedCaller(m_radii));
m_keyObservers.insert("fade", LightRadii::FadeChangedCaller(m_radii));
m_keyObservers.insert("scale", LightRadii::ScaleChangedCaller(m_radii));
m_keyObservers.insert("spawnflags", LightRadii::FlagsChangedCaller(m_radii));
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_keyObservers.insert("angle", RotationKey::AngleChangedCaller(m_rotationKey));
m_keyObservers.insert("rotation", RotationKey::RotationChangedCaller(m_rotationKey));
m_keyObservers.insert("light_radius", Doom3LightRadius::LightRadiusChangedCaller(m_doom3Radius));
m_keyObservers.insert("light_center", Doom3LightRadius::LightCenterChangedCaller(m_doom3Radius));
m_keyObservers.insert("light_origin", Light::LightOriginChangedCaller(*this));
m_keyObservers.insert("light_rotation", Light::LightRotationChangedCaller(*this));
m_keyObservers.insert("light_target", Light::LightTargetChangedCaller(*this));
m_keyObservers.insert("light_up", Light::LightUpChangedCaller(*this));
m_keyObservers.insert("light_right", Light::LightRightChangedCaller(*this));
m_keyObservers.insert("light_start", Light::LightStartChangedCaller(*this));
m_keyObservers.insert("light_end", Light::LightEndChangedCaller(*this));
m_keyObservers.insert("texture", LightShader::ValueChangedCaller(m_shader));
m_useLightTarget = m_useLightUp = m_useLightRight = m_useLightStart = m_useLightEnd = false;
m_doom3ProjectionChanged = true;
}
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_traverse.attach(&m_traverseObservers);
m_traverseObservers.attach(m_funcStaticOrigin);
m_entity.m_isContainer = true;
}
}
void destroy()
{
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_traverseObservers.detach(m_funcStaticOrigin);
m_traverse.detach(&m_traverseObservers);
}
}
void updateOrigin()
{
m_boundsChanged();
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_funcStaticOrigin.originChanged();
}
m_doom3Radius.m_changed();
GlobalSelectionSystem().pivotChanged();
}
void originChanged()
{
m_aabb_light.origin = m_useLightOrigin ? m_lightOrigin : m_originKey.m_origin;
updateOrigin();
}
typedef MemberCaller<Light, &Light::originChanged> OriginChangedCaller;
void lightOriginChanged(const char* value)
{
m_useLightOrigin = !string_empty(value);
if(m_useLightOrigin)
{
read_origin(m_lightOrigin, value);
}
originChanged();
}
typedef MemberCaller1<Light, const char*, &Light::lightOriginChanged> LightOriginChangedCaller;
void lightTargetChanged(const char* value)
{
m_useLightTarget = !string_empty(value);
if(m_useLightTarget)
{
read_origin(m_lightTarget, value);
}
projectionChanged();
}
typedef MemberCaller1<Light, const char*, &Light::lightTargetChanged> LightTargetChangedCaller;
void lightUpChanged(const char* value)
{
m_useLightUp = !string_empty(value);
if(m_useLightUp)
{
read_origin(m_lightUp, value);
}
projectionChanged();
}
typedef MemberCaller1<Light, const char*, &Light::lightUpChanged> LightUpChangedCaller;
void lightRightChanged(const char* value)
{
m_useLightRight = !string_empty(value);
if(m_useLightRight)
{
read_origin(m_lightRight, value);
}
projectionChanged();
}
typedef MemberCaller1<Light, const char*, &Light::lightRightChanged> LightRightChangedCaller;
void lightStartChanged(const char* value)
{
m_useLightStart = !string_empty(value);
if(m_useLightStart)
{
read_origin(m_lightStart, value);
}
projectionChanged();
}
typedef MemberCaller1<Light, const char*, &Light::lightStartChanged> LightStartChangedCaller;
void lightEndChanged(const char* value)
{
m_useLightEnd = !string_empty(value);
