gtkradiant/radiant/brush_primit.cpp

1601 lines
53 KiB
C++
Raw Normal View History

/*
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "brush_primit.h"
#include "debugging/debugging.h"
#include "itexdef.h"
#include "itextures.h"
#include <algorithm>
#include "stringio.h"
#include "texturelib.h"
#include "math/matrix.h"
#include "math/plane.h"
#include "winding.h"
#include "preferences.h"
/*!
\brief Construct a transform from XYZ space to ST space (3d to 2d).
This will be one of three axis-aligned spaces, depending on the surface normal.
NOTE: could also be done by swapping values.
*/
void Normal_GetTransform(const Vector3& normal, Matrix4& transform)
{
switch (projectionaxis_for_normal(normal))
{
case eProjectionAxisZ:
transform[0] = 1;
transform[1] = 0;
transform[2] = 0;
transform[4] = 0;
transform[5] = 1;
transform[6] = 0;
transform[8] = 0;
transform[9] = 0;
transform[10] = 1;
break;
case eProjectionAxisY:
transform[0] = 1;
transform[1] = 0;
transform[2] = 0;
transform[4] = 0;
transform[5] = 0;
transform[6] = -1;
transform[8] = 0;
transform[9] = 1;
transform[10] = 0;
break;
case eProjectionAxisX:
transform[0] = 0;
transform[1] = 0;
transform[2] = 1;
transform[4] = 1;
transform[5] = 0;
transform[6] = 0;
transform[8] = 0;
transform[9] = 1;
transform[10] = 0;
break;
}
transform[3] = transform[7] = transform[11] = transform[12] = transform[13] = transform[14] = 0;
transform[15] = 1;
}
/*!
\brief Construct a transform in ST space from the texdef.
Transforms constructed from quake's texdef format are (-shift)*(1/scale)*(-rotate) with x translation sign flipped.
This would really make more sense if it was inverseof(shift*rotate*scale).. oh well.
*/
inline void Texdef_toTransform(const texdef_t& texdef, float width, float height, Matrix4& transform)
{
double inverse_scale[2];
// transform to texdef shift/scale/rotate
inverse_scale[0] = 1 / (texdef.scale[0] * width);
inverse_scale[1] = 1 / (texdef.scale[1] * -height);
transform[12] = texdef.shift[0] / width;
transform[13] = -texdef.shift[1] / -height;
double c = cos(degrees_to_radians(-texdef.rotate));
double s = sin(degrees_to_radians(-texdef.rotate));
transform[0] = static_cast<float>(c * inverse_scale[0]);
transform[1] = static_cast<float>(s * inverse_scale[1]);
transform[4] = static_cast<float>(-s * inverse_scale[0]);
transform[5] = static_cast<float>(c * inverse_scale[1]);
transform[2] = transform[3] = transform[6] = transform[7] = transform[8] = transform[9] = transform[11] = transform[14] = 0;
transform[10] = transform[15] = 1;
}
inline void BPTexdef_toTransform(const brushprimit_texdef_t& bp_texdef, Matrix4& transform)
{
transform = g_matrix4_identity;
transform.xx() = bp_texdef.coords[0][0];
transform.yx() = bp_texdef.coords[0][1];
transform.tx() = bp_texdef.coords[0][2];
transform.xy() = bp_texdef.coords[1][0];
transform.yy() = bp_texdef.coords[1][1];
transform.ty() = bp_texdef.coords[1][2];
}
inline void Texdef_toTransform(const TextureProjection& projection, float width, float height, Matrix4& transform)
{
if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
BPTexdef_toTransform(projection.m_brushprimit_texdef, transform);
}
else
{
Texdef_toTransform(projection.m_texdef, width, height, transform);
}
}
// handles degenerate cases, just in case library atan2 doesn't
inline double arctangent_yx(double y, double x)
{
if(fabs(x) > 1.0E-6)
{
return atan2(y, x);
}
else if(y > 0)
{
return c_half_pi;
}
else
{
return -c_half_pi;
}
}
inline void Texdef_fromTransform(texdef_t& texdef, float width, float height, const Matrix4& transform)
{
texdef.scale[0] = static_cast<float>((1.0 / vector2_length(Vector2(transform[0], transform[4]))) / width);
texdef.scale[1] = static_cast<float>((1.0 / vector2_length(Vector2(transform[1], transform[5]))) / height);
texdef.rotate = static_cast<float>(-radians_to_degrees(arctangent_yx(-transform[4], transform[0])));
if(texdef.rotate == -180.0f)
{
texdef.rotate = 180.0f;
}
texdef.shift[0] = transform[12] * width;
texdef.shift[1] = transform[13] * height;
// If the 2d cross-product of the x and y axes is positive, one of the axes has a negative scale.
if(vector2_cross(Vector2(transform[0], transform[4]), Vector2(transform[1], transform[5])) > 0)
{
if(texdef.rotate >= 180.0f)
{
texdef.rotate -= 180.0f;
texdef.scale[0] = -texdef.scale[0];
}
else
{
texdef.scale[1] = -texdef.scale[1];
}
}
//globalOutputStream() << "fromTransform: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n";
}
inline void BPTexdef_fromTransform(brushprimit_texdef_t& bp_texdef, const Matrix4& transform)
{
bp_texdef.coords[0][0] = transform.xx();
bp_texdef.coords[0][1] = transform.yx();
bp_texdef.coords[0][2] = transform.tx();
bp_texdef.coords[1][0] = transform.xy();
bp_texdef.coords[1][1] = transform.yy();
bp_texdef.coords[1][2] = transform.ty();
}
inline void Texdef_fromTransform(TextureProjection& projection, float width, float height, const Matrix4& transform)
{
ASSERT_MESSAGE((transform[0] != 0 || transform[4] != 0)
&& (transform[1] != 0 || transform[5] != 0), "invalid texture matrix");
if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
BPTexdef_fromTransform(projection.m_brushprimit_texdef, transform);
}
else
{
Texdef_fromTransform(projection.m_texdef, width, height, transform);
}
}
inline void Texdef_normalise(texdef_t& texdef, float width, float height)
{
// it may be useful to also normalise the rotation here, if this function is used elsewhere.
texdef.shift[0] = float_mod(texdef.shift[0], width);
texdef.shift[1] = float_mod(texdef.shift[1], height);
//globalOutputStream() << "normalise: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n";
}
inline void BPTexdef_normalise(brushprimit_texdef_t& bp_texdef, float width, float height)
{
bp_texdef.coords[0][2] = float_mod(bp_texdef.coords[0][2], width);
bp_texdef.coords[1][2] = float_mod(bp_texdef.coords[1][2], height);
}
/// \brief Normalise \p projection for a given texture \p width and \p height.
///
/// All texture-projection translation (shift) values are congruent modulo the dimensions of the texture.
