gtkradiant/plugins/entity/light.cpp

536 lines
16 KiB
C++
Raw Normal View History

#include "plugin.h"
#include "entity.h"
#include "light.h"
void DrawSphere( vec3_t center, float radius, int sides, int nGLState ){
int i, j;
float dt = (float) ( 2 * Q_PI / (float) sides );
float dp = (float) ( Q_PI / (float) sides );
float t, p;
vec3_t v;
if ( radius <= 0 ) {
return;
}
g_QglTable.m_pfn_qglBegin( GL_TRIANGLES );
for ( i = 0; i <= sides - 1; i++ ) {
for ( j = 0; j <= sides - 2; j++ ) {
t = i * dt;
p = (float) ( ( j * dp ) - ( Q_PI / 2 ) );
VectorPolar( v, radius, t, p );
VectorAdd( v, center, v );
g_QglTable.m_pfn_qglVertex3fv( v );
VectorPolar( v, radius, t, p + dp );
VectorAdd( v, center, v );
g_QglTable.m_pfn_qglVertex3fv( v );
VectorPolar( v, radius, t + dt, p + dp );
VectorAdd( v, center, v );
g_QglTable.m_pfn_qglVertex3fv( v );
VectorPolar( v, radius, t, p );
VectorAdd( v, center, v );
g_QglTable.m_pfn_qglVertex3fv( v );
VectorPolar( v, radius, t + dt, p + dp );
VectorAdd( v, center, v );
g_QglTable.m_pfn_qglVertex3fv( v );
VectorPolar( v, radius, t + dt, p );
VectorAdd( v, center, v );
g_QglTable.m_pfn_qglVertex3fv( v );
}
}
p = (float) ( ( sides - 1 ) * dp - ( Q_PI / 2 ) );
for ( i = 0; i <= sides - 1; i++ ) {
t = i * dt;
VectorPolar( v, radius, t, p );
VectorAdd( v, center, v );
g_QglTable.m_pfn_qglVertex3fv( v );
VectorPolar( v, radius, t + dt, p + dp );
VectorAdd( v, center, v );
g_QglTable.m_pfn_qglVertex3fv( v );
VectorPolar( v, radius, t + dt, p );
VectorAdd( v, center, v );
g_QglTable.m_pfn_qglVertex3fv( v );
}
g_QglTable.m_pfn_qglEnd();
}
#define LIGHT_ATTEN_LINEAR 1
#define LIGHT_ATTEN_ANGLE 2
#define LIGHT_ATTEN_DISTANCE 4
#define LIGHT_Q3A_DEFAULT ( LIGHT_ATTEN_ANGLE | LIGHT_ATTEN_DISTANCE )
#define LIGHT_WOLF_DEFAULT ( LIGHT_ATTEN_LINEAR | LIGHT_ATTEN_DISTANCE )
float CalculateEnvelopeForLight( entity_t * e, float fFalloffTolerance ){
float fEnvelope = 0.f;
int iSpawnFlags = atoi( ValueForKey( e, "spawnflags" ) );
int iLightFlags = 0;
float fFade = 1.f;
float fIntensity, fPhotons;
float fScale;
const char *gameFile = g_FuncTable.m_pfnGetGameFile();
// These variables are tweakable on the q3map2 console, setting to q3map2
// default here as there is no way to find out what the user actually uses
// right now. Maybe move them to worldspawn?
float fPointScale = 7500.f;
float fLinearScale = 1.f / 8000.f;
//float fFalloffTolerance = 1.f; // Need it as parameter
// Arnout: HACK for per-game radii - really need to move this to a per-game module?
if ( !strcmp( gameFile, "wolf.game" ) || !strcmp( gameFile, "et.game" ) ) {
// Spawnflags :
// 1: nonlinear
// 2: angle
// set default flags
iLightFlags = LIGHT_WOLF_DEFAULT;
// inverse distance squared attenuation?
if ( iSpawnFlags & 1 ) {
iLightFlags &= ~LIGHT_ATTEN_LINEAR;
iLightFlags |= LIGHT_ATTEN_ANGLE;
}
// angle attenuate
if ( iSpawnFlags & 2 ) {
iLightFlags |= LIGHT_ATTEN_ANGLE;
}
}
else {
// Spawnflags :
// 1: linear
// 2: no angle
// set default flags
iLightFlags = LIGHT_Q3A_DEFAULT;
// linear attenuation?