if(m_useLightEnd)
{
read_origin(m_lightEnd, value);
}
projectionChanged();
}
typedef MemberCaller1<Light, const char*, &Light::lightEndChanged> LightEndChangedCaller;
void writeLightOrigin()
{
write_origin(m_lightOrigin, &m_entity, "light_origin");
}
void updateLightRadiiBox() const
{
const Matrix4& rotation = rotation_toMatrix(m_rotation);
aabb_corners(AABB(Vector3(0, 0, 0), m_doom3Radius.m_radiusTransformed), m_radii_box.m_points);
matrix4_transform_point(rotation, m_radii_box.m_points[0]);
vector3_add(m_radii_box.m_points[0], m_aabb_light.origin);
matrix4_transform_point(rotation, m_radii_box.m_points[1]);
vector3_add(m_radii_box.m_points[1], m_aabb_light.origin);
matrix4_transform_point(rotation, m_radii_box.m_points[2]);
vector3_add(m_radii_box.m_points[2], m_aabb_light.origin);
matrix4_transform_point(rotation, m_radii_box.m_points[3]);
vector3_add(m_radii_box.m_points[3], m_aabb_light.origin);
matrix4_transform_point(rotation, m_radii_box.m_points[4]);
vector3_add(m_radii_box.m_points[4], m_aabb_light.origin);
matrix4_transform_point(rotation, m_radii_box.m_points[5]);
vector3_add(m_radii_box.m_points[5], m_aabb_light.origin);
matrix4_transform_point(rotation, m_radii_box.m_points[6]);
vector3_add(m_radii_box.m_points[6], m_aabb_light.origin);
matrix4_transform_point(rotation, m_radii_box.m_points[7]);
vector3_add(m_radii_box.m_points[7], m_aabb_light.origin);
}
void rotationChanged()
{
rotation_assign(m_rotation, m_useLightRotation ? m_lightRotation : m_rotationKey.m_rotation);
GlobalSelectionSystem().pivotChanged();
}
typedef MemberCaller<Light, &Light::rotationChanged> RotationChangedCaller;
void lightRotationChanged(const char* value)
{
m_useLightRotation = !string_empty(value);
if(m_useLightRotation)
{
read_rotation(m_lightRotation, value);
}
rotationChanged();
}
typedef MemberCaller1<Light, const char*, &Light::lightRotationChanged> LightRotationChangedCaller;
public:
Light(EntityClass* eclass, scene::Node& node, const Callback& transformChanged, const Callback& boundsChanged, const Callback& evaluateTransform) :
m_entity(eclass),
m_originKey(OriginChangedCaller(*this)),
m_rotationKey(RotationChangedCaller(*this)),
m_colour(Callback()),
m_filter(m_entity, node),
m_named(m_entity),
m_nameKeys(m_entity),
m_funcStaticOrigin(m_traverse, m_originKey.m_origin),
m_doom3Radius(EntityClass_valueForKey(m_entity.getEntityClass(), "light_radius")),
m_radii_wire(m_radii, m_aabb_light.origin),
m_radii_fill(m_radii, m_aabb_light.origin),
m_radii_box(m_aabb_light.origin),
m_render_center(m_doom3Radius.m_center, m_entity.getEntityClass()),
m_renderName(m_named, m_aabb_light.origin),
m_useLightOrigin(false),
m_useLightRotation(false),
m_renderProjection(m_doom3Projection),
m_transformChanged(transformChanged),
m_boundsChanged(boundsChanged),
m_evaluateTransform(evaluateTransform)
{
construct();
}
Light(const Light& other, scene::Node& node, const Callback& transformChanged, const Callback& boundsChanged, const Callback& evaluateTransform) :
m_entity(other.m_entity),
m_originKey(OriginChangedCaller(*this)),
m_rotationKey(RotationChangedCaller(*this)),
m_colour(Callback()),
m_filter(m_entity, node),
m_named(m_entity),
m_nameKeys(m_entity),
m_funcStaticOrigin(m_traverse, m_originKey.m_origin),
m_doom3Radius(EntityClass_valueForKey(m_entity.getEntityClass(), "light_radius")),
m_radii_wire(m_radii, m_aabb_light.origin),
m_radii_fill(m_radii, m_aabb_light.origin),
m_radii_box(m_aabb_light.origin),
m_render_center(m_doom3Radius.m_center, m_entity.getEntityClass()),
