gtkradiant/contrib/bobtoolz/DWinding.cpp

494 lines
9.8 KiB
C++
Raw Normal View History

/*
BobToolz plugin for GtkRadiant
Copyright (C) 2001 Gordon Biggans
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
// DWinding.cpp: implementation of the DWinding class.
//
//////////////////////////////////////////////////////////////////////
#include "StdAfx.h"
#include "DWinding.h"
#include "DPlane.h"
#include "misc.h"
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
DWinding::DWinding(){
numpoints = 0;
p = NULL;
}
DWinding::~DWinding(){
if ( p ) {
delete[] p;
}
}
//////////////////////////////////////////////////////////////////////
// Implementation
//////////////////////////////////////////////////////////////////////
#define BOGUS_RANGE 4096
void DWinding::AllocWinding( int points ){
numpoints = points;
if ( p ) {
delete[] p;
}
p = new vec3_t[points];
}
vec_t DWinding::WindingArea(){
vec3_t d1, d2, cross;
vec_t total;
total = 0;
for ( int i = 2; i < numpoints ; i++ )
{
VectorSubtract( p[i - 1], p[0], d1 );
VectorSubtract( p[i], p[0], d2 );
CrossProduct( d1, d2, cross );
total += 0.5f * VectorLength( cross );
}
return total;
}
void DWinding::RemoveColinearPoints(){
vec3_t p2[MAX_POINTS_ON_WINDING];
int nump = 0;
for ( int i = 0; i < numpoints; i++ )
{
int j = ( i + 1 ) % numpoints;
int k = ( i + numpoints - 1 ) % numpoints;
vec3_t v1, v2;
VectorSubtract( p[j], p[i], v1 );
VectorSubtract( p[i], p[k], v2 );
VectorNormalize( v1, v1 );
VectorNormalize( v2, v2 );
if ( DotProduct( v1, v2 ) < 0.999 ) {
VectorCopy( p[i], p2[nump] );
nump++;
}
}
if ( nump == numpoints ) {
return;
}
AllocWinding( nump );
memcpy( p, p2, nump * sizeof( vec3_t ) );
}
DPlane* DWinding::WindingPlane(){
DPlane* newPlane = new DPlane( p[0], p[1], p[2], NULL );
return newPlane;
}
void DWinding::WindingBounds( vec3_t mins, vec3_t maxs ){
if ( numpoints == 0 ) {
return;
}
VectorCopy( mins, p[0] );
VectorCopy( maxs, p[0] );
for ( int i = 1; i < numpoints ; i++ )
{
for ( int j = 0; j < 3; j++ )
{
vec_t v = p[i][j];
if ( v < mins[j] ) {
mins[j] = v;
}
if ( v > maxs[j] ) {
maxs[j] = v;
}
}
}
}
void DWinding::WindingCentre( vec3_t centre ){
VectorCopy( vec3_origin, centre );
for ( int i = 0; i < numpoints; i++ )
VectorAdd( p[i], centre, centre );
float scale = 1.0f / numpoints;
VectorScale( centre, scale, centre );
}
DWinding* DWinding::CopyWinding(){
DWinding* c = new DWinding;
c->AllocWinding( numpoints );
memcpy( c->p, p, numpoints * sizeof( vec3_t ) );
return c;
}
int DWinding::WindingOnPlaneSide( vec3_t normal, vec_t dist ){
bool front = FALSE;
bool back = FALSE;
for ( int i = 0; i < numpoints; i++ )
{
vec_t d = DotProduct( p[i], normal ) - dist;
if ( d < -ON_EPSILON ) {
if ( front ) {
return SIDE_CROSS;
}
back = TRUE;
continue;
}
if ( d > ON_EPSILON ) {
if ( back ) {
return SIDE_CROSS;
}
front = TRUE;
continue;