if ( iSpawnFlags & 1 ) {
iLightFlags |= LIGHT_ATTEN_LINEAR;
iLightFlags &= ~LIGHT_ATTEN_ANGLE;
}
// no angle attenuate?
if ( iSpawnFlags & 2 ) {
iLightFlags &= ~LIGHT_ATTEN_ANGLE;
}
}
// set fade key (from wolf)
if ( iLightFlags & LIGHT_ATTEN_LINEAR ) {
fFade = FloatForKey( e, "fade" );
if ( fFade <= 0.f ) {
fFade = 1.f;
}
}
// set light intensity
fIntensity = FloatForKey( e, "_light" );
if ( fIntensity == 0.f ) {
fIntensity = FloatForKey( e, "light" );
}
if ( fIntensity == 0.f ) {
fIntensity = 300.f;
}
// set light scale (sof2)
fScale = FloatForKey( e, "scale" );
if ( fScale <= 0.f ) {
fScale = 1.f;
}
fIntensity *= fScale;
// amount of photons
fPhotons = fIntensity * fPointScale;
// calculate envelope
// solve distance for non-distance lights
if ( !( iLightFlags & LIGHT_ATTEN_DISTANCE ) ) {
//!\todo (spog) can't access global objects in a module - globals are EVIL - solution: API for querying global settings.
fEnvelope = 131072 /*g_MaxWorldCoord * 2.f*/;
}
// solve distance for linear lights
else if ( iLightFlags & LIGHT_ATTEN_LINEAR ) {
fEnvelope = ( ( fPhotons * fLinearScale ) - fFalloffTolerance ) / fFade;
}
// solve for inverse square falloff
else{
fEnvelope = sqrt( fPhotons / fFalloffTolerance ) /* + fRadius */ ; // Arnout radius is always 0, only for area lights
}
return fEnvelope;
}
float CalculateLightRadius( entity_t * e, bool outer ){
float fEnvelope = 0.f;
int iSpawnFlags = atoi( ValueForKey( e, "spawnflags" ) );
float fIntensity;
float fScale;
const char *gameFile = g_FuncTable.m_pfnGetGameFile();
fIntensity = FloatForKey( e, "light" );
if ( fIntensity == 0.f ) {
fIntensity = 300.f;
}
// Arnout: HACK for per-game radii - really need to move this to a per-game module
if ( !strcmp( gameFile, "sof2.game" ) || !strcmp( gameFile, "jk2.game" ) || !strcmp( gameFile, "ja.game" ) ) {
// Spawnflags :
// 1: linear
// 2: noincidence
if ( !outer ) {
if ( iSpawnFlags & 2 ) {
fIntensity *= .9f;
}
else{
fIntensity *= .25f;
}
}
// set light scale (sof2)
fScale = FloatForKey( e, "scale" );
if ( fScale <= 0.f ) {
fScale = 1.f;
}
fIntensity *= fScale;
fEnvelope = fIntensity;
}
else {
float fPointScale = 7500.f;
if ( outer ) {
fEnvelope = sqrt( fIntensity * fPointScale / 48.f );
}
else{
fEnvelope = sqrt( fIntensity * fPointScale / 255.f );
}
}
return fEnvelope;
}
void Light_OnIntensityChanged( entity_t* e ){
e->fLightEnvelope1[0] = CalculateEnvelopeForLight( e, 1.f );
e->fLightEnvelope1[1] = CalculateEnvelopeForLight( e, 48.f );
e->fLightEnvelope1[2] = CalculateEnvelopeForLight( e, 255.f );
e->fLightEnvelope2[0] = CalculateLightRadius( e, TRUE );
e->fLightEnvelope2[1] = CalculateLightRadius( e, FALSE );
}
void Light_OnKeyValueChanged( entity_t *e, const char *key, const char* value ){
if ( strcmp( key,"_color" ) == 0 ) {
if ( sscanf( ValueForKey( e, "_color" ),"%f %f %f",
&e->color[0], &e->color[1], &e->color[2] ) != 3 ) {
VectorSet( e->color, 1, 1, 1 );
}
}
else if ( strcmp( key,"spawnflags" ) == 0 ||
strcmp( key,"fade" ) == 0 ||
strcmp( key,"_light" ) == 0 ||
strcmp( key,"light" ) == 0 ||
strcmp( key,"scale" ) == 0 ) {
Light_OnIntensityChanged( e );
}
}
bool Entity_IsLight( entity_t *e ){
return e->eclass != NULL && e->eclass->nShowFlags & ECLASS_LIGHT; //strncmp(ValueforKey(e, "classname"), "light") == 0
}
static void DrawLightSphere( entity_t * e, int nGLState, int pref ){
const char *target = ValueForKey( e, "target" );
bool bIsSpotLight = !!target[0];
//!\todo Write an API for modules to register preference settings, and make this preference module-specific.