m_renderName(m_named, m_aabb_light.origin),
m_useLightOrigin(false),
m_useLightRotation(false),
m_renderProjection(m_doom3Projection),
m_transformChanged(transformChanged),
m_boundsChanged(boundsChanged),
m_evaluateTransform(evaluateTransform)
{
construct();
}
~Light()
{
destroy();
}
InstanceCounter m_instanceCounter;
void instanceAttach(const scene::Path& path)
{
if(++m_instanceCounter.m_count == 1)
{
m_filter.instanceAttach();
m_entity.instanceAttach(path_find_mapfile(path.begin(), path.end()));
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_traverse.instanceAttach(path_find_mapfile(path.begin(), path.end()));
}
m_entity.attach(m_keyObservers);
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_funcStaticOrigin.enable();
}
}
}
void instanceDetach(const scene::Path& path)
{
if(--m_instanceCounter.m_count == 0)
{
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_funcStaticOrigin.disable();
}
m_entity.detach(m_keyObservers);
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_traverse.instanceDetach(path_find_mapfile(path.begin(), path.end()));
}
m_entity.instanceDetach(path_find_mapfile(path.begin(), path.end()));
m_filter.instanceDetach();
}
}
EntityKeyValues& getEntity()
{
return m_entity;
}
const EntityKeyValues& getEntity() const
{
return m_entity;
}
scene::Traversable& getTraversable()
{
return m_traverse;
}
Namespaced& getNamespaced()
{
return m_nameKeys;
}
Nameable& getNameable()
{
return m_named;
}
TransformNode& getTransformNode()
{
return m_transform;
}
void attach(scene::Traversable::Observer* observer)
{
m_traverseObservers.attach(*observer);
}
void detach(scene::Traversable::Observer* observer)
{
m_traverseObservers.detach(*observer);
}
void render(RenderStateFlags state) const
{
if(!g_newLightDraw)
{
aabb_draw(m_aabb_light, state);
}
else
{
light_draw(m_aabb_light, state);
}
}
VolumeIntersectionValue intersectVolume(const VolumeTest& volume, const Matrix4& localToWorld) const
{
return volume.TestAABB(m_aabb_light, localToWorld);
}
// cache
const AABB& localAABB() const
{
return m_aabb_light;
}
mutable Matrix4 m_projectionOrientation;
void renderSolid(Renderer& renderer, const VolumeTest& volume, const Matrix4& localToWorld, bool selected) const
{
renderer.SetState(m_entity.getEntityClass().m_state_wire, Renderer::eWireframeOnly);
renderer.SetState(m_colour.state(), Renderer::eFullMaterials);
renderer.addRenderable(*this, localToWorld);
if(selected && g_lightRadii && string_empty(m_entity.getKeyValue("target")))
{
if(renderer.getStyle() == Renderer::eFullMaterials)
{
renderer.SetState(RenderLightRadiiFill::m_state, Renderer::eFullMaterials);
renderer.Highlight(Renderer::ePrimitive, false);
renderer.addRenderable(m_radii_fill, localToWorld);
}
else
{
renderer.addRenderable(m_radii_wire, localToWorld);
}
}
renderer.SetState(m_entity.getEntityClass().m_state_wire, Renderer::eFullMaterials);
if(g_lightType == LIGHTTYPE_DOOM3 && selected)
{
if(isProjected())
{
projection();
m_projectionOrientation = rotation();
vector4_to_vector3(m_projectionOrientation.t()) = localAABB().origin;
renderer.addRenderable(m_renderProjection, m_projectionOrientation);
}
else
{
updateLightRadiiBox();
renderer.addRenderable(m_radii_box, localToWorld);
}
//draw the center of the light
if(m_doom3Radius.m_useCenterKey)
{
renderer.Highlight(Renderer::ePrimitive, false);
renderer.Highlight(Renderer::eFace, false);
renderer.SetState(m_render_center.m_state, Renderer::eFullMaterials);
renderer.SetState(m_render_center.m_state, Renderer::eWireframeOnly);
