gtkradiant/tools/urt/libs/splines/math_matrix.cpp

135 lines
3.1 KiB
C++
Raw Normal View History

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "q_shared.h"
mat3_t mat3_default( idVec3( 1, 0, 0 ), idVec3( 0, 1, 0 ), idVec3( 0, 0, 1 ) );
void toMatrix( quat_t const &src, mat3_t &dst ) {
float wx, wy, wz;
float xx, yy, yz;
float xy, xz, zz;
float x2, y2, z2;
x2 = src.x + src.x;
y2 = src.y + src.y;
z2 = src.z + src.z;
xx = src.x * x2;
xy = src.x * y2;
xz = src.x * z2;
yy = src.y * y2;
yz = src.y * z2;
zz = src.z * z2;
wx = src.w * x2;
wy = src.w * y2;
wz = src.w * z2;
dst[ 0 ][ 0 ] = 1.0f - ( yy + zz );
dst[ 0 ][ 1 ] = xy - wz;
dst[ 0 ][ 2 ] = xz + wy;
dst[ 1 ][ 0 ] = xy + wz;
dst[ 1 ][ 1 ] = 1.0f - ( xx + zz );
dst[ 1 ][ 2 ] = yz - wx;
dst[ 2 ][ 0 ] = xz - wy;
dst[ 2 ][ 1 ] = yz + wx;
dst[ 2 ][ 2 ] = 1.0f - ( xx + yy );
}
void toMatrix( angles_t const &src, mat3_t &dst ) {
float angle;
static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs
angle = src.yaw * ( M_PI * 2.0f / 360.0f );
sy = sin( angle );
cy = cos( angle );
angle = src.pitch * ( M_PI * 2.0f / 360.0f );
sp = sin( angle );
cp = cos( angle );
angle = src.roll * ( M_PI * 2.0f / 360.0f );
sr = sin( angle );
cr = cos( angle );
dst[ 0 ].set( cp * cy, cp * sy, -sp );
dst[ 1 ].set( sr * sp * cy + cr * -sy, sr * sp * sy + cr * cy, sr * cp );
dst[ 2 ].set( cr * sp * cy + -sr * -sy, cr * sp * sy + -sr * cy, cr * cp );
}
void toMatrix( idVec3 const &src, mat3_t &dst ) {
angles_t sup = src;
toMatrix( sup, dst );
}
void mat3_t::ProjectVector( const idVec3 &src, idVec3 &dst ) const {
dst.x = src * mat[ 0 ];
dst.y = src * mat[ 1 ];
dst.z = src * mat[ 2 ];
}
void mat3_t::UnprojectVector( const idVec3 &src, idVec3 &dst ) const {
dst = mat[ 0 ] * src.x + mat[ 1 ] * src.y + mat[ 2 ] * src.z;
}
void mat3_t::Transpose( mat3_t &matrix ) {
int i;
int j;
for ( i = 0; i < 3; i++ ) {
for ( j = 0; j < 3; j++ ) {
matrix[ i ][ j ] = mat[ j ][ i ];
}
}
}
void mat3_t::Transpose( void ) {
float temp;
int i;
int j;
for ( i = 0; i < 3; i++ ) {
for ( j = i + 1; j < 3; j++ ) {
temp = mat[ i ][ j ];
mat[ i ][ j ] = mat[ j ][ i ];
mat[ j ][ i ] = temp;
}
}
}
mat3_t mat3_t::Inverse( void ) const {
mat3_t inv( *this );
inv.Transpose();
return inv;
}
void mat3_t::Clear( void ) {
mat[0].set( 1, 0, 0 );
mat[1].set( 0, 1, 0 );
mat[2].set( 0, 0, 1 );
}