// int nPasses = pref == 1 ? 3 : 2;
g_QglTable.m_pfn_qglPushAttrib( GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT );
g_QglTable.m_pfn_qglDepthMask( GL_FALSE );
g_QglTable.m_pfn_qglEnable( GL_BLEND );
g_QglTable.m_pfn_qglBlendFunc( GL_ONE, GL_ONE );
// Arnout: TODO: spotlight rendering
if ( !( bIsSpotLight ) ) {
switch ( pref )
{
case 1:
g_QglTable.m_pfn_qglColor3f( e->color[0] * .05f,
e->color[1] * .05f,
e->color[2] * .05f );
DrawSphere( e->origin, e->fLightEnvelope1[0], 16, nGLState );
DrawSphere( e->origin, e->fLightEnvelope1[1], 16, nGLState );
DrawSphere( e->origin, e->fLightEnvelope1[2], 16, nGLState );
break;
case 2:
g_QglTable.m_pfn_qglColor3f( e->color[0] * .15f * .95f,
e->color[1] * .15f * .95f,
e->color[2] * .15f * .95f );
DrawSphere( e->origin, e->fLightEnvelope2[0], 16, nGLState );
DrawSphere( e->origin, e->fLightEnvelope2[1], 16, nGLState );
break;
}
}
g_QglTable.m_pfn_qglPopAttrib();
}
float F = 0.70710678f;
// North, East, South, West
vec3_t normals[8] = { { 0, F, F }, { F, 0, F }, { 0,-F, F }, {-F, 0, F },
{ 0, F,-F }, { F, 0,-F }, { 0,-F,-F }, {-F, 0,-F } };
unsigned short indices[24] = { 0, 2, 3, 0, 3, 4, 0, 4, 5, 0, 5, 2,
1, 2, 5, 1, 5, 4, 1, 4, 3, 1, 3, 2 };
void DrawLight( entity_t* e, int nGLState, int pref, int nViewType ){
// int i;
// top, bottom, tleft, tright, bright, bleft
vec3_t points[6];
vec3_t vMid, vMin, vMax;
VectorAdd( e->origin, e->eclass->mins, vMin );
VectorAdd( e->origin, e->eclass->maxs, vMax );
vMid[0] = ( vMin[0] + vMax[0] ) * 0.5;
vMid[1] = ( vMin[1] + vMax[1] ) * 0.5;
vMid[2] = ( vMin[2] + vMax[2] ) * 0.5;
VectorSet( points[0], vMid[0], vMid[1], vMax[2] );
VectorSet( points[1], vMid[0], vMid[1], vMin[2] );
VectorSet( points[2], vMin[0], vMax[1], vMid[2] );
VectorSet( points[3], vMax[0], vMax[1], vMid[2] );
VectorSet( points[4], vMax[0], vMin[1], vMid[2] );
VectorSet( points[5], vMin[0], vMin[1], vMid[2] );
if ( nGLState & DRAW_GL_LIGHTING ) { // && g_PrefsDlg.m_bGLLighting)
g_QglTable.m_pfn_qglBegin( GL_TRIANGLES ); // NOTE: comment to use gl_triangle_fan instead
//g_QglTable.m_pfn_qglBegin(GL_TRIANGLE_FAN);
g_QglTable.m_pfn_qglVertex3fv( points[0] );
g_QglTable.m_pfn_qglVertex3fv( points[2] );
g_QglTable.m_pfn_qglNormal3fv( normals[0] );
g_QglTable.m_pfn_qglVertex3fv( points[3] );
g_QglTable.m_pfn_qglVertex3fv( points[0] ); //
g_QglTable.m_pfn_qglVertex3fv( points[3] ); //
g_QglTable.m_pfn_qglNormal3fv( normals[1] );
g_QglTable.m_pfn_qglVertex3fv( points[4] );
g_QglTable.m_pfn_qglVertex3fv( points[0] ); //
g_QglTable.m_pfn_qglVertex3fv( points[4] ); //
g_QglTable.m_pfn_qglNormal3fv( normals[2] );
g_QglTable.m_pfn_qglVertex3fv( points[5] );
g_QglTable.m_pfn_qglVertex3fv( points[0] ); //
g_QglTable.m_pfn_qglVertex3fv( points[5] ); //
g_QglTable.m_pfn_qglNormal3fv( normals[3] );
g_QglTable.m_pfn_qglVertex3fv( points[2] );
//g_QglTable.m_pfn_qglEnd();
//g_QglTable.m_pfn_qglBegin(GL_TRIANGLE_FAN);