renderer.addRenderable(m_render_center, localToWorld);
}
}
}
void renderWireframe(Renderer& renderer, const VolumeTest& volume, const Matrix4& localToWorld, bool selected) const
{
renderSolid(renderer, volume, localToWorld, selected);
if(g_showNames)
{
renderer.addRenderable(m_renderName, localToWorld);
}
}
void testSelect(Selector& selector, SelectionTest& test, const Matrix4& localToWorld)
{
test.BeginMesh(localToWorld);
SelectionIntersection best;
aabb_testselect(m_aabb_light, test, best);
if(best.valid())
{
selector.addIntersection(best);
}
}
void translate(const Vector3& translation)
{
m_aabb_light.origin = origin_translated(m_aabb_light.origin, translation);
}
void rotate(const Quaternion& rotation)
{
rotation_rotate(m_rotation, rotation);
}
void snapto(float snap)
{
if(g_lightType == LIGHTTYPE_DOOM3 && !m_useLightOrigin && !m_traverse.empty())
{
m_useLightOrigin = true;
m_lightOrigin = m_originKey.m_origin;
}
if(m_useLightOrigin)
{
m_lightOrigin = origin_snapped(m_lightOrigin, snap);
writeLightOrigin();
}
else
{
m_originKey.m_origin = origin_snapped(m_originKey.m_origin, snap);
m_originKey.write(&m_entity);
}
}
void setLightRadius(const AABB& aabb)
{
m_aabb_light.origin = aabb.origin;
m_doom3Radius.m_radiusTransformed = aabb.extents;
}
void transformLightRadius(const Matrix4& transform)
{
matrix4_transform_point(transform, m_aabb_light.origin);
}
void revertTransform()
{
m_aabb_light.origin = m_useLightOrigin ? m_lightOrigin : m_originKey.m_origin;
rotation_assign(m_rotation, m_useLightRotation ? m_lightRotation : m_rotationKey.m_rotation);
m_doom3Radius.m_radiusTransformed = m_doom3Radius.m_radius;
}
void freezeTransform()
{
if(g_lightType == LIGHTTYPE_DOOM3 && !m_useLightOrigin && !m_traverse.empty())
{
m_useLightOrigin = true;
}
if(m_useLightOrigin)
{
m_lightOrigin = m_aabb_light.origin;
writeLightOrigin();
}
else
{
m_originKey.m_origin = m_aabb_light.origin;
m_originKey.write(&m_entity);
}
if(g_lightType == LIGHTTYPE_DOOM3)
{
if(!m_useLightRotation && !m_traverse.empty())
{
m_useLightRotation = true;
}
if(m_useLightRotation)
{
rotation_assign(m_lightRotation, m_rotation);
write_rotation(m_lightRotation, &m_entity, "light_rotation");
}
rotation_assign(m_rotationKey.m_rotation, m_rotation);
write_rotation(m_rotationKey.m_rotation, &m_entity);
m_doom3Radius.m_radius = m_doom3Radius.m_radiusTransformed;
if(m_doom3Radius.m_radius == m_doom3Radius.m_defaultRadius)
{
m_entity.setKeyValue("light_radius", "");
}
else
{
write_origin(m_doom3Radius.m_radius, &m_entity, "light_radius");
}
}
}
void transformChanged()
{
revertTransform();
m_evaluateTransform();
updateOrigin();
}
typedef MemberCaller<Light, &Light::transformChanged> TransformChangedCaller;
mutable Matrix4 m_localPivot;
const Matrix4& getLocalPivot() const
{
m_localPivot = rotation_toMatrix(m_rotation);
vector4_to_vector3(m_localPivot.t()) = m_aabb_light.origin;
return m_localPivot;
}
void setLightChangedCallback(const Callback& callback)
{
m_doom3Radius.m_changed = callback;
}
const AABB& aabb() const
{
m_doom3AABB = AABB(m_aabb_light.origin, m_doom3Radius.m_radiusTransformed);
return m_doom3AABB;
}
bool testAABB(const AABB& other) const
{
if(isProjected())
{
Matrix4 transform = rotation();
vector4_to_vector3(transform.t()) = localAABB().origin;
projection();
Frustum frustum(frustum_transformed(m_doom3Frustum, transform));
return frustum_test_aabb(frustum, other) != c_volumeOutside;
}
// test against an AABB which contains the rotated bounds of this light.