/// This function normalises shift values to the smallest positive congruent values.
void Texdef_normalise(TextureProjection& projection, float width, float height)
{
if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
BPTexdef_normalise(projection.m_brushprimit_texdef, width, height);
}
else
{
Texdef_normalise(projection.m_texdef, width, height);
}
}
void ComputeAxisBase(const Vector3& normal, Vector3& texS, Vector3& texT);
inline void DebugAxisBase(const Vector3& normal)
{
Vector3 x, y;
ComputeAxisBase(normal, x, y);
globalOutputStream() << "BP debug: " << x << y << normal << "\n";
}
void Texdef_basisForNormal(const TextureProjection& projection, const Vector3& normal, Matrix4& basis)
{
if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
basis = g_matrix4_identity;
ComputeAxisBase(normal, basis.x(), basis.y());
static_cast<Vector3&>(basis.z()) = normal;
matrix4_transpose(basis);
//DebugAxisBase(normal);
}
else if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE)
{
basis = g_matrix4_identity;
static_cast<Vector3&>(basis.x()) = projection.m_basis_s;
static_cast<Vector3&>(basis.y()) = vector3_negated(projection.m_basis_t);
static_cast<Vector3&>(basis.z()) = vector3_normalised(vector3_cross(static_cast<Vector3&>(basis.x()), static_cast<Vector3&>(basis.y())));
matrix4_multiply_by_matrix4(basis, matrix4_rotation_for_z_degrees(-projection.m_texdef.rotate));
//globalOutputStream() << "debug: " << projection.m_basis_s << projection.m_basis_t << normal << "\n";
matrix4_transpose(basis);
}
else
{
Normal_GetTransform(normal, basis);
}
}
void Texdef_EmitTextureCoordinates(const TextureProjection& projection, std::size_t width, std::size_t height, Winding& w, const Vector3& normal, const Matrix4& localToWorld)
{
if(w.numpoints < 3)
{
return;
}
//globalOutputStream() << "normal: " << normal << "\n";
Matrix4 local2tex;
Texdef_toTransform(projection, (float)width, (float)height, local2tex);
//globalOutputStream() << "texdef: " << static_cast<const Vector3&>(local2tex.x()) << static_cast<const Vector3&>(local2tex.y()) << "\n";
#if 0
{
TextureProjection tmp;
Texdef_fromTransform(tmp, (float)width, (float)height, local2tex);
Matrix4 tmpTransform;
Texdef_toTransform(tmp, (float)width, (float)height, tmpTransform);
ASSERT_MESSAGE(matrix4_equal_epsilon(local2tex, tmpTransform, 0.0001f), "bleh");
}
#endif
{
Matrix4 xyz2st;
// we don't care if it's not normalised...
Texdef_basisForNormal(projection, matrix4_transformed_direction(localToWorld, normal), xyz2st);
//globalOutputStream() << "basis: " << static_cast<const Vector3&>(xyz2st.x()) << static_cast<const Vector3&>(xyz2st.y()) << static_cast<const Vector3&>(xyz2st.z()) << "\n";
matrix4_multiply_by_matrix4(local2tex, xyz2st);
}
Vector3 tangent(vector3_normalised(vector4_to_vector3(matrix4_transposed(local2tex).x())));
Vector3 bitangent(vector3_normalised(vector4_to_vector3(matrix4_transposed(local2tex).y())));
matrix4_multiply_by_matrix4(local2tex, localToWorld);
for(Winding::iterator i = w.begin(); i != w.end(); ++i)
{
Vector3 texcoord = matrix4_transformed_point(local2tex, (*i).vertex);
(*i).texcoord[0] = texcoord[0];
(*i).texcoord[1] = texcoord[1];
(*i).tangent = tangent;
(*i).bitangent = bitangent;
}
}
/*!
\brief Provides the axis-base of the texture ST space for this normal,
as they had been transformed to world XYZ space.
*/
void TextureAxisFromNormal(const Vector3& normal, Vector3& s, Vector3& t)
{
switch (projectionaxis_for_normal(normal))
{
case eProjectionAxisZ:
s[0] = 1;
s[1] = 0;
s[2] = 0;
t[0] = 0;
t[1] = -1;
t[2] = 0;
break;
case eProjectionAxisY:
s[0] = 1;
s[1] = 0;
s[2] = 0;
t[0] = 0;
t[1] = 0;
t[2] = -1;
break;
case eProjectionAxisX:
s[0] = 0;
s[1] = 1;
s[2] = 0;
t[0] = 0;
t[1] = 0;
t[2] = -1;
break;
}
}
void Texdef_Assign(texdef_t& td, const texdef_t& other)
{
td = other;
}
void Texdef_Shift(texdef_t& td, float s, float t)
{
td.shift[0] += s;
td.shift[1] += t;
}
void Texdef_Scale(texdef_t& td, float s, float t)
{
td.scale[0] += s;
td.scale[1] += t;
}
void Texdef_Rotate(texdef_t& td, float angle)
{
td.rotate += angle;
td.rotate = static_cast<float>(float_to_integer(td.rotate) % 360);
}
// NOTE: added these from Ritual's Q3Radiant
void ClearBounds(Vector3& mins, Vector3& maxs)
{
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds(const Vector3& v, Vector3& mins, Vector3& maxs)
{
int i;
float val;
for (i=0 ; i<3 ; i++)
{
val = v[i];
if (val < mins[i])
mins[i] = val;
if (val > maxs[i])
maxs[i] = val;
}
}
void Texdef_FitTexture(texdef_t& td, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat)
{
float temp;
float rot_width, rot_height;
float cosv,sinv;
float min_t, min_s, max_t, max_s;
float s,t;
Vector3 vecs[2];
Vector3 coords[4];
Vector3 mins, maxs;
if(s_repeat == 0)
s_repeat = 1;
if(t_repeat == 0)
t_repeat = 1;
{
ClearBounds(mins, maxs);
for(Winding::const_iterator i = w.begin(); i != w.end(); ++i)
{
AddPointToBounds((*i).vertex, mins, maxs);
}
}
//
// get the current angle
//
{
double ang = degrees_to_radians(td.rotate);
sinv = static_cast<float>(sin(ang));
cosv = static_cast<float>(cos(ang));
}
// get natural texture axis
TextureAxisFromNormal(normal, vecs[0], vecs[1]);
min_s = static_cast<float>(vector3_dot(mins, vecs[0]));
min_t = static_cast<float>(vector3_dot(mins, vecs[1]));
max_s = static_cast<float>(vector3_dot(maxs, vecs[0]));
max_t = static_cast<float>(vector3_dot(maxs, vecs[1]));
coords[0][0] = min_s;
coords[0][1] = min_t;
coords[1][0] = max_s;
coords[1][1] = min_t;
coords[2][0] = min_s;
coords[2][1] = max_t;
coords[3][0] = max_s;
coords[3][1] = max_t;
min_s = min_t = 99999;
max_s = max_t = -99999;
for (int i=0; i<4; i++)
{
s = cosv * coords[i][0] - sinv * coords[i][1];
t = sinv * coords[i][0] + cosv * coords[i][1];
if (i&1)
{
if (s > max_s)
{
max_s = s;
}
}
else
{
if (s < min_s)
{
min_s = s;
}
if (i<2)
{
if (t < min_t)
{
min_t = t;
}
}
else
{
if (t > max_t)
{
max_t = t;
}
}
}
}
rot_width = (max_s - min_s);
rot_height = (max_t - min_t);
td.scale[0] = -(rot_width/(static_cast<float>(width) * s_repeat));
td.scale[1] = -(rot_height/(static_cast<float>(height) * t_repeat));
td.shift[0] = min_s/td.scale[0];
temp = static_cast<float>(float_to_integer(td.shift[0] / (static_cast<float>(width) * s_repeat)));
temp = (temp+1)*static_cast<float>(width) * s_repeat;
td.shift[0] = static_cast<float>(float_to_integer(temp - td.shift[0]) % static_cast<int>(static_cast<float>(width) * s_repeat));
td.shift[1] = min_t/td.scale[1];
temp = static_cast<float>(float_to_integer(td.shift[1] / (static_cast<float>(height) * t_repeat)));
temp = (temp+1)*(static_cast<float>(height) * t_repeat);
td.shift[1] = static_cast<float>(float_to_integer(temp - td.shift[1]) % static_cast<int>(static_cast<float>(height) * t_repeat));
}
// low level functions .. put in mathlib?