g_QglTable.m_pfn_qglVertex3fv( points[1] );
g_QglTable.m_pfn_qglVertex3fv( points[2] );
g_QglTable.m_pfn_qglNormal3fv( normals[7] );
g_QglTable.m_pfn_qglVertex3fv( points[5] );
g_QglTable.m_pfn_qglVertex3fv( points[1] ); //
g_QglTable.m_pfn_qglVertex3fv( points[5] ); //
g_QglTable.m_pfn_qglNormal3fv( normals[6] );
g_QglTable.m_pfn_qglVertex3fv( points[4] );
g_QglTable.m_pfn_qglVertex3fv( points[1] ); //
g_QglTable.m_pfn_qglVertex3fv( points[4] ); //
g_QglTable.m_pfn_qglNormal3fv( normals[5] );
g_QglTable.m_pfn_qglVertex3fv( points[3] );
g_QglTable.m_pfn_qglVertex3fv( points[1] ); //
g_QglTable.m_pfn_qglVertex3fv( points[3] ); //
g_QglTable.m_pfn_qglNormal3fv( normals[4] );
g_QglTable.m_pfn_qglVertex3fv( points[2] );
g_QglTable.m_pfn_qglEnd();
}
else if ( nGLState & DRAW_GL_FILL ) {
vec3_t colors[4];
VectorScale( e->color, 0.95, colors[0] );
VectorScale( colors[0], 0.95, colors[1] );
VectorScale( colors[1], 0.95, colors[2] );
VectorScale( colors[2], 0.95, colors[3] );
g_QglTable.m_pfn_qglBegin( GL_TRIANGLES ); // NOTE: comment to use gl_triangle_fan instead
//g_QglTable.m_pfn_qglBegin(GL_TRIANGLE_FAN);
g_QglTable.m_pfn_qglColor3fv( colors[0] );
g_QglTable.m_pfn_qglVertex3fv( points[0] );
g_QglTable.m_pfn_qglVertex3fv( points[2] );
g_QglTable.m_pfn_qglVertex3fv( points[3] );
g_QglTable.m_pfn_qglColor3fv( colors[1] );
g_QglTable.m_pfn_qglVertex3fv( points[0] ); //
g_QglTable.m_pfn_qglVertex3fv( points[3] ); //
g_QglTable.m_pfn_qglVertex3fv( points[4] );
g_QglTable.m_pfn_qglColor3fv( colors[2] );
g_QglTable.m_pfn_qglVertex3fv( points[0] ); //
g_QglTable.m_pfn_qglVertex3fv( points[4] ); //
g_QglTable.m_pfn_qglVertex3fv( points[5] );
g_QglTable.m_pfn_qglColor3fv( colors[3] );
g_QglTable.m_pfn_qglVertex3fv( points[0] ); //
g_QglTable.m_pfn_qglVertex3fv( points[5] ); //
g_QglTable.m_pfn_qglVertex3fv( points[2] );
//g_QglTable.m_pfn_qglEnd();
//g_QglTable.m_pfn_qglBegin(GL_TRIANGLE_FAN);
g_QglTable.m_pfn_qglColor3fv( colors[0] );
g_QglTable.m_pfn_qglVertex3fv( points[1] );
g_QglTable.m_pfn_qglVertex3fv( points[2] );
g_QglTable.m_pfn_qglVertex3fv( points[5] );
g_QglTable.m_pfn_qglColor3fv( colors[1] );
g_QglTable.m_pfn_qglVertex3fv( points[1] ); //
g_QglTable.m_pfn_qglVertex3fv( points[5] ); //
g_QglTable.m_pfn_qglVertex3fv( points[4] );
g_QglTable.m_pfn_qglColor3fv( colors[2] );
g_QglTable.m_pfn_qglVertex3fv( points[1] ); //
g_QglTable.m_pfn_qglVertex3fv( points[4] ); //
g_QglTable.m_pfn_qglVertex3fv( points[3] );
g_QglTable.m_pfn_qglColor3fv( colors[3] );
g_QglTable.m_pfn_qglVertex3fv( points[1] ); //
g_QglTable.m_pfn_qglVertex3fv( points[3] ); //
g_QglTable.m_pfn_qglVertex3fv( points[2] );
g_QglTable.m_pfn_qglEnd();
}
else
{
g_QglTable.m_pfn_qglVertexPointer( 3, GL_FLOAT, 0, points );
g_QglTable.m_pfn_qglDrawElements( GL_TRIANGLES, 24, GL_UNSIGNED_SHORT, indices );
}
// NOTE: prolly not relevant until some time..