const AABB& bounds = aabb();
return aabb_intersects_aabb(other, AABB(
bounds.origin,
Vector3(
static_cast<float>(fabs(m_rotation[0] * bounds.extents[0])
+ fabs(m_rotation[3] * bounds.extents[1])
+ fabs(m_rotation[6] * bounds.extents[2])),
static_cast<float>(fabs(m_rotation[1] * bounds.extents[0])
+ fabs(m_rotation[4] * bounds.extents[1])
+ fabs(m_rotation[7] * bounds.extents[2])),
static_cast<float>(fabs(m_rotation[2] * bounds.extents[0])
+ fabs(m_rotation[5] * bounds.extents[1])
+ fabs(m_rotation[8] * bounds.extents[2]))
)
));
}
const Matrix4& rotation() const
{
m_doom3Rotation = rotation_toMatrix(m_rotation);
return m_doom3Rotation;
}
const Vector3& offset() const
{
return m_doom3Radius.m_center;
}
const Vector3& colour() const
{
return m_colour.m_colour;
}
bool isProjected() const
{
return m_useLightTarget && m_useLightUp && m_useLightRight;
}
void projectionChanged()
{
m_doom3ProjectionChanged = true;
m_doom3Radius.m_changed();
SceneChangeNotify();
}
const Matrix4& projection() const
{
if(!m_doom3ProjectionChanged)
{
return m_doom3Projection;
}
m_doom3ProjectionChanged = false;
m_doom3Projection = g_matrix4_identity;
matrix4_translate_by_vec3(m_doom3Projection, Vector3(0.5f, 0.5f, 0));
matrix4_scale_by_vec3(m_doom3Projection, Vector3(0.5f, 0.5f, 1));
#if 0
Vector3 right = vector3_cross(m_lightUp, vector3_normalised(m_lightTarget));
Vector3 up = vector3_cross(vector3_normalised(m_lightTarget), m_lightRight);
Vector3 target = m_lightTarget;
Matrix4 test(
-right.x(), -right.y(), -right.z(), 0,
-up.x(), -up.y(), -up.z(), 0,
-target.x(), -target.y(), -target.z(), 0,
0, 0, 0, 1
);
Matrix4 frustum = matrix4_frustum(-0.01, 0.01, -0.01, 0.01, 0.01, 1.0);
test = matrix4_full_inverse(test);
matrix4_premultiply_by_matrix4(test, frustum);
matrix4_multiply_by_matrix4(m_doom3Projection, test);
#elif 0
const float nearFar = 1 / 49.5f;
Vector3 right = vector3_cross(m_lightUp, vector3_normalised(m_lightTarget + m_lightRight));
Vector3 up = vector3_cross(vector3_normalised(m_lightTarget + m_lightUp), m_lightRight);
Vector3 target = vector3_negated(m_lightTarget * (1 + nearFar));
float scale = -1 / vector3_length(m_lightTarget);
Matrix4 test(
-inverse(right.x()), -inverse(up.x()), -inverse(target.x()), 0,
-inverse(right.y()), -inverse(up.y()), -inverse(target.y()), 0,
-inverse(right.z()), -inverse(up.z()), -inverse(target.z()), scale,
0, 0, -nearFar, 0
);
matrix4_multiply_by_matrix4(m_doom3Projection, test);
#elif 0
Vector3 leftA(m_lightTarget - m_lightRight);
Vector3 leftB(m_lightRight + m_lightUp);
Plane3 left(vector3_normalised(vector3_cross(leftA, leftB)) * (1.0 / 128), 0);
Vector3 rightA(m_lightTarget + m_lightRight);
Vector3 rightB(vector3_cross(rightA, m_lightTarget));
Plane3 right(vector3_normalised(vector3_cross(rightA, rightB)) * (1.0 / 128), 0);
Vector3 bottomA(m_lightTarget - m_lightUp);
Vector3 bottomB(vector3_cross(bottomA, m_lightTarget));
Plane3 bottom(vector3_normalised(vector3_cross(bottomA, bottomB)) * (1.0 / 128), 0);
Vector3 topA(m_lightTarget + m_lightUp);
Vector3 topB(vector3_cross(topA, m_lightTarget));
Plane3 top(vector3_normalised(vector3_cross(topA, topB)) * (1.0 / 128), 0);
Plane3 front(vector3_normalised(m_lightTarget) * (1.0 / 128), 1);
Plane3 back(vector3_normalised(vector3_negated(m_lightTarget)) * (1.0 / 128), 0);
Matrix4 test(matrix4_from_planes(plane3_flipped(left), plane3_flipped(right), plane3_flipped(bottom), plane3_flipped(top), plane3_flipped(front), plane3_flipped(back)));
matrix4_multiply_by_matrix4(m_doom3Projection, test);
#else
Plane3 lightProject[4];
Vector3 start = m_useLightStart && m_useLightEnd ? m_lightStart : vector3_normalised(m_lightTarget);
Vector3 stop = m_useLightStart && m_useLightEnd ? m_lightEnd : m_lightTarget;
float rLen = vector3_length(m_lightRight);