#define BPMatCopy(a,b) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2];}
// apply a scale transformation to the BP matrix
#define BPMatScale(m,sS,sT) {m[0][0]*=sS; m[1][0]*=sS; m[0][1]*=sT; m[1][1]*=sT;}
// apply a translation transformation to a BP matrix
#define BPMatTranslate(m,s,t) {m[0][2] += m[0][0]*s + m[0][1]*t; m[1][2] += m[1][0]*s+m[1][1]*t;}
// 2D homogeneous matrix product C = A*B
void BPMatMul(float A[2][3], float B[2][3], float C[2][3]);
// apply a rotation (degrees)
void BPMatRotate(float A[2][3], float theta);
#ifdef _DEBUG
void BPMatDump(float A[2][3]);
#endif
#ifdef _DEBUG
//#define DBG_BP
#endif
bp_globals_t g_bp_globals;
float g_texdef_default_scale;
// compute a determinant using Sarrus rule
//++timo "inline" this with a macro
// NOTE : the three vectors are understood as columns of the matrix
inline float SarrusDet(const Vector3& a, const Vector3& b, const Vector3& c)
{
return a[0]*b[1]*c[2]+b[0]*c[1]*a[2]+c[0]*a[1]*b[2]
-c[0]*b[1]*a[2]-a[1]*b[0]*c[2]-a[0]*b[2]*c[1];
}
// in many case we know three points A,B,C in two axis base B1 and B2
// and we want the matrix M so that A(B1) = T * A(B2)
// NOTE: 2D homogeneous space stuff
// NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling
// NOTE: the third coord of the A,B,C point is ignored
// NOTE: see the commented out section to fill M and D
//++timo TODO: update the other members to use this when possible
void MatrixForPoints( Vector3 M[3], Vector3 D[2], brushprimit_texdef_t *T )
{
// Vector3 M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way)
float det;
// Vector3 D[2];
M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
#if 0
// fill the data vectors
M[0][0]=A2[0]; M[0][1]=B2[0]; M[0][2]=C2[0];
M[1][0]=A2[1]; M[1][1]=B2[1]; M[1][2]=C2[1];
M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
D[0][0]=A1[0];
D[0][1]=B1[0];
D[0][2]=C1[0];
D[1][0]=A1[1];
D[1][1]=B1[1];
D[1][2]=C1[1];
#endif
// solve
det = SarrusDet( M[0], M[1], M[2] );
T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}
//++timo replace everywhere texX by texS etc. ( ----> and in q3map !)
// NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME !
// WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0
// rotation by (0,RotY,RotZ) assigns X to normal
void ComputeAxisBase(const Vector3& normal, Vector3& texS, Vector3& texT)
{
#if 1
const Vector3 up(0, 0, 1);
const Vector3 down(0, 0, -1);
if(vector3_equal_epsilon(normal, up, float(1e-6)))
{
texS = Vector3(0, 1, 0);
texT = Vector3(1, 0, 0);
}
else if(vector3_equal_epsilon(normal, down, float(1e-6)))
{
texS = Vector3(0, 1, 0);
texT = Vector3(-1, 0, 0);
}
else
{
texS = vector3_normalised(vector3_cross(normal, up));
texT = vector3_normalised(vector3_cross(normal, texS));
vector3_negate(texS);
}
#else
float RotY,RotZ;
// do some cleaning
/*
if (fabs(normal[0])<1e-6)
normal[0]=0.0f;
if (fabs(normal[1])<1e-6)
normal[1]=0.0f;
if (fabs(normal[2])<1e-6)
normal[2]=0.0f;
*/
RotY=-atan2(normal[2],sqrt(normal[1]*normal[1]+normal[0]*normal[0]));
RotZ=atan2(normal[1],normal[0]);
// rotate (0,1,0) and (0,0,1) to compute texS and texT
texS[0]=-sin(RotZ);
texS[1]=cos(RotZ);
texS[2]=0;
// the texT vector is along -Z ( T texture coorinates axis )
texT[0]=-sin(RotY)*cos(RotZ);
texT[1]=-sin(RotY)*sin(RotZ);
texT[2]=-cos(RotY);
#endif
}
#if 0 // texdef conversion
void FaceToBrushPrimitFace(face_t *f)
{
Vector3 texX,texY;
Vector3 proj;
// ST of (0,0) (1,0) (0,1)
float ST[3][5]; // [ point index ] [ xyz ST ]
//++timo not used as long as brushprimit_texdef and texdef are static
/* f->brushprimit_texdef.contents=f->texdef.contents;
f->brushprimit_texdef.flags=f->texdef.flags;
f->brushprimit_texdef.value=f->texdef.value;
strcpy(f->brushprimit_texdef.name,f->texdef.name); */
#ifdef DBG_BP
if ( f->plane.normal[0]==0.0f && f->plane.normal[1]==0.0f && f->plane.normal[2]==0.0f )
{
globalOutputStream() << "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n";
}
// check d_texture
if (!f->d_texture)
{
globalOutputStream() << "Warning : f.d_texture is 0 in FaceToBrushPrimitFace\n";
return;
}
#endif
// compute axis base
ComputeAxisBase(f->plane.normal,texX,texY);
// compute projection vector
VectorCopy(f->plane.normal,proj);
VectorScale(proj,f->plane.dist,proj);
// (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane
// (1,0) in plane axis base is texX in world coordinates + projection on the affine plane
// (0,1) in plane axis base is texY in world coordinates + projection on the affine plane
// use old texture code to compute the ST coords of these points
VectorCopy(proj,ST[0]);
EmitTextureCoordinates(ST[0], f->pShader->getTexture(), f);
VectorCopy(texX,ST[1]);
VectorAdd(ST[1],proj,ST[1]);
EmitTextureCoordinates(ST[1], f->pShader->getTexture(), f);
VectorCopy(texY,ST[2]);
VectorAdd(ST[2],proj,ST[2]);
EmitTextureCoordinates(ST[2], f->pShader->getTexture(), f);
// compute texture matrix
f->brushprimit_texdef.coords[0][2]=ST[0][3];
f->brushprimit_texdef.coords[1][2]=ST[0][4];
f->brushprimit_texdef.coords[0][0]=ST[1][3]-f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][0]=ST[1][4]-f->brushprimit_texdef.coords[1][2];
f->brushprimit_texdef.coords[0][1]=ST[2][3]-f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][1]=ST[2][4]-f->brushprimit_texdef.coords[1][2];
}
// compute texture coordinates for the winding points
void EmitBrushPrimitTextureCoordinates(face_t * f, Winding * w)
{
Vector3 texX,texY;
float x,y;
// compute axis base
ComputeAxisBase(f->plane.normal,texX,texY);
// in case the texcoords matrix is empty, build a default one
// same behaviour as if scale[0]==0 && scale[1]==0 in old code
if (f->brushprimit_texdef.coords[0][0]==0 && f->brushprimit_texdef.coords[1][0]==0 && f->brushprimit_texdef.coords[0][1]==0 && f->brushprimit_texdef.coords[1][1]==0)
{
f->brushprimit_texdef.coords[0][0] = 1.0f;
f->brushprimit_texdef.coords[1][1] = 1.0f;
ConvertTexMatWithQTexture( &f->brushprimit_texdef, 0, &f->brushprimit_texdef, f->pShader->getTexture() );
}
int i;
for (i=0 ; i<w.numpoints ; i++)
{
x=vector3_dot(w.point_at(i),texX);
y=vector3_dot(w.point_at(i),texY);
#if 0
#ifdef DBG_BP
if (g_bp_globals.bNeedConvert)
{
// check we compute the same ST as the traditional texture computation used before
float S=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2];
float T=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2];
if ( fabs(S-w.point_at(i)[3])>1e-2 || fabs(T-w.point_at(i)[4])>1e-2 )
{
if ( fabs(S-w.point_at(i)[3])>1e-4 || fabs(T-w.point_at(i)[4])>1e-4 )
globalOutputStream() << "Warning : precision loss in brush -> brush primitive texture computation\n";
else
globalOutputStream() << "Warning : brush -> brush primitive texture computation bug detected\n";
}
}
#endif
#endif
w.point_at(i)[3]=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2];
w.point_at(i)[4]=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2];
}
}
#endif
typedef float texmat_t[2][3];
void TexMat_Scale(texmat_t texmat, float s, float t)
{
texmat[0][0] *= s;
texmat[0][1] *= s;
texmat[0][2] *= s;
texmat[1][0] *= t;
texmat[1][1] *= t;
texmat[1][2] *= t;
}
void TexMat_Assign(texmat_t texmat, const texmat_t other)
{
texmat[0][0] = other[0][0];
texmat[0][1] = other[0][1];
texmat[0][2] = other[0][2];
texmat[1][0] = other[1][0];
texmat[1][1] = other[1][1];
texmat[1][2] = other[1][2];
}
void ConvertTexMatWithDimensions(const texmat_t texmat1, std::size_t w1, std::size_t h1,
texmat_t texmat2, std::size_t w2, std::size_t h2)
{
TexMat_Assign(texmat2, texmat1);
TexMat_Scale(texmat2, static_cast<float>(w1) / static_cast<float>(w2), static_cast<float>(h1) / static_cast<float>(h2));
}
#if 0
// convert a texture matrix between two qtexture_t
// if 0 for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates )
void ConvertTexMatWithQTexture( const float texMat1[2][3], const qtexture_t *qtex1, float texMat2[2][3], const qtexture_t *qtex2 )
{
ConvertTexMatWithDimensions(texMat1, (qtex1) ? qtex1->width : 2, (qtex1) ? qtex1->height : 2,
texMat2, (qtex2) ? qtex2->width : 2, (qtex2) ? qtex2->height : 2);
}
void ConvertTexMatWithQTexture( const brushprimit_texdef_t *texMat1, const qtexture_t *qtex1, brushprimit_texdef_t *texMat2, const qtexture_t *qtex2 )
{
ConvertTexMatWithQTexture(texMat1->coords, qtex1, texMat2->coords, qtex2);
}
#endif
// compute a fake shift scale rot representation from the texture matrix
// these shift scale rot values are to be understood in the local axis base
// Note: this code looks similar to Texdef_fromTransform, but the algorithm is slightly different.
void TexMatToFakeTexCoords(const brushprimit_texdef_t& bp_texdef, texdef_t& texdef)
{
texdef.scale[0] = static_cast<float>(1.0 / vector2_length(Vector2(bp_texdef.coords[0][0], bp_texdef.coords[1][0])));
texdef.scale[1] = static_cast<float>(1.0 / vector2_length(Vector2(bp_texdef.coords[0][1], bp_texdef.coords[1][1])));
texdef.rotate = -static_cast<float>(radians_to_degrees(arctangent_yx(bp_texdef.coords[1][0], bp_texdef.coords[0][0])));
texdef.shift[0] = -bp_texdef.coords[0][2];
texdef.shift[1] = bp_texdef.coords[1][2];
// determine whether or not an axis is flipped using a 2d cross-product
double cross = vector2_cross(Vector2(bp_texdef.coords[0][0], bp_texdef.coords[0][1]), Vector2(bp_texdef.coords[1][0], bp_texdef.coords[1][1]));
if(cross < 0)
{
// This is a bit of a compromise when using BPs--since we don't know *which* axis was flipped,
// we pick one (rather arbitrarily) using the following convention: If the X-axis is between
// 0 and 180, we assume it's the Y-axis that flipped, otherwise we assume it's the X-axis and
// subtract out 180 degrees to compensate.