}
}
if ( back ) {
return SIDE_BACK;
}
if ( front ) {
return SIDE_FRONT;
}
return SIDE_ON;
}
void DWinding::CheckWinding(){
vec_t *p1, *p2;
vec_t edgedist;
vec3_t dir, edgenormal;
if ( numpoints < 3 ) {
Sys_Printf( "CheckWinding: %i points", numpoints );
}
vec_t area = WindingArea();
if ( area < 1 ) {
Sys_Printf( "CheckWinding: %f area", area );
}
DPlane* wPlane = WindingPlane();
int i;
for ( i = 0; i < numpoints; i++ )
{
p1 = p[i];
int j;
for ( j = 0; j < 3; j++ )
if ( p1[j] > BOGUS_RANGE || p1[j] < -BOGUS_RANGE ) {
Sys_Printf( "CheckFace: BUGUS_RANGE: %f", p1[j] );
}
j = i + 1 == numpoints ? 0 : i + 1;
// check the point is on the face plane
vec_t d = DotProduct( p1, wPlane->normal ) - wPlane->_d;
if ( d < -ON_EPSILON || d > ON_EPSILON ) {
Sys_Printf( "CheckWinding: point off plane" );
}
// check the edge isnt degenerate
p2 = p[j];
VectorSubtract( p2, p1, dir );
if ( VectorLength( dir ) < ON_EPSILON ) {
Sys_Printf( "CheckWinding: degenerate edge" );
}
CrossProduct( wPlane->normal, dir, edgenormal );
VectorNormalize( edgenormal, edgenormal );
edgedist = DotProduct( p1, edgenormal );
// all other points must be on front side
for ( j = 0 ; j < numpoints ; j++ )
{
if ( j == i ) {
continue;
}
d = DotProduct( p[j], edgenormal );
if ( d > ( edgedist + ON_EPSILON ) ) {
Sys_Printf( "CheckWinding: non-convex" );
}
}
}
delete wPlane;
}
DWinding* DWinding::ReverseWinding(){
DWinding* c = new DWinding;
c->AllocWinding( numpoints );
for ( int i = 0; i < numpoints ; i++ )
VectorCopy( p[numpoints - 1 - i], c->p[i] );
return c;
}
bool DWinding::ChopWindingInPlace( DPlane* chopPlane, vec_t epsilon ){
vec_t dists[MAX_POINTS_ON_WINDING + 4];
int sides[MAX_POINTS_ON_WINDING + 4];
int counts[3];
vec_t *p1, *p2;
vec3_t mid;
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
int i;
for ( i = 0; i < numpoints; i++ )
{
vec_t dot = DotProduct( p[i], chopPlane->normal );
dot -= chopPlane->_d;
dists[i] = dot;
if ( dot > epsilon ) {
sides[i] = SIDE_FRONT;
}
else if ( dot < -epsilon ) {
sides[i] = SIDE_BACK;
}
else{
sides[i] = SIDE_ON;
}
counts[sides[i]]++;
}
sides[i] = sides[0];
dists[i] = dists[0];
if ( !counts[0] ) {
delete this;
return FALSE;
}
if ( !counts[1] ) {
return TRUE;
}
int maxpts = numpoints + 4; // cant use counts[0]+2 because
// of fp grouping errors
DWinding* f = new DWinding;
f->AllocWinding( maxpts );
f->numpoints = 0;
for ( i = 0; i < numpoints; i++ )
{
p1 = p[i];
if ( sides[i] == SIDE_ON ) {
VectorCopy( p1, f->p[f->numpoints] );
f->numpoints++;
continue;
}
if ( sides[i] == SIDE_FRONT ) {
VectorCopy( p1, f->p[f->numpoints] );
f->numpoints++;
}
if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
continue;
}
// generate a split point
p2 = p[( i + 1 ) % numpoints];
vec_t dot = dists[i] / ( dists[i] - dists[i + 1] );
for ( int j = 0; j < 3; j++ )
{
if ( chopPlane->normal[j] == 1 ) {
mid[j] = chopPlane->_d;
}
else if ( chopPlane->normal[j] == -1 ) {
mid[j] = -chopPlane->_d;
}
else{
mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
}
}
VectorCopy( mid, f->p[f->numpoints] );
f->numpoints++;
}
if ( f->numpoints > maxpts ) {
Sys_Printf( "ClipWinding: points exceeded estimate" );
}
if ( f->numpoints > MAX_POINTS_ON_WINDING ) {
Sys_Printf( "ClipWinding: MAX_POINTS_ON_WINDING" );
}
delete[] p;
p = f->p;
f->p = NULL;
delete f;
return TRUE;
}
void DWinding::ClipWindingEpsilon( DPlane* chopPlane, vec_t epsilon, DWinding **front, DWinding **back ){
vec_t dists[MAX_POINTS_ON_WINDING + 4];
int sides[MAX_POINTS_ON_WINDING + 4];
int counts[3];
vec_t *p1, *p2;
vec3_t mid;
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
int i;
for ( i = 0; i < numpoints; i++ )
{
vec_t dot = -chopPlane->DistanceToPoint( p[i] );
dists[i] = dot;
if ( dot > epsilon ) {
sides[i] = SIDE_FRONT;
}
else if ( dot < -epsilon ) {
sides[i] = SIDE_BACK;
}
else{
sides[i] = SIDE_ON;
}
counts[sides[i]]++;
}
sides[i] = sides[0];
dists[i] = dists[0];
*front = *back = NULL;
if ( !counts[0] ) {
*back = CopyWinding();
return;
}
if ( !counts[1] ) {
*front = CopyWinding();
return;
}
int maxpts = numpoints + 4; // cant use counts[0]+2 because
// of fp grouping errors
DWinding* f = new DWinding;
DWinding* b = new DWinding;
f->AllocWinding( maxpts );
f->numpoints = 0;
b->AllocWinding( maxpts );
b->numpoints = 0;
*front = f;
*back = b;
for ( i = 0; i < numpoints ; i++ )
{
p1 = p[i];
if ( sides[i] == SIDE_ON ) {
VectorCopy( p1, f->p[f->numpoints] );
f->numpoints++;
VectorCopy( p1, b->p[b->numpoints] );
b->numpoints++;
continue;
}
if ( sides[i] == SIDE_FRONT ) {
VectorCopy( p1, f->p[f->numpoints] );
f->numpoints++;
}
if ( sides[i] == SIDE_BACK ) {
VectorCopy( p1, b->p[b->numpoints] );
b->numpoints++;
}
if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
continue;
}
// generate a split point
p2 = p[( i + 1 ) % numpoints];
vec_t dot = dists[i] / ( dists[i] - dists[i + 1] );
for ( int j = 0; j < 3; j++ )
{
if ( chopPlane->normal[j] == 1 ) {
mid[j] = chopPlane->_d;
}
else if ( chopPlane->normal[j] == -1 ) {
mid[j] = -chopPlane->_d;
}
else{
mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
}
}
VectorCopy( mid, f->p[f->numpoints] );
f->numpoints++;
VectorCopy( mid, b->p[b->numpoints] );
b->numpoints++;
}
if ( f->numpoints > maxpts || b->numpoints > maxpts ) {
Sys_Printf( "ClipWinding: points exceeded estimate" );
}
if ( f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING ) {
Sys_Printf( "ClipWinding: MAX_POINTS_ON_WINDING" );
}
}
bool DWinding::ChopWinding( DPlane* chopPlane ){
DWinding *f, *b;
ClipWindingEpsilon( chopPlane, (float)ON_EPSILON, &f, &b );
if ( b ) {
delete ( b );
}
if ( !f ) {
delete this;
return FALSE;
}
delete[] p;
p = f->p;
f->p = NULL;
numpoints = f->numpoints;
delete f;
return TRUE;
}