gtkradiant/tools/urt/libs/splines/math_quaternion.h

191 lines
4 KiB
C
Raw Normal View History

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __MATH_QUATERNION_H__
#define __MATH_QUATERNION_H__
#include <assert.h>
#include <math.h>
class idVec3_t;
class angles_t;
class mat3_t;
class quat_t {
public:
float x;
float y;
float z;
float w;
quat_t();
quat_t( float x, float y, float z, float w );
friend void toQuat( idVec3_t &src, quat_t &dst );
friend void toQuat( angles_t &src, quat_t &dst );
friend void toQuat( mat3_t &src, quat_t &dst );
float *vec4( void );
float operator[]( int index ) const;
float &operator[]( int index );
void set( float x, float y, float z, float w );
void operator=( quat_t a );
friend quat_t operator+( quat_t a, quat_t b );
quat_t &operator+=( quat_t a );
friend quat_t operator-( quat_t a, quat_t b );
quat_t &operator-=( quat_t a );
friend quat_t operator*( quat_t a, float b );
friend quat_t operator*( float a, quat_t b );
quat_t &operator*=( float a );
friend int operator==( quat_t a, quat_t b );
friend int operator!=( quat_t a, quat_t b );
float Length( void );
quat_t &Normalize( void );
quat_t operator-();
};
inline quat_t::quat_t() {
}
inline quat_t::quat_t( float x, float y, float z, float w ) {
this->x = x;
this->y = y;
this->z = z;
this->w = w;
}
inline float *quat_t::vec4( void ) {
return &x;
}
inline float quat_t::operator[]( int index ) const {
assert( ( index >= 0 ) && ( index < 4 ) );
return ( &x )[ index ];
}
inline float& quat_t::operator[]( int index ) {
assert( ( index >= 0 ) && ( index < 4 ) );
return ( &x )[ index ];
}
inline void quat_t::set( float x, float y, float z, float w ) {
this->x = x;
this->y = y;
this->z = z;
this->w = w;
}
inline void quat_t::operator=( quat_t a ) {
x = a.x;
y = a.y;
z = a.z;
w = a.w;
}
inline quat_t operator+( quat_t a, quat_t b ) {
return quat_t( a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w );
}
inline quat_t& quat_t::operator+=( quat_t a ) {
x += a.x;
y += a.y;
z += a.z;
w += a.w;
return *this;
}
inline quat_t operator-( quat_t a, quat_t b ) {
return quat_t( a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w );
}
inline quat_t& quat_t::operator-=( quat_t a ) {
x -= a.x;
y -= a.y;
z -= a.z;
w -= a.w;
return *this;
}
inline quat_t operator*( quat_t a, float b ) {
return quat_t( a.x * b, a.y * b, a.z * b, a.w * b );
}
inline quat_t operator*( float a, quat_t b ) {
return b * a;
}
inline quat_t& quat_t::operator*=( float a ) {
x *= a;
y *= a;
z *= a;
w *= a;
return *this;
}
inline int operator==( quat_t a, quat_t b ) {
return ( ( a.x == b.x ) && ( a.y == b.y ) && ( a.z == b.z ) && ( a.w == b.w ) );
}
inline int operator!=( quat_t a, quat_t b ) {
return ( ( a.x != b.x ) || ( a.y != b.y ) || ( a.z != b.z ) && ( a.w != b.w ) );
}
inline float quat_t::Length( void ) {
float length;
length = x * x + y * y + z * z + w * w;
return ( float )sqrt( length );
}
inline quat_t& quat_t::Normalize( void ) {
float length;
float ilength;
length = this->Length();
if ( length ) {
ilength = 1 / length;
x *= ilength;
y *= ilength;
z *= ilength;
w *= ilength;
}
return *this;
}
inline quat_t quat_t::operator-() {
return quat_t( -x, -y, -z, -w );
}
#endif /* !__MATH_QUATERNION_H__ */