gtkradiant/tools/quake3/q3data/polyset.c

269 lines
6.5 KiB
C
Raw Normal View History

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <assert.h>
#include "q3data.h"
polyset_t *Polyset_SplitSets( polyset_t *psets, int numpolysets, int *pNumNewPolysets, int maxTris ){
int p, np, op;
int numNewPolysets = 0;
int numSplitPolysets = 0;
polyset_t *newpsets;
int sumTriangles = 0;
for ( p = 0; p < numpolysets; p++ )
{
numNewPolysets += psets[p].numtriangles / maxTris + 1;
}
if ( numNewPolysets == numpolysets ) {
return psets;
}
printf( "Warning: creating %d polysets from input of %d polysets\n", numNewPolysets, numpolysets );
newpsets = calloc( sizeof( polyset_t ) * numNewPolysets, 1 );
for ( np = 0, op = 0; op < numpolysets; op++ )
{
numSplitPolysets = ( psets[op].numtriangles / ( maxTris + 1 ) ) + 1;
if ( numSplitPolysets == 1 ) {
memcpy( &newpsets[np], &psets[op], sizeof( polyset_t ) );
np++;
}
else
{
sumTriangles = 0;
// split this pset into multiple smaller psets
for ( p = 0; p < numSplitPolysets; p++, np++ )
{
memcpy( &newpsets[np], &psets[op], sizeof( polyset_t ) );
newpsets[np].triangles = psets[op].triangles + sumTriangles;
if ( sumTriangles + maxTris > psets[op].numtriangles ) {
newpsets[np].numtriangles = psets[op].numtriangles - sumTriangles;
}
else{
newpsets[np].numtriangles = maxTris;
}
sumTriangles += newpsets[np].numtriangles;
}
}
}
*pNumNewPolysets = numNewPolysets;
return newpsets;
}
polyset_t *Polyset_LoadSets( const char *file, int *numpolysets, int maxTrisPerSet ){
polyset_t *psets;
polyset_t *finalpsets;
//
// load the frame
//
if ( strstr( file, ".3DS" ) || strstr( file, ".3ds" ) ) {
_3DS_LoadPolysets( file, &psets, numpolysets, g_verbose );
}
else{
Error( "TRI files no longer supported" );
return NULL;
}
// TRI_LoadPolysets( file, &psets, numpolysets );
/*
//
// scale polysets
//
for ( i = 0; i < psets; i++ )
{
int j;
for ( j = 0; j < psets[i].numtriangles; j++ )
{
}
}
*/
//
// split polysets if necessary
//
finalpsets = Polyset_SplitSets( psets, *numpolysets, numpolysets, maxTrisPerSet );
return finalpsets;
}
polyset_t *Polyset_CollapseSets( polyset_t *psets, int numpolysets ){
int p;
int sumtriangles = 0;
polyset_t *oldpsets = psets;
//
// no tag checking because this is an $oldbase and thus shouldn't have any
// tags
//
for ( p = 0; p < numpolysets; p++ )
{
sumtriangles += oldpsets[p].numtriangles;
}
psets = calloc( 1, sizeof( polyset_t ) );
psets[0].numtriangles = sumtriangles;
psets[0].triangles = malloc( MD3_MAX_TRIANGLES * sizeof( triangle_t ) );
// each call to "LoadPolysets" only allocates a single large chunk of
// triangle memory that is utilized by all the polysets loaded by
// that one call
memcpy( psets[0].triangles, oldpsets[0].triangles, sizeof( triangle_t ) * sumtriangles );
free( oldpsets[0].triangles );
free( oldpsets );
return psets;
}
static float SnapFloat( float x ){
int ix;
x *= 1.0f / MD3_XYZ_SCALE;
ix = ( int ) x;
x = ( float ) ix;
x *= MD3_XYZ_SCALE;
return x;
}
void Polyset_SnapSets( polyset_t *psets, int numpolysets ){
int p;
for ( p = 0; p < numpolysets; p++ )
{
int t;
for ( t = 0; t < psets[p].numtriangles; t++ )
{
int v;
for ( v = 0; v < 3; v++ )
{
psets[p].triangles[t].verts[v][0] = SnapFloat( psets[p].triangles[t].verts[v][0] );
psets[p].triangles[t].verts[v][1] = SnapFloat( psets[p].triangles[t].verts[v][1] );
psets[p].triangles[t].verts[v][2] = SnapFloat( psets[p].triangles[t].verts[v][2] );
}
}
}
}
void Polyset_ComputeNormals( polyset_t *psets, int numpolysets ){
int p;
int i, t;
int vertexIndex[MD3_MAX_TRIANGLES][3];
vec3_t verts[MD3_MAX_VERTS];
vec3_t normals[MD3_MAX_VERTS];
vec3_t faceNormals[MD3_MAX_TRIANGLES];
//
// iterate through polysets
//
for ( p = 0; p < numpolysets; p++ )
{
int numUniqueVertices = 0;
assert( psets[p].numtriangles < MD3_MAX_TRIANGLES );
memset( vertexIndex, 0xff, sizeof( vertexIndex ) );
memset( verts, 0, sizeof( verts ) );
memset( normals, 0, sizeof( normals ) );
//
// unique vertices
//
for ( t = 0; t < psets[p].numtriangles; t++ )
{
int j;
for ( j = 0; j < 3; j++ )
{
for ( i = 0; i < numUniqueVertices; i++ )
{
if ( VectorCompare( psets[p].triangles[t].verts[j], verts[i] ) ) {
break;
}
}
if ( i == numUniqueVertices ) {
vertexIndex[t][j] = numUniqueVertices;
VectorCopy( ( psets[p].triangles[t].verts[j] ), ( verts[numUniqueVertices] ) );
numUniqueVertices++;
}
else
{
vertexIndex[t][j] = i;
}
}
}
//
// compute face normals
//
for ( t = 0; t < psets[p].numtriangles; t++ )
{
vec3_t side0, side1, facenormal;
VectorSubtract( psets[p].triangles[t].verts[0], psets[p].triangles[t].verts[1], side0 );
VectorSubtract( psets[p].triangles[t].verts[2], psets[p].triangles[t].verts[1], side1 );
CrossProduct( side0, side1, facenormal );
VectorNormalize( facenormal, faceNormals[t] );
}
//
// sum normals and copy them back
//
for ( i = 0; i < numUniqueVertices; i++ )
{
for ( t = 0; t < psets[p].numtriangles; t++ )
{
if ( vertexIndex[t][0] == i ||
vertexIndex[t][1] == i ||
vertexIndex[t][2] == i ) {
normals[i][0] += faceNormals[t][0];
normals[i][1] += faceNormals[t][1];
normals[i][2] += faceNormals[t][2];
}
}
VectorNormalize( normals[i], normals[i] );
}
for ( t = 0; t < psets[p].numtriangles; t++ )
{
VectorCopy( normals[vertexIndex[t][0]], psets[p].triangles[t].normals[0] );
VectorCopy( normals[vertexIndex[t][1]], psets[p].triangles[t].normals[1] );
VectorCopy( normals[vertexIndex[t][2]], psets[p].triangles[t].normals[2] );
}
}
}