Vector3 right = vector3_divided(m_lightRight, rLen);
float uLen = vector3_length(m_lightUp);
Vector3 up = vector3_divided(m_lightUp, uLen);
Vector3 normal = vector3_normalised(vector3_cross(up, right));
float dist = vector3_dot(m_lightTarget, normal);
if ( dist < 0 ) {
dist = -dist;
normal = vector3_negated(normal);
}
right *= ( 0.5f * dist ) / rLen;
up *= -( 0.5f * dist ) / uLen;
lightProject[2] = Plane3(normal, 0);
lightProject[0] = Plane3(right, 0);
lightProject[1] = Plane3(up, 0);
// now offset to center
Vector4 targetGlobal(m_lightTarget, 1);
{
float a = vector4_dot(targetGlobal, plane3_to_vector4(lightProject[0]));
float b = vector4_dot(targetGlobal, plane3_to_vector4(lightProject[2]));
float ofs = 0.5f - a / b;
plane3_to_vector4(lightProject[0]) += plane3_to_vector4(lightProject[2]) * ofs;
}
{
float a = vector4_dot(targetGlobal, plane3_to_vector4(lightProject[1]));
float b = vector4_dot(targetGlobal, plane3_to_vector4(lightProject[2]));
float ofs = 0.5f - a / b;
plane3_to_vector4(lightProject[1]) += plane3_to_vector4(lightProject[2]) * ofs;
}
// set the falloff vector
Vector3 falloff = stop - start;
float length = vector3_length(falloff);
falloff = vector3_divided(falloff, length);
if ( length <= 0 ) {
length = 1;
}
falloff *= (1.0f / length);
lightProject[3] = Plane3(falloff, -vector3_dot(start, falloff));
// we want the planes of s=0, s=q, t=0, and t=q
m_doom3Frustum.left = lightProject[0];
m_doom3Frustum.bottom = lightProject[1];
m_doom3Frustum.right = Plane3(lightProject[2].normal() - lightProject[0].normal(), lightProject[2].dist() - lightProject[0].dist());
m_doom3Frustum.top = Plane3(lightProject[2].normal() - lightProject[1].normal(), lightProject[2].dist() - lightProject[1].dist());
// we want the planes of s=0 and s=1 for front and rear clipping planes
m_doom3Frustum.front = lightProject[3];
m_doom3Frustum.back = lightProject[3];
m_doom3Frustum.back.dist() -= 1.0f;
m_doom3Frustum.back = plane3_flipped(m_doom3Frustum.back);
Matrix4 test(matrix4_from_planes(m_doom3Frustum.left, m_doom3Frustum.right, m_doom3Frustum.bottom, m_doom3Frustum.top, m_doom3Frustum.front, m_doom3Frustum.back));
matrix4_multiply_by_matrix4(m_doom3Projection, test);
m_doom3Frustum.left = plane3_normalised(m_doom3Frustum.left);
m_doom3Frustum.right = plane3_normalised(m_doom3Frustum.right);
m_doom3Frustum.bottom = plane3_normalised(m_doom3Frustum.bottom);
m_doom3Frustum.top = plane3_normalised(m_doom3Frustum.top);
m_doom3Frustum.back = plane3_normalised(m_doom3Frustum.back);
m_doom3Frustum.front = plane3_normalised(m_doom3Frustum.front);
#endif
//matrix4_scale_by_vec3(m_doom3Projection, Vector3(1.0 / 128, 1.0 / 128, 1.0 / 128));
return m_doom3Projection;
}
Shader* getShader() const
{
return m_shader.get();
}
};
class LightInstance :
public TargetableInstance,
public TransformModifier,
public Renderable,
public SelectionTestable,
public RendererLight,
public PlaneSelectable,
public ComponentSelectionTestable
{
class TypeCasts
{
InstanceTypeCastTable m_casts;
public:
TypeCasts()
{
m_casts = TargetableInstance::StaticTypeCasts::instance().get();
InstanceContainedCast<LightInstance, Bounded>::install(m_casts);
//InstanceContainedCast<LightInstance, Cullable>::install(m_casts);
InstanceStaticCast<LightInstance, Renderable>::install(m_casts);
InstanceStaticCast<LightInstance, SelectionTestable>::install(m_casts);
InstanceStaticCast<LightInstance, Transformable>::install(m_casts);
InstanceStaticCast<LightInstance, PlaneSelectable>::install(m_casts);
InstanceStaticCast<LightInstance, ComponentSelectionTestable>::install(m_casts);
InstanceIdentityCast<LightInstance>::install(m_casts);
}
InstanceTypeCastTable& get()
{
return m_casts;
}
};
Light& m_contained;
DragPlanes m_dragPlanes;// dragplanes for lightresizing using mousedrag
public:
typedef LazyStatic<TypeCasts> StaticTypeCasts;