// check for DOOM lights
if ( strlen( ValueForKey( e, "light_right" ) ) > 0 ) {
vec3_t vRight, vUp, vTarget, vTemp;
GetVectorForKey( e, "light_right", vRight );
GetVectorForKey( e, "light_up", vUp );
GetVectorForKey( e, "light_target", vTarget );
g_QglTable.m_pfn_qglColor3f( 0, 1, 0 );
g_QglTable.m_pfn_qglBegin( GL_LINE_LOOP );
VectorAdd( vTarget, e->origin, vTemp );
VectorAdd( vTemp, vRight, vTemp );
VectorAdd( vTemp, vUp, vTemp );
g_QglTable.m_pfn_qglVertex3fv( e->origin );
g_QglTable.m_pfn_qglVertex3fv( vTemp );
VectorAdd( vTarget, e->origin, vTemp );
VectorAdd( vTemp, vUp, vTemp );
VectorSubtract( vTemp, vRight, vTemp );
g_QglTable.m_pfn_qglVertex3fv( e->origin );
g_QglTable.m_pfn_qglVertex3fv( vTemp );
VectorAdd( vTarget, e->origin, vTemp );
VectorAdd( vTemp, vRight, vTemp );
VectorSubtract( vTemp, vUp, vTemp );
g_QglTable.m_pfn_qglVertex3fv( e->origin );
g_QglTable.m_pfn_qglVertex3fv( vTemp );
VectorAdd( vTarget, e->origin, vTemp );
VectorSubtract( vTemp, vUp, vTemp );
VectorSubtract( vTemp, vRight, vTemp );
g_QglTable.m_pfn_qglVertex3fv( e->origin );
g_QglTable.m_pfn_qglVertex3fv( vTemp );
g_QglTable.m_pfn_qglEnd();
}
if ( nGLState & DRAW_GL_FILL ) {
DrawLightSphere( e, nGLState, pref );
}
else
{
// Arnout: FIXME: clean this up a bit
// now draw lighting radius stuff...
if ( pref ) {
bool bDrawSpotlightArc = false;
int nPasses = pref == 1 ? 3 : 2;
const char *target = ValueForKey( e, "target" );
bool bIsSpotLight = !!target[0];
/*!\todo Spotlight..
if (bIsSpotLight)
{
// find the origin of the target...
entity_t *e = FindEntity("targetname", target);
if (e)
bDrawSpotlightArc = true;
}
*/
g_QglTable.m_pfn_qglPushAttrib( GL_LINE_BIT );
g_QglTable.m_pfn_qglLineStipple( 8, 0xAAAA );
g_QglTable.m_pfn_qglEnable( GL_LINE_STIPPLE );
float* envelope = ( pref == 1 ) ? e->fLightEnvelope1 : e->fLightEnvelope2;
for ( int iPass = 0; iPass < nPasses; iPass++ )
{
float fRadius = envelope[iPass];
g_QglTable.m_pfn_qglBegin( GL_LINE_LOOP );
if ( bIsSpotLight ) {
if ( bDrawSpotlightArc ) {
// I give up on this, it's beyond me
}
}
else
{
if ( fRadius > 0 ) {
int i;
float ds, dc;
for ( i = 0; i <= 24; i++ )
{
ds = sin( ( i * 2 * Q_PI ) / 24 );
dc = cos( ( i * 2 * Q_PI ) / 24 );
switch ( nViewType )
{
case 2:
g_QglTable.m_pfn_qglVertex3f( e->origin[0] + fRadius * dc,
e->origin[1] + fRadius * ds,
e->origin[2] );
break;
case 1:
g_QglTable.m_pfn_qglVertex3f( e->origin[0] + fRadius * dc,
e->origin[1],
e->origin[2] + fRadius * ds );
break;
case 0:
g_QglTable.m_pfn_qglVertex3f( e->origin[0],
e->origin[1] + fRadius * dc,
e->origin[2] + fRadius * ds );
break;
}
}
}
}
g_QglTable.m_pfn_qglEnd();
}
g_QglTable.m_pfn_qglPopAttrib();
}
}
}