gtkradiant/tools/quake3/q3map2/light_bounce.c

953 lines
26 KiB
C
Raw Normal View History

/* -------------------------------------------------------------------------------
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
----------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* marker */
#define LIGHT_BOUNCE_C
/* dependencies */
#include "q3map2.h"
/* functions */
/*
RadFreeLights()
deletes any existing lights, freeing up memory for the next bounce
*/
void RadFreeLights( void ){
light_t *light, *next;
/* delete lights */
for ( light = lights; light; light = next )
{
next = light->next;
if ( light->w != NULL ) {
FreeWinding( light->w );
}
free( light );
}
numLights = 0;
lights = NULL;
}
/*
RadClipWindingEpsilon()
clips a rad winding by a plane
based off the regular clip winding code
*/
static void RadClipWindingEpsilon( radWinding_t *in, vec3_t normal, vec_t dist,
vec_t epsilon, radWinding_t *front, radWinding_t *back, clipWork_t *cw ){
vec_t *dists;
int *sides;
int counts[ 3 ];
vec_t dot; /* ydnar: changed from static b/c of threading */ /* VC 4.2 optimizer bug if not static? */
int i, j, k;
radVert_t *v1, *v2, mid;
int maxPoints;
/* crutch */
dists = cw->dists;
sides = cw->sides;
/* clear counts */
counts[ 0 ] = counts[ 1 ] = counts[ 2 ] = 0;
/* determine sides for each point */
for ( i = 0; i < in->numVerts; i++ )
{
dot = DotProduct( in->verts[ i ].xyz, normal );
dot -= dist;
dists[ i ] = dot;
if ( dot > epsilon ) {
sides[ i ] = SIDE_FRONT;
}
else if ( dot < -epsilon ) {
sides[ i ] = SIDE_BACK;
}
else{
sides[ i ] = SIDE_ON;
}
counts[ sides[ i ] ]++;
}
sides[ i ] = sides[ 0 ];
dists[ i ] = dists[ 0 ];
/* clear front and back */
front->numVerts = back->numVerts = 0;
/* handle all on one side cases */
if ( counts[ 0 ] == 0 ) {
memcpy( back, in, sizeof( radWinding_t ) );
return;
}
if ( counts[ 1 ] == 0 ) {
memcpy( front, in, sizeof( radWinding_t ) );
return;
}
/* setup windings */
maxPoints = in->numVerts + 4;
/* do individual verts */
for ( i = 0; i < in->numVerts; i++ )
{
/* do simple vertex copies first */
v1 = &in->verts[ i ];
if ( sides[ i ] == SIDE_ON ) {
memcpy( &front->verts[ front->numVerts++ ], v1, sizeof( radVert_t ) );
memcpy( &back->verts[ back->numVerts++ ], v1, sizeof( radVert_t ) );
continue;
}
if ( sides[ i ] == SIDE_FRONT ) {
memcpy( &front->verts[ front->numVerts++ ], v1, sizeof( radVert_t ) );
}
if ( sides[ i ] == SIDE_BACK ) {
memcpy( &back->verts[ back->numVerts++ ], v1, sizeof( radVert_t ) );
}
if ( sides[ i + 1 ] == SIDE_ON || sides[ i + 1 ] == sides[ i ] ) {
continue;
}
/* generate a split vertex */
v2 = &in->verts[ ( i + 1 ) % in->numVerts ];
dot = dists[ i ] / ( dists[ i ] - dists[ i + 1 ] );
/* average vertex values */
for ( j = 0; j < 4; j++ )
{
/* color */
if ( j < 4 ) {
for ( k = 0; k < MAX_LIGHTMAPS; k++ )
mid.color[ k ][ j ] = v1->color[ k ][ j ] + dot * ( v2->color[ k ][ j ] - v1->color[ k ][ j ] );
}
/* xyz, normal */
if ( j < 3 ) {
mid.xyz[ j ] = v1->xyz[ j ] + dot * ( v2->xyz[ j ] - v1->xyz[ j ] );
mid.normal[ j ] = v1->normal[ j ] + dot * ( v2->normal[ j ] - v1->normal[ j ] );
}
/* st, lightmap */
if ( j < 2 ) {