Bounded& get(NullType<Bounded>)
{
return m_contained;
}
STRING_CONSTANT(Name, "LightInstance");
LightInstance(const scene::Path& path, scene::Instance* parent, Light& contained) :
TargetableInstance(path, parent, this, StaticTypeCasts::instance().get(), contained.getEntity(), *this),
TransformModifier(Light::TransformChangedCaller(contained), ApplyTransformCaller(*this)),
m_contained(contained),
m_dragPlanes(SelectedChangedComponentCaller(*this))
{
m_contained.instanceAttach(Instance::path());
if(g_lightType == LIGHTTYPE_DOOM3)
{
GlobalShaderCache().attach(*this);
m_contained.setLightChangedCallback(LightChangedCaller(*this));
}
StaticRenderableConnectionLines::instance().attach(*this);
}
~LightInstance()
{
StaticRenderableConnectionLines::instance().detach(*this);
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_contained.setLightChangedCallback(Callback());
GlobalShaderCache().detach(*this);
}
m_contained.instanceDetach(Instance::path());
}
void renderSolid(Renderer& renderer, const VolumeTest& volume) const
{
m_contained.renderSolid(renderer, volume, Instance::localToWorld(), getSelectable().isSelected());
}
void renderWireframe(Renderer& renderer, const VolumeTest& volume) const
{
m_contained.renderWireframe(renderer, volume, Instance::localToWorld(), getSelectable().isSelected());
}
void testSelect(Selector& selector, SelectionTest& test)
{
m_contained.testSelect(selector, test, Instance::localToWorld());
}
void selectPlanes(Selector& selector, SelectionTest& test, const PlaneCallback& selectedPlaneCallback)
{
test.BeginMesh(localToWorld());
m_dragPlanes.selectPlanes(m_contained.aabb(), selector, test, selectedPlaneCallback, rotation());
}
void selectReversedPlanes(Selector& selector, const SelectedPlanes& selectedPlanes)
{
m_dragPlanes.selectReversedPlanes(m_contained.aabb(), selector, selectedPlanes, rotation());
}
bool isSelectedComponents() const
{
return m_dragPlanes.isSelected();
}
void setSelectedComponents(bool select, SelectionSystem::EComponentMode mode)
{
if(mode == SelectionSystem::eFace)
{
m_dragPlanes.setSelected(false);
}
}
void testSelectComponents(Selector& selector, SelectionTest& test, SelectionSystem::EComponentMode mode)
{
}
void selectedChangedComponent(const Selectable& selectable)
{
GlobalSelectionSystem().getObserver(SelectionSystem::eComponent)(selectable);
GlobalSelectionSystem().onComponentSelection(*this, selectable);
}
typedef MemberCaller1<LightInstance, const Selectable&, &LightInstance::selectedChangedComponent> SelectedChangedComponentCaller;
void evaluateTransform()
{
if(getType() == TRANSFORM_PRIMITIVE)
{
m_contained.translate(getTranslation());
m_contained.rotate(getRotation());
}
else
{
//globalOutputStream() << getTranslation() << "\n";
m_dragPlanes.m_bounds = m_contained.aabb();
m_contained.setLightRadius(m_dragPlanes.evaluateResize(getTranslation(), rotation()));
}
}
void applyTransform()
{
m_contained.revertTransform();
evaluateTransform();
m_contained.freezeTransform();
}
typedef MemberCaller<LightInstance, &LightInstance::applyTransform> ApplyTransformCaller;
void lightChanged()
{
GlobalShaderCache().changed(*this);
}
typedef MemberCaller<LightInstance, &LightInstance::lightChanged> LightChangedCaller;
Shader* getShader() const
{
return m_contained.getShader();
}
const AABB& aabb() const
{
return m_contained.aabb();
}
bool testAABB(const AABB& other) const
{
return m_contained.testAABB(other);
}
const Matrix4& rotation() const
{
return m_contained.rotation();
}
const Vector3& offset() const
{
return m_contained.offset();
}
const Vector3& colour() const
{
return m_contained.colour();
}
bool isProjected() const
{
return m_contained.isProjected();
}
const Matrix4& projection() const
{
return m_contained.projection();
}
};
class LightNode :
public scene::Node::Symbiot,
public scene::Instantiable,
public scene::Cloneable,
public scene::Traversable::Observer
{
class TypeCasts
{
NodeTypeCastTable m_casts;
public:
TypeCasts()
{
NodeStaticCast<LightNode, scene::Instantiable>::install(m_casts);
NodeStaticCast<LightNode, scene::Cloneable>::install(m_casts);
if(g_lightType == LIGHTTYPE_DOOM3)
{
NodeContainedCast<LightNode, scene::Traversable>::install(m_casts);
}
NodeContainedCast<LightNode, Editable>::install(m_casts);
NodeContainedCast<LightNode, Snappable>::install(m_casts);
NodeContainedCast<LightNode, TransformNode>::install(m_casts);
NodeContainedCast<LightNode, Entity>::install(m_casts);
NodeContainedCast<LightNode, Nameable>::install(m_casts);
NodeContainedCast<LightNode, Namespaced>::install(m_casts);
}
NodeTypeCastTable& get()
{
return m_casts;
}
};
scene::Node m_node;
InstanceSet m_instances;
Light m_contained;
void construct()
{
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_contained.attach(this);
}
}
void destroy()
{
if(g_lightType == LIGHTTYPE_DOOM3)
{
m_contained.detach(this);
}
}
public:
typedef LazyStatic<TypeCasts> StaticTypeCasts;
scene::Traversable& get(NullType<scene::Traversable>)
{
return m_contained.getTraversable();
}
Editable& get(NullType<Editable>)
{
return m_contained;
}
Snappable& get(NullType<Snappable>)
{
return m_contained;
}
TransformNode& get(NullType<TransformNode>)
{
return m_contained.getTransformNode();
}
Entity& get(NullType<Entity>)
{
return m_contained.getEntity();
}
Nameable& get(NullType<Nameable>)
{
return m_contained.getNameable();
}
Namespaced& get(NullType<Namespaced>)
{
return m_contained.getNamespaced();
}
LightNode(EntityClass* eclass) :
m_node(this, this, StaticTypeCasts::instance().get()),
m_contained(eclass, m_node, InstanceSet::TransformChangedCaller(m_instances), InstanceSet::BoundsChangedCaller(m_instances), InstanceSetEvaluateTransform<LightInstance>::Caller(m_instances))
{
construct();
}
LightNode(const LightNode& other) :
scene::Node::Symbiot(other),
scene::Instantiable(other),
scene::Cloneable(other),
scene::Traversable::Observer(other),
m_node(this, this, StaticTypeCasts::instance().get()),
m_contained(other.m_contained, m_node, InstanceSet::TransformChangedCaller(m_instances), InstanceSet::BoundsChangedCaller(m_instances), InstanceSetEvaluateTransform<LightInstance>::Caller(m_instances))
{
construct();
}
~LightNode()
{
destroy();
}
void release()
{
delete this;
}
scene::Node& node()
{
return m_node;
}
scene::Node& clone() const
{
return (new LightNode(*this))->node();
}
void insert(scene::Node& child)
{
m_instances.insert(child);
}
void erase(scene::Node& child)
{
m_instances.erase(child);
}
scene::Instance* create(const scene::Path& path, scene::Instance* parent)
{
return new LightInstance(path, parent, m_contained);
}
void forEachInstance(const scene::Instantiable::Visitor& visitor)
{
m_instances.forEachInstance(visitor);
}
void insert(scene::Instantiable::Observer* observer, const scene::Path& path, scene::Instance* instance)
{
m_instances.insert(observer, path, instance);
}
scene::Instance* erase(scene::Instantiable::Observer* observer, const scene::Path& path)
{
return m_instances.erase(observer, path);
}
};
void Light_Construct(LightType lightType)
{
g_lightType = lightType;
if(g_lightType == LIGHTTYPE_DOOM3)
{
LightShader::m_defaultShader = "lights/defaultPointLight";
#if 0
LightShader::m_defaultShader = "lights/defaultProjectedLight";
#endif
}
RenderLightRadiiFill::m_state = GlobalShaderCache().capture("$Q3MAP2_LIGHT_SPHERE");
RenderLightCenter::m_state = GlobalShaderCache().capture("$BIGPOINT");
}
void Light_Destroy()
{
GlobalShaderCache().release("$Q3MAP2_LIGHT_SPHERE");
GlobalShaderCache().release("$BIGPOINT");
}
scene::Node& New_Light(EntityClass* eclass)
{
return (new LightNode(eclass))->node();
}