gtkradiant/radiant/brush.cpp

417 lines
11 KiB
C++
Raw Normal View History

/*
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "brush.h"
#include "signal/signal.h"
Signal0 g_brushTextureChangedCallbacks;
void Brush_addTextureChangedCallback(const SignalHandler& handler)
{
g_brushTextureChangedCallbacks.connectLast(handler);
}
void Brush_textureChanged()
{
g_brushTextureChangedCallbacks();
}
QuantiseFunc Face::m_quantise;
EBrushType Face::m_type;
EBrushType FacePlane::m_type;
bool g_brush_texturelock_enabled = false;
EBrushType Brush::m_type;
double Brush::m_maxWorldCoord = 0;
Shader* Brush::m_state_point;
Shader* BrushClipPlane::m_state = 0;
Shader* BrushInstance::m_state_selpoint;
Counter* BrushInstance::m_counter = 0;
FaceInstanceSet g_SelectedFaceInstances;
struct SListNode
{
SListNode* m_next;
};
class ProximalVertex
{
public:
const SListNode* m_vertices;
ProximalVertex(const SListNode* next)
: m_vertices(next)
{
}
bool operator<(const ProximalVertex& other) const
{
if(!(operator==(other)))
{
return m_vertices < other.m_vertices;
}
return false;
}
bool operator==(const ProximalVertex& other) const
{
const SListNode* v = m_vertices;
std::size_t DEBUG_LOOP = 0;
do
{
if(v == other.m_vertices)
return true;
v = v->m_next;
//ASSERT_MESSAGE(DEBUG_LOOP < c_brush_maxFaces, "infinite loop");
if(!(DEBUG_LOOP < c_brush_maxFaces))
{
break;
}
++DEBUG_LOOP;
}
while(v != m_vertices);
return false;
}
};
typedef Array<SListNode> ProximalVertexArray;
std::size_t ProximalVertexArray_index(const ProximalVertexArray& array, const ProximalVertex& vertex)
{
return vertex.m_vertices - array.data();
}
inline bool Brush_isBounded(const Brush& brush)
{
for(Brush::const_iterator i = brush.begin(); i != brush.end(); ++i)
{
if(!(*i)->is_bounded())
{
return false;
}
}
return true;
}
void Brush::buildBRep()
{
bool degenerate = buildWindings();
std::size_t faces_size = 0;
std::size_t faceVerticesCount = 0;
for(Faces::const_iterator i = m_faces.begin(); i != m_faces.end(); ++i)
{
if((*i)->contributes())
{
++faces_size;
}
faceVerticesCount += (*i)->getWinding().numpoints;
}
if(degenerate || faces_size < 4 || faceVerticesCount != (faceVerticesCount>>1)<<1) // sum of vertices for each face of a valid polyhedron is always even
{
m_uniqueVertexPoints.resize(0);
vertex_clear();
edge_clear();
m_edge_indices.resize(0);
m_edge_faces.resize(0);
m_faceCentroidPoints.resize(0);
m_uniqueEdgePoints.resize(0);
m_uniqueVertexPoints.resize(0);
for(Faces::iterator i = m_faces.begin(); i != m_faces.end(); ++i)
{
(*i)->getWinding().resize(0);
}
}
else
{
{
typedef std::vector<FaceVertexId> FaceVertices;
FaceVertices faceVertices;
faceVertices.reserve(faceVerticesCount);
{
for(std::size_t i = 0; i != m_faces.size(); ++i)
{
for(std::size_t j = 0; j < m_faces[i]->getWinding().numpoints; ++j)
{
faceVertices.push_back(FaceVertexId(i, j));
}
}
}
IndexBuffer uniqueEdgeIndices;
typedef VertexBuffer<ProximalVertex> UniqueEdges;
UniqueEdges uniqueEdges;
uniqueEdgeIndices.reserve(faceVertices.size());
uniqueEdges.reserve(faceVertices.size());
{
ProximalVertexArray edgePairs;
edgePairs.resize(faceVertices.size());
{
for(std::size_t i=0; i<faceVertices.size(); ++i)
{
edgePairs[i].m_next = edgePairs.data() + absoluteIndex(next_edge(m_faces, faceVertices[i]));
}
}
{
UniqueVertexBuffer<ProximalVertex> inserter(uniqueEdges);
for(ProximalVertexArray::iterator i = edgePairs.begin(); i != edgePairs.end(); ++i)
{
uniqueEdgeIndices.insert(inserter.insert(ProximalVertex(&(*i))));
}
}
{
edge_clear();
m_select_edges.reserve(uniqueEdges.size());
for(UniqueEdges::iterator i = uniqueEdges.begin(); i != uniqueEdges.end(); ++i)
{
edge_push_back(faceVertices[ProximalVertexArray_index(edgePairs, *i)]);
}
}
{
m_edge_faces.resize(uniqueEdges.size());
for(std::size_t i=0; i<uniqueEdges.size(); ++i)
{
FaceVertexId faceVertex = faceVertices[ProximalVertexArray_index(edgePairs, uniqueEdges[i])];
m_edge_faces[i] = EdgeFaces(faceVertex.getFace(), m_faces[faceVertex.getFace()]->getWinding()[faceVertex.getVertex()].adjacent);
}
}
{
m_uniqueEdgePoints.resize(uniqueEdges.size());
for(std::size_t i=0; i<uniqueEdges.size(); ++i)
{
FaceVertexId faceVertex = faceVertices[ProximalVertexArray_index(edgePairs, uniqueEdges[i])];
const Winding& w = m_faces[faceVertex.getFace()]->getWinding();
Vector3 edge = vector3_mid(w[faceVertex.getVertex()].vertex, w[Winding_next(w, faceVertex.getVertex())].vertex);
m_uniqueEdgePoints[i] = pointvertex_for_windingpoint(edge, colour_vertex);
}
}
}
IndexBuffer uniqueVertexIndices;
typedef VertexBuffer<ProximalVertex> UniqueVertices;
UniqueVertices uniqueVertices;
uniqueVertexIndices.reserve(faceVertices.size());
uniqueVertices.reserve(faceVertices.size());
{
ProximalVertexArray vertexRings;
vertexRings.resize(faceVertices.size());
{
for(std::size_t i=0; i<faceVertices.size(); ++i)
{
vertexRings[i].m_next = vertexRings.data() + absoluteIndex(next_vertex(m_faces, faceVertices[i]));
}
}
{
UniqueVertexBuffer<ProximalVertex> inserter(uniqueVertices);
for(ProximalVertexArray::iterator i = vertexRings.begin(); i != vertexRings.end(); ++i)
{
uniqueVertexIndices.insert(inserter.insert(ProximalVertex(&(*i))));
}
}
{
vertex_clear();
m_select_vertices.reserve(uniqueVertices.size());
for(UniqueVertices::iterator i = uniqueVertices.begin(); i != uniqueVertices.end(); ++i)
{
vertex_push_back(faceVertices[ProximalVertexArray_index(vertexRings, (*i))]);
}
}
{
m_uniqueVertexPoints.resize(uniqueVertices.size());
for(std::size_t i=0; i<uniqueVertices.size(); ++i)
{
FaceVertexId faceVertex = faceVertices[ProximalVertexArray_index(vertexRings, uniqueVertices[i])];
const Winding& winding = m_faces[faceVertex.getFace()]->getWinding();
m_uniqueVertexPoints[i] = pointvertex_for_windingpoint(winding[faceVertex.getVertex()].vertex, colour_vertex);
}
}
}
ASSERT_MESSAGE((uniqueVertices.size() + faces_size) - uniqueEdges.size() == 2, "Final B-Rep: inconsistent vertex count");
#if BRUSH_CONNECTIVITY_DEBUG
if((uniqueVertices.size() + faces_size) - uniqueEdges.size() != 2)
{
for(Faces::iterator i = m_faces.begin(); i != m_faces.end(); ++i)
{
std::size_t faceIndex = std::distance(m_faces.begin(), i);
if(!(*i)->contributes())
{
globalOutputStream() << "face: " << Unsigned(faceIndex) << " does not contribute\n";
}
Winding_printConnectivity((*i)->getWinding());
}
}
#endif
// edge-index list for wireframe rendering
{
m_edge_indices.resize(uniqueEdgeIndices.size());
for(std::size_t i=0, count=0; i<m_faces.size(); ++i)
{
const Winding& winding = m_faces[i]->getWinding();
for(std::size_t j = 0; j < winding.numpoints; ++j)
{
const RenderIndex edge_index = uniqueEdgeIndices[count+j];
m_edge_indices[edge_index].first = uniqueVertexIndices[count + j];
m_edge_indices[edge_index].second = uniqueVertexIndices[count + Winding_next(winding, j)];
}
count += winding.numpoints;
}
}
}
{
m_faceCentroidPoints.resize(m_faces.size());
for(std::size_t i=0; i<m_faces.size(); ++i)
{
m_faces[i]->construct_centroid();
m_faceCentroidPoints[i] = pointvertex_for_windingpoint(m_faces[i]->centroid(), colour_vertex);
}
}
}
}
class FaceFilterWrapper : public Filter
{
FaceFilter& m_filter;
bool m_active;
bool m_invert;
public:
FaceFilterWrapper(FaceFilter& filter, bool invert) :
m_filter(filter),
m_invert(invert)
{
}
void setActive(bool active)
{
m_active = active;
}
bool active()
{
return m_active;
}
bool filter(const Face& face)
{
return m_invert ^ m_filter.filter(face);
}
};
typedef std::list<FaceFilterWrapper> FaceFilters;
FaceFilters g_faceFilters;
void add_face_filter(FaceFilter& filter, int mask, bool invert)
{
g_faceFilters.push_back(FaceFilterWrapper(filter, invert));
GlobalFilterSystem().addFilter(g_faceFilters.back(), mask);
}
bool face_filtered(Face& face)
{
for(FaceFilters::iterator i = g_faceFilters.begin(); i != g_faceFilters.end(); ++i)
{
if((*i).active() && (*i).filter(face))
{
return true;
}
}
return false;
}
class BrushFilterWrapper : public Filter
{
bool m_active;
bool m_invert;
BrushFilter& m_filter;
public:
BrushFilterWrapper(BrushFilter& filter, bool invert) : m_invert(invert), m_filter(filter)
{
}
void setActive(bool active)
{
m_active = active;
}
bool active()
{
return m_active;
}
bool filter(const Brush& brush)
{
return m_invert ^ m_filter.filter(brush);
}
};
typedef std::list<BrushFilterWrapper> BrushFilters;
BrushFilters g_brushFilters;
void add_brush_filter(BrushFilter& filter, int mask, bool invert)
{
g_brushFilters.push_back(BrushFilterWrapper(filter, invert));
GlobalFilterSystem().addFilter(g_brushFilters.back(), mask);
}
bool brush_filtered(Brush& brush)
{
for(BrushFilters::iterator i = g_brushFilters.begin(); i != g_brushFilters.end(); ++i)
{
if((*i).active() && (*i).filter(brush))
{
return true;
}
}
return false;
}