mid.st[ j ] = v1->st[ j ] + dot * ( v2->st[ j ] - v1->st[ j ] );
for ( k = 0; k < MAX_LIGHTMAPS; k++ )
mid.lightmap[ k ][ j ] = v1->lightmap[ k ][ j ] + dot * ( v2->lightmap[ k ][ j ] - v1->lightmap[ k ][ j ] );
}
}
/* normalize the averaged normal */
VectorNormalize( mid.normal, mid.normal );
/* copy the midpoint to both windings */
memcpy( &front->verts[ front->numVerts++ ], &mid, sizeof( radVert_t ) );
memcpy( &back->verts[ back->numVerts++ ], &mid, sizeof( radVert_t ) );
}
/* error check */
if ( front->numVerts > maxPoints ) {
Error( "RadClipWindingEpsilon: points exceeded estimate" );
}
if ( front->numVerts > MAX_POINTS_ON_WINDING ) {
Error( "RadClipWindingEpsilon: MAX_POINTS_ON_WINDING" );
}
}
/*
RadSampleImage()
samples a texture image for a given color
returns qfalse if pixels are bad
*/
qboolean RadSampleImage( byte *pixels, int width, int height, float st[ 2 ], float color[ 4 ] ){
float sto[ 2 ];
int x, y;
/* clear color first */
color[ 0 ] = color[ 1 ] = color[ 2 ] = color[ 3 ] = 255;
/* dummy check */
if ( pixels == NULL || width < 1 || height < 1 ) {
return qfalse;
}
/* bias st */
sto[ 0 ] = st[ 0 ];
while ( sto[ 0 ] < 0.0f )
sto[ 0 ] += 1.0f;
sto[ 1 ] = st[ 1 ];
while ( sto[ 1 ] < 0.0f )
sto[ 1 ] += 1.0f;
/* get offsets */
x = ( (float) width * sto[ 0 ] ) + 0.5f;
x %= width;
y = ( (float) height * sto[ 1 ] ) + 0.5f;
y %= height;
/* get pixel */
pixels += ( y * width * 4 ) + ( x * 4 );
VectorCopy( pixels, color );
color[ 3 ] = pixels[ 3 ];
return qtrue;
}
/*
RadSample()
samples a fragment's lightmap or vertex color and returns an
average color and a color gradient for the sample
*/
#define MAX_SAMPLES 150
#define SAMPLE_GRANULARITY 6
static void RadSample( int lightmapNum, bspDrawSurface_t *ds, rawLightmap_t *lm, shaderInfo_t *si, radWinding_t *rw, vec3_t average, vec3_t gradient, int *style ){
int i, j, k, l, v, x, y, samples;
vec3_t color, mins, maxs;
vec4_t textureColor;
float alpha, alphaI, bf;
vec3_t blend;
float st[ 2 ], lightmap[ 2 ], *radLuxel;
radVert_t *rv[ 3 ];
/* initial setup */
ClearBounds( mins, maxs );
VectorClear( average );
VectorClear( gradient );
alpha = 0;
/* dummy check */
if ( rw == NULL || rw->numVerts < 3 ) {
return;
}
/* start sampling */
samples = 0;
/* sample vertex colors if no lightmap or this is the initial pass */
if ( lm == NULL || lm->radLuxels[ lightmapNum ] == NULL || bouncing == qfalse ) {
for ( samples = 0; samples < rw->numVerts; samples++ )
{
/* multiply by texture color */
if ( !RadSampleImage( si->lightImage->pixels, si->lightImage->width, si->lightImage->height, rw->verts[ samples ].st, textureColor ) ) {
VectorCopy( si->averageColor, textureColor );
textureColor[ 3 ] = 255.0f;
}
for ( i = 0; i < 3; i++ )
color[ i ] = ( textureColor[ i ] / 255 ) * ( rw->verts[ samples ].color[ lightmapNum ][ i ] / 255.0f );
AddPointToBounds( color, mins, maxs );
VectorAdd( average, color, average );
/* get alpha */
alpha += ( textureColor[ 3 ] / 255.0f ) * ( rw->verts[ samples ].color[ lightmapNum ][ 3 ] / 255.0f );
}
/* set style */
*style = ds->vertexStyles[ lightmapNum ];
}
/* sample lightmap */
else
{