if(texdef.rotate >= 180.0f)
{
texdef.rotate -= 180.0f;
texdef.scale[0] = -texdef.scale[0];
}
else
{
texdef.scale[1] = -texdef.scale[1];
}
}
}
// compute back the texture matrix from fake shift scale rot
void FakeTexCoordsToTexMat(const texdef_t& texdef, brushprimit_texdef_t& bp_texdef)
{
double r = degrees_to_radians(-texdef.rotate);
double c = cos(r);
double s = sin(r);
double x = 1.0f / texdef.scale[0];
double y = 1.0f / texdef.scale[1];
bp_texdef.coords[0][0] = static_cast<float>(x * c);
bp_texdef.coords[1][0] = static_cast<float>(x * s);
bp_texdef.coords[0][1] = static_cast<float>(y * -s);
bp_texdef.coords[1][1] = static_cast<float>(y * c);
bp_texdef.coords[0][2] = -texdef.shift[0];
bp_texdef.coords[1][2] = texdef.shift[1];
}
#if 0 // texture locking (brush primit)
// used for texture locking
// will move the texture according to a geometric vector
void ShiftTextureGeometric_BrushPrimit(face_t *f, Vector3& delta)
{
Vector3 texS,texT;
float tx,ty;
Vector3 M[3]; // columns of the matrix .. easier that way
float det;
Vector3 D[2];
// compute plane axis base ( doesn't change with translation )
ComputeAxisBase( f->plane.normal, texS, texT );
// compute translation vector in plane axis base
tx = vector3_dot( delta, texS );
ty = vector3_dot( delta, texT );
// fill the data vectors
M[0][0]=tx; M[0][1]=1.0f+tx; M[0][2]=tx;
M[1][0]=ty; M[1][1]=ty; M[1][2]=1.0f+ty;
M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f;
D[0][0]=f->brushprimit_texdef.coords[0][2];
D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2];
D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2];
D[1][0]=f->brushprimit_texdef.coords[1][2];
D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2];
D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet( M[0], M[1], M[2] );
f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}
// shift a texture (texture adjustments) along it's current texture axes
// x and y are geometric values, which we must compute as ST increments
// this depends on the texture size and the pixel/texel ratio
void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y)
{
float s,t;
// as a ratio against texture size
// the scale of the texture is not relevant here (we work directly on a transformation from the base vectors)
s = (x * 2.0) / (float)f->pShader->getTexture().width;
t = (y * 2.0) / (float)f->pShader->getTexture().height;
f->brushprimit_texdef.coords[0][2] -= s;
f->brushprimit_texdef.coords[1][2] -= t;
}
#endif
// TTimo: FIXME: I don't like that, it feels broken
// (and it's likely that it's not used anymore)
// best fitted 2D vector is x.X+y.Y
void ComputeBest2DVector( Vector3& v, Vector3& X, Vector3& Y, int &x, int &y )
{
double sx,sy;
sx = vector3_dot( v, X );
sy = vector3_dot( v, Y );
if ( fabs(sy) > fabs(sx) )
{
x = 0;
if ( sy > 0.0 )
y = 1;
else
y = -1;
}
else
{
y = 0;
if ( sx > 0.0 )
x = 1;
else
x = -1;
}
}
#if 0 // texdef conversion
void BrushPrimitFaceToFace(face_t *face)
{
// we have parsed brush primitives and need conversion back to standard format
// NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it
// FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling
// I tried various tweaks, no luck .. seems shifting is lost
brushprimit_texdef_t aux;
ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->pShader->getTexture(), &aux, 0 );
TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale );
face->texdef.scale[0]/=2.0;
face->texdef.scale[1]/=2.0;
}
#endif
#if 0 // texture locking (brush primit)
// TEXTURE LOCKING -----------------------------------------------------------------------------------------------------
// (Relevant to the editor only?)
// internally used for texture locking on rotation and flipping
// the general algorithm is the same for both lockings, it's only the geometric transformation part that changes
// so I wanted to keep it in a single function
// if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best
// (but right now I want to keep brush_primit.cpp striclty C)
bool txlock_bRotation;
// rotation locking params
int txl_nAxis;
float txl_fDeg;
Vector3 txl_vOrigin;
// flip locking params
Vector3 txl_matrix[3];
Vector3 txl_origin;
void TextureLockTransformation_BrushPrimit(face_t *f)
{
Vector3 Orig,texS,texT; // axis base of initial plane
// used by transformation algo
Vector3 temp; int j;
Vector3 vRotate; // rotation vector
Vector3 rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base }
Vector3 rNormal,rtexS,rtexT; // axis base for the transformed plane
Vector3 lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging )
Vector3 M[3];
float det;
Vector3 D[2];
// compute plane axis base
ComputeAxisBase( f->plane.normal, texS, texT );
VectorSet(Orig, 0.0f, 0.0f, 0.0f);
// compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation
// (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base )
// input: Orig, texS, texT (and the global locking params)
// ouput: rOrig, rvecS, rvecT, rNormal
if (txlock_bRotation) {
// rotation vector
VectorSet( vRotate, 0.0f, 0.0f, 0.0f );
vRotate[txl_nAxis]=txl_fDeg;
VectorRotateOrigin ( Orig, vRotate, txl_vOrigin, rOrig );
VectorRotateOrigin ( texS, vRotate, txl_vOrigin, rvecS );
VectorRotateOrigin ( texT, vRotate, txl_vOrigin, rvecT );
// compute normal of plane after rotation
VectorRotate ( f->plane.normal, vRotate, rNormal );
}
else
{
for (j=0 ; j<3 ; j++)
rOrig[j] = vector3_dot(vector3_subtracted(Orig, txl_origin), txl_matrix[j]) + txl_origin[j];
for (j=0 ; j<3 ; j++)
rvecS[j] = vector3_dot(vector3_subtracted(texS, txl_origin), txl_matrix[j]) + txl_origin[j];
for (j=0 ; j<3 ; j++)
rvecT[j] = vector3_dot(vector3_subtracted(texT, txl_origin), txl_matrix[j]) + txl_origin[j];
// we also need the axis base of the target plane, apply the transformation matrix to the normal too..
for (j=0 ; j<3 ; j++)
rNormal[j] = vector3_dot(f->plane.normal, txl_matrix[j]);
}
// compute rotated plane axis base
ComputeAxisBase( rNormal, rtexS, rtexT );
// compute S/T coordinates of the three points in rotated axis base ( in M matrix )
lOrig[0] = vector3_dot( rOrig, rtexS );
lOrig[1] = vector3_dot( rOrig, rtexT );
lvecS[0] = vector3_dot( rvecS, rtexS );
lvecS[1] = vector3_dot( rvecS, rtexT );
lvecT[0] = vector3_dot( rvecT, rtexS );
lvecT[1] = vector3_dot( rvecT, rtexT );
M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f;
M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f;
M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f;
// fill data vector
D[0][0]=f->brushprimit_texdef.coords[0][2];
D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2];
D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2];
D[1][0]=f->brushprimit_texdef.coords[1][2];
D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2];
D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet( M[0], M[1], M[2] );
f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}
// texture locking
// called before the points on the face are actually rotated
void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, Vector3& vOrigin )
{
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = true;
txl_nAxis = nAxis;
txl_fDeg = fDeg;
VectorCopy(vOrigin, txl_vOrigin);
TextureLockTransformation_BrushPrimit(f);
}
// compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation)
// this matches the select_matrix algo used in select.cpp
// this needs to be called on the face BEFORE any geometric transformation
// it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done
void ApplyMatrix_BrushPrimit(face_t *f, Vector3 matrix[3], Vector3& origin)
{
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = false;
VectorCopy(matrix[0], txl_matrix[0]);
VectorCopy(matrix[1], txl_matrix[1]);
VectorCopy(matrix[2], txl_matrix[2]);
VectorCopy(origin, txl_origin);
TextureLockTransformation_BrushPrimit(f);
}
#endif
// don't do C==A!
void BPMatMul(float A[2][3], float B[2][3], float C[2][3])
{
C[0][0] = A[0][0]*B[0][0]+A[0][1]*B[1][0];
C[1][0] = A[1][0]*B[0][0]+A[1][1]*B[1][0];
C[0][1] = A[0][0]*B[0][1]+A[0][1]*B[1][1];
C[1][1] = A[1][0]*B[0][1]+A[1][1]*B[1][1];
C[0][2] = A[0][0]*B[0][2]+A[0][1]*B[1][2]+A[0][2];
C[1][2] = A[1][0]*B[0][2]+A[1][1]*B[1][2]+A[1][2];
}
void BPMatDump(float A[2][3])
{
globalOutputStream() << "" << A[0][0]
<< " " << A[0][1]
<< " " << A[0][2]
<< "\n" << A[1][0]
<< " " << A[1][2]
<< " " << A[1][2]
<< "\n0 0 1\n";
}
void BPMatRotate(float A[2][3], float theta)
{
float m[2][3];
float aux[2][3];
memset(&m, 0, sizeof(float)*6);
m[0][0] = static_cast<float>(cos(degrees_to_radians(theta)));
m[0][1] = static_cast<float>(-sin(degrees_to_radians(theta)));
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
BPMatMul(A, m, aux);
BPMatCopy(aux,A);
}
#if 0 // camera-relative texture shift
// get the relative axes of the current texturing
void BrushPrimit_GetRelativeAxes(face_t *f, Vector3& vecS, Vector3& vecT)
{
float vS[2],vT[2];
// first we compute them as expressed in plane axis base
// BP matrix has coordinates of plane axis base expressed in geometric axis base
// so we use the line vectors
vS[0] = f->brushprimit_texdef.coords[0][0];
vS[1] = f->brushprimit_texdef.coords[0][1];
vT[0] = f->brushprimit_texdef.coords[1][0];
vT[1] = f->brushprimit_texdef.coords[1][1];
// now compute those vectors in geometric space
Vector3 texS, texT; // axis base of the plane (geometric)
ComputeAxisBase(f->plane.normal, texS, texT);
// vecS[] = vS[0].texS[] + vS[1].texT[]
// vecT[] = vT[0].texS[] + vT[1].texT[]
vecS[0] = vS[0]*texS[0] + vS[1]*texT[0];
vecS[1] = vS[0]*texS[1] + vS[1]*texT[1];
vecS[2] = vS[0]*texS[2] + vS[1]*texT[2];
vecT[0] = vT[0]*texS[0] + vT[1]*texT[0];
vecT[1] = vT[0]*texS[1] + vT[1]*texT[1];
vecT[2] = vT[0]*texS[2] + vT[1]*texT[2];
}
// brush primitive texture adjustments, use the camera view to map adjustments
// ShiftTextureRelative_BrushPrimit ( s , t ) will shift relative to the texture
void ShiftTextureRelative_Camera(face_t *f, int x, int y)
{
Vector3 vecS, vecT;
float XY[2]; // the values we are going to send for translation
float sgn[2]; // +1 or -1
int axis[2];
CamWnd* pCam;
// get the two relative texture axes for the current texturing
BrushPrimit_GetRelativeAxes(f, vecS, vecT);
// center point of the face, project it on the camera space
Vector3 C;
VectorClear(C);
int i;
for (i=0; i<f->face_winding->numpoints; i++)
{
VectorAdd(C,f->face_winding->point_at(i),C);
}
VectorScale(C,1.0/f->face_winding->numpoints,C);
pCam = g_pParentWnd->GetCamWnd();
pCam->MatchViewAxes(C, vecS, axis[0], sgn[0]);
pCam->MatchViewAxes(C, vecT, axis[1], sgn[1]);
// this happens when the two directions can't be mapped on two different directions on the screen
// then the move will occur against a single axis
// (i.e. the user is not positioned well enough to send understandable shift commands)
// NOTE: in most cases this warning is not very relevant because the user would use one of the two axes
// for which the solution is easy (the other one being unknown)
// so this warning could be removed
if (axis[0] == axis[1])
globalOutputStream() << "Warning: degenerate in ShiftTextureRelative_Camera\n";
// compute the X Y geometric increments
// those geometric increments will be applied along the texture axes (the ones we computed above)
XY[0] = 0;
XY[1] = 0;
if (x!=0)
{
// moving right/left
XY[axis[0]] += sgn[0]*x;
}
if (y!=0)
{
XY[axis[1]] += sgn[1]*y;
}
// we worked out a move along vecS vecT, and we now it's geometric amplitude
// apply it
ShiftTextureRelative_BrushPrimit(f, XY[0], XY[1]);
}
#endif
void BPTexdef_Assign(brushprimit_texdef_t& bp_td, const brushprimit_texdef_t& bp_other)
{
bp_td = bp_other;
}
void BPTexdef_Shift(brushprimit_texdef_t& bp_td, float s, float t)
{
// shift a texture (texture adjustments) along it's current texture axes
// x and y are geometric values, which we must compute as ST increments
// this depends on the texture size and the pixel/texel ratio
// as a ratio against texture size
// the scale of the texture is not relevant here (we work directly on a transformation from the base vectors)
bp_td.coords[0][2] -= s;
bp_td.coords[1][2] += t;
}
void BPTexdef_Scale(brushprimit_texdef_t& bp_td, float s, float t)
{
// apply same scale as the spinner button of the surface inspector
texdef_t texdef;
// compute fake shift scale rot
TexMatToFakeTexCoords( bp_td, texdef );
// update
texdef.scale[0] += s;
texdef.scale[1] += t;
// compute new normalized texture matrix
FakeTexCoordsToTexMat( texdef, bp_td );
}
void BPTexdef_Rotate(brushprimit_texdef_t& bp_td, float angle)
{
// apply same scale as the spinner button of the surface inspector
texdef_t texdef;
// compute fake shift scale rot
TexMatToFakeTexCoords( bp_td, texdef );
// update
texdef.rotate += angle;
// compute new normalized texture matrix
FakeTexCoordsToTexMat( texdef, bp_td );
}
void BPTexdef_Construct(brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height)
{
bp_td.coords[0][0] = 1.0f;
bp_td.coords[1][1] = 1.0f;
ConvertTexMatWithDimensions(bp_td.coords, 2, 2, bp_td.coords, width, height);
}
//++timo FIXME quick'n dirty hack, doesn't care about current texture settings (angle)
// can be improved .. bug #107311
void BPTexdef_FitTexture(brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat)
{
Vector3 BBoxSTMin, BBoxSTMax;
Vector3 M[3],D[2];
// Vector3 N[2],Mf[2];
brushprimit_texdef_t N;
Vector3 Mf[2];
//qtexture_t texture;
//texture.width = width;
//texture.height = height;
// we'll be working on a standardized texture size
// ConvertTexMatWithQTexture( &bp_td, &texture, &bp_td, 0 );
// compute the BBox in ST coords
{
Winding tmp(w);
Texdef_EmitTextureCoordinates(TextureProjection(texdef_t(), bp_td, Vector3(0, 0, 0), Vector3(0, 0, 0)), width, height, tmp, normal, g_matrix4_identity);
ClearBounds( BBoxSTMin, BBoxSTMax );
for(Winding::const_iterator i = tmp.begin(); i != tmp.end(); ++i)
{
// AddPointToBounds in 2D on (S,T) coordinates
for(int j=0 ; j<2 ; j++)
{
float val = (*i).texcoord[j];
if (val < BBoxSTMin[j])
BBoxSTMin[j] = val;
if (val > BBoxSTMax[j])
BBoxSTMax[j] = val;
}
}
}
// we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1]) (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space
// the BP matrix we are looking for gives (0,0) (nwidth,0) (0,t_repeat) coordinates in (Sfit,Tfit) space to these three points
// we have A(Sfit,Tfit) = (0,0) = Mf * A(TexS,TexT) = N * M * A(TexS,TexT) = N * A(S,T)
// so we solve the system for N and then Mf = N * M
M[0][0] = BBoxSTMin[0]; M[0][1] = BBoxSTMax[0]; M[0][2] = BBoxSTMin[0];
M[1][0] = BBoxSTMin[1]; M[1][1] = BBoxSTMin[1]; M[1][2] = BBoxSTMax[1];
D[0][0] = 0.0f; D[0][1] = s_repeat; D[0][2] = 0.0f;
D[1][0] = 0.0f; D[1][1] = 0.0f; D[1][2] = t_repeat;
MatrixForPoints( M, D, &N );
#if 0
// FIT operation gives coordinates of three points of the bounding box in (S',T'), our target axis base
// A(S',T')=(0,0) B(S',T')=(s_repeat,0) C(S',T')=(0,t_repeat)
// and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1]) B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1])
// we compute the N transformation so that: A(S',T') = N * A(S,T)
VectorSet( N[0], (BBoxSTMax[0]-BBoxSTMin[0])/s_repeat, 0.0f, BBoxSTMin[0] );
VectorSet( N[1], 0.0f, (BBoxSTMax[1]-BBoxSTMin[1])/t_repeat, BBoxSTMin[1] );
#endif
// the final matrix is the product (Mf stands for Mfit)
Mf[0][0] = N.coords[0][0] * bp_td.coords[0][0] + N.coords[0][1] * bp_td.coords[1][0];
Mf[0][1] = N.coords[0][0] * bp_td.coords[0][1] + N.coords[0][1] * bp_td.coords[1][1];
Mf[0][2] = N.coords[0][0] * bp_td.coords[0][2] + N.coords[0][1] * bp_td.coords[1][2] + N.coords[0][2];
Mf[1][0] = N.coords[1][0] * bp_td.coords[0][0] + N.coords[1][1] * bp_td.coords[1][0];
Mf[1][1] = N.coords[1][0] * bp_td.coords[0][1] + N.coords[1][1] * bp_td.coords[1][1];
Mf[1][2] = N.coords[1][0] * bp_td.coords[0][2] + N.coords[1][1] * bp_td.coords[1][2] + N.coords[1][2];
// copy back
bp_td.coords[0][0] = Mf[0][0];
bp_td.coords[0][1] = Mf[0][1];
bp_td.coords[0][2] = Mf[0][2];
bp_td.coords[1][0] = Mf[1][0];
bp_td.coords[1][1] = Mf[1][1];
bp_td.coords[1][2] = Mf[1][2];
// handle the texture size
// ConvertTexMatWithQTexture( &bp_td, 0, &bp_td, &texture );
}
void Texdef_Assign(TextureProjection& projection, const TextureProjection& other)
{
if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
BPTexdef_Assign(projection.m_brushprimit_texdef, other.m_brushprimit_texdef);
}
else
{
Texdef_Assign(projection.m_texdef, other.m_texdef);
if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE)
{
projection.m_basis_s = other.m_basis_s;
projection.m_basis_t = other.m_basis_t;
}
}
}
void Texdef_Shift(TextureProjection& projection, float s, float t)
{
if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
BPTexdef_Shift(projection.m_brushprimit_texdef, s, t);
}
else
{
Texdef_Shift(projection.m_texdef, s, t);
}
}
void Texdef_Scale(TextureProjection& projection, float s, float t)
{
if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
BPTexdef_Scale(projection.m_brushprimit_texdef, s, t);
}
else
{
Texdef_Scale(projection.m_texdef, s, t);
}
}
void Texdef_Rotate(TextureProjection& projection, float angle)
{
if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
BPTexdef_Rotate(projection.m_brushprimit_texdef, angle);
}
else
{
Texdef_Rotate(projection.m_texdef, angle);
}
}
void Texdef_FitTexture(TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat)
{
if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
BPTexdef_FitTexture(projection.m_brushprimit_texdef, width, height, normal, w, s_repeat, t_repeat);
}
else
{
Texdef_FitTexture(projection.m_texdef, width, height, normal, w, s_repeat, t_repeat);
}
}
float Texdef_getDefaultTextureScale()
{
return g_texdef_default_scale;
}
void TexDef_Construct_Default(TextureProjection& projection)
{
projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale();
projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale();
if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
FakeTexCoordsToTexMat(projection.m_texdef, projection.m_brushprimit_texdef);
}
}
void ShiftScaleRotate_fromFace(texdef_t& shiftScaleRotate, const TextureProjection& projection)
{
if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
TexMatToFakeTexCoords(projection.m_brushprimit_texdef, shiftScaleRotate);
}
else
{
shiftScaleRotate = projection.m_texdef;
}
}
void ShiftScaleRotate_toFace(const texdef_t& shiftScaleRotate, TextureProjection& projection)
{
if (g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES)
{
// compute texture matrix
// the matrix returned must be understood as a qtexture_t with width=2 height=2
FakeTexCoordsToTexMat( shiftScaleRotate, projection.m_brushprimit_texdef );
}
else
{
projection.m_texdef = shiftScaleRotate;
}
}
inline void print_vector3(const Vector3& v)
{
globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )\n";
}
inline void print_3x3(const Matrix4& m)
{
globalOutputStream() << "( " << m.xx() << " " << m.xy() << " " << m.xz() << " ) "
<< "( " << m.yx() << " " << m.yy() << " " << m.yz() << " ) "
<< "( " << m.zx() << " " << m.zy() << " " << m.zz() << " )\n";
}
inline Matrix4 matrix4_rotation_for_vector3(const Vector3& x, const Vector3& y, const Vector3& z)
{
return Matrix4(
x.x(), x.y(), x.z(), 0,
y.x(), y.y(), y.z(), 0,
z.x(), z.y(), z.z(), 0,
0, 0, 0, 1
);
}
inline Matrix4 matrix4_swap_axes(const Vector3& from, const Vector3& to)
{
if(from.x() != 0 && to.y() != 0)
{
return matrix4_rotation_for_vector3(to, from, g_vector3_axis_z);
}
if(from.x() != 0 && to.z() != 0)
{
return matrix4_rotation_for_vector3(to, g_vector3_axis_y, from);
}
if(from.y() != 0 && to.z() != 0)
{
return matrix4_rotation_for_vector3(g_vector3_axis_x, to, from);
}
if(from.y() != 0 && to.x() != 0)
{
return matrix4_rotation_for_vector3(from, to, g_vector3_axis_z);
}
if(from.z() != 0 && to.x() != 0)
{
return matrix4_rotation_for_vector3(from, g_vector3_axis_y, to);
}
if(from.z() != 0 && to.y() != 0)
{
return matrix4_rotation_for_vector3(g_vector3_axis_x, from, to);
}
ERROR_MESSAGE("unhandled axis swap case");
return g_matrix4_identity;
}
inline Matrix4 matrix4_reflection_for_plane(const Plane3& plane)
{
return Matrix4(
static_cast<float>(1 - (2 * plane.a * plane.a)),
static_cast<float>(-2 * plane.a * plane.b),
static_cast<float>(-2 * plane.a * plane.c),
0,
static_cast<float>(-2 * plane.b * plane.a),
static_cast<float>(1 - (2 * plane.b * plane.b)),
static_cast<float>(-2 * plane.b * plane.c),
0,
static_cast<float>(-2 * plane.c * plane.a),
static_cast<float>(-2 * plane.c * plane.b),
static_cast<float>(1 - (2 * plane.c * plane.c)),
0,
static_cast<float>(-2 * plane.d * plane.a),
static_cast<float>(-2 * plane.d * plane.b),
static_cast<float>(-2 * plane.d * plane.c),
1
);
}
inline Matrix4 matrix4_reflection_for_plane45(const Plane3& plane, const Vector3& from, const Vector3& to)
{
Vector3 first = from;
Vector3 second = to;
if(vector3_dot(from, plane.normal()) > 0 == vector3_dot(to, plane.normal()) > 0)
{
first = vector3_negated(first);
second = vector3_negated(second);
}
#if 0
globalOutputStream() << "normal: ";
print_vector3(plane.normal());
globalOutputStream() << "from: ";
print_vector3(first);
globalOutputStream() << "to: ";
print_vector3(second);
#endif
Matrix4 swap = matrix4_swap_axes(first, second);
Matrix4 tmp = matrix4_reflection_for_plane(plane);
swap.tx() = -static_cast<float>(-2 * plane.a * plane.d);
swap.ty() = -static_cast<float>(-2 * plane.b * plane.d);
swap.tz() = -static_cast<float>(-2 * plane.c * plane.d);
return swap;
}
void Texdef_transformLocked(TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed)
{
//globalOutputStream() << "identity2transformed: " << identity2transformed << "\n";
//globalOutputStream() << "plane.normal(): " << plane.normal() << "\n";
Vector3 normalTransformed(matrix4_transformed_direction(identity2transformed, plane.normal()));
//globalOutputStream() << "normalTransformed: " << normalTransformed << "\n";
// identity: identity space
// transformed: transformation
// stIdentity: base st projection space before transformation
// stTransformed: base st projection space after transformation
// stOriginal: original texdef space
// stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal
Matrix4 identity2stIdentity;
Texdef_basisForNormal(projection, plane.normal(), identity2stIdentity);
//globalOutputStream() << "identity2stIdentity: " << identity2stIdentity << "\n";
if(g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_HALFLIFE)
{
matrix4_transform_direction(identity2transformed, projection.m_basis_s);
matrix4_transform_direction(identity2transformed, projection.m_basis_t);
}
Matrix4 transformed2stTransformed;
Texdef_basisForNormal(projection, normalTransformed, transformed2stTransformed);
Matrix4 stTransformed2identity(matrix4_affine_inverse(matrix4_multiplied_by_matrix4(transformed2stTransformed, identity2transformed)));
Vector3 originalProjectionAxis(vector4_to_vector3(matrix4_affine_inverse(identity2stIdentity).z()));
Vector3 transformedProjectionAxis(vector4_to_vector3(stTransformed2identity.z()));
Matrix4 stIdentity2stOriginal;
Texdef_toTransform(projection, (float)width, (float)height, stIdentity2stOriginal);
Matrix4 identity2stOriginal(matrix4_multiplied_by_matrix4(stIdentity2stOriginal, identity2stIdentity));
//globalOutputStream() << "originalProj: " << originalProjectionAxis << "\n";
//globalOutputStream() << "transformedProj: " << transformedProjectionAxis << "\n";
double dot = vector3_dot(originalProjectionAxis, transformedProjectionAxis);
//globalOutputStream() << "dot: " << dot << "\n";
if(dot == 0)
{
// The projection axis chosen for the transformed normal is at 90 degrees
// to the transformed projection axis chosen for the original normal.
// This happens when the projection axis is ambiguous - e.g. for the plane
// 'X == Y' the projection axis could be either X or Y.
//globalOutputStream() << "flipped\n";
#if 0
globalOutputStream() << "projection off by 90\n";
globalOutputStream() << "normal: ";
print_vector3(plane.normal());
globalOutputStream() << "original projection: ";
print_vector3(originalProjectionAxis);
globalOutputStream() << "transformed projection: ";
print_vector3(transformedProjectionAxis);
#endif
Matrix4 identityCorrected = matrix4_reflection_for_plane45(plane, originalProjectionAxis, transformedProjectionAxis);
identity2stOriginal = matrix4_multiplied_by_matrix4(identity2stOriginal, identityCorrected);
}
Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4(identity2stOriginal, stTransformed2identity);
Texdef_fromTransform(projection, (float)width, (float)height, stTransformed2stOriginal);
Texdef_normalise(projection, (float)width, (float)height);
}
#if 1
void Q3_to_matrix(const texdef_t& texdef, float width, float height, const Vector3& normal, Matrix4& matrix)
{
Normal_GetTransform(normal, matrix);
Matrix4 transform;
Texdef_toTransform(texdef, width, height, transform);
matrix4_multiply_by_matrix4(matrix, transform);
}
void BP_from_matrix(brushprimit_texdef_t& bp_texdef, const Vector3& normal, const Matrix4& transform)
{
Matrix4 basis;
basis = g_matrix4_identity;
ComputeAxisBase(normal, basis.x(), basis.y());
static_cast<Vector3&>(basis.z()) = normal;
matrix4_transpose(basis);
matrix4_affine_invert(basis);
Matrix4 basis2texture = matrix4_multiplied_by_matrix4(basis, transform);
BPTexdef_fromTransform(bp_texdef, basis2texture);
}
void Q3_to_BP(const texdef_t& texdef, float width, float height, const Vector3& normal, brushprimit_texdef_t& bp_texdef)
{
Matrix4 matrix;
Q3_to_matrix(texdef, width, height, normal, matrix);
BP_from_matrix(bp_texdef, normal, matrix);
}
#endif