/* fracture the winding into a fan (including degenerate tris) */
for ( v = 1; v < ( rw->numVerts - 1 ) && samples < MAX_SAMPLES; v++ )
{
/* get a triangle */
rv[ 0 ] = &rw->verts[ 0 ];
rv[ 1 ] = &rw->verts[ v ];
rv[ 2 ] = &rw->verts[ v + 1 ];
/* this code is embarassing (really should just rasterize the triangle) */
for ( i = 1; i < SAMPLE_GRANULARITY && samples < MAX_SAMPLES; i++ )
{
for ( j = 1; j < SAMPLE_GRANULARITY && samples < MAX_SAMPLES; j++ )
{
for ( k = 1; k < SAMPLE_GRANULARITY && samples < MAX_SAMPLES; k++ )
{
/* create a blend vector (barycentric coordinates) */
blend[ 0 ] = i;
blend[ 1 ] = j;
blend[ 2 ] = k;
bf = ( 1.0 / ( blend[ 0 ] + blend[ 1 ] + blend[ 2 ] ) );
VectorScale( blend, bf, blend );
/* create a blended sample */
st[ 0 ] = st[ 1 ] = 0.0f;
lightmap[ 0 ] = lightmap[ 1 ] = 0.0f;
alphaI = 0.0f;
for ( l = 0; l < 3; l++ )
{
st[ 0 ] += ( rv[ l ]->st[ 0 ] * blend[ l ] );
st[ 1 ] += ( rv[ l ]->st[ 1 ] * blend[ l ] );
lightmap[ 0 ] += ( rv[ l ]->lightmap[ lightmapNum ][ 0 ] * blend[ l ] );
lightmap[ 1 ] += ( rv[ l ]->lightmap[ lightmapNum ][ 1 ] * blend[ l ] );
alphaI += ( rv[ l ]->color[ lightmapNum ][ 3 ] * blend[ l ] );
}
/* get lightmap xy coords */
x = lightmap[ 0 ] / (float) superSample;
y = lightmap[ 1 ] / (float) superSample;
if ( x < 0 ) {
x = 0;
}
else if ( x >= lm->w ) {
x = lm->w - 1;
}
if ( y < 0 ) {
y = 0;
}
else if ( y >= lm->h ) {
y = lm->h - 1;
}
/* get radiosity luxel */
radLuxel = RAD_LUXEL( lightmapNum, x, y );
/* ignore unlit/unused luxels */
if ( radLuxel[ 0 ] < 0.0f ) {
continue;
}
/* inc samples */
samples++;
/* multiply by texture color */
if ( !RadSampleImage( si->lightImage->pixels, si->lightImage->width, si->lightImage->height, st, textureColor ) ) {
VectorCopy( si->averageColor, textureColor );
textureColor[ 3 ] = 255;
}
for ( i = 0; i < 3; i++ )
color[ i ] = ( textureColor[ i ] / 255 ) * ( radLuxel[ i ] / 255 );
AddPointToBounds( color, mins, maxs );
VectorAdd( average, color, average );
/* get alpha */
alpha += ( textureColor[ 3 ] / 255 ) * ( alphaI / 255 );
}
}
}
}
/* set style */
*style = ds->lightmapStyles[ lightmapNum ];
}
/* any samples? */
if ( samples <= 0 ) {
return;
}
/* average the color */
VectorScale( average, ( 1.0 / samples ), average );
/* create the color gradient */
//% VectorSubtract( maxs, mins, delta );
/* new: color gradient will always be 0-1.0, expressed as the range of light relative to overall light */
//% gradient[ 0 ] = maxs[ 0 ] > 0.0f ? (maxs[ 0 ] - mins[ 0 ]) / maxs[ 0 ] : 0.0f;
//% gradient[ 1 ] = maxs[ 1 ] > 0.0f ? (maxs[ 1 ] - mins[ 1 ]) / maxs[ 1 ] : 0.0f;
//% gradient[ 2 ] = maxs[ 2 ] > 0.0f ? (maxs[ 2 ] - mins[ 2 ]) / maxs[ 2 ] : 0.0f;
/* newer: another contrast function */
for ( i = 0; i < 3; i++ )
gradient[ i ] = ( maxs[ i ] - mins[ i ] ) * maxs[ i ];
}
/*
RadSubdivideDiffuseLight()
subdivides a radiosity winding until it is smaller than subdivide, then generates an area light
*/
#define RADIOSITY_MAX_GRADIENT 0.75f //% 0.25f
#define RADIOSITY_VALUE 500.0f
#define RADIOSITY_MIN 0.0001f
#define RADIOSITY_CLIP_EPSILON 0.125f
static void RadSubdivideDiffuseLight( int lightmapNum, bspDrawSurface_t *ds, rawLightmap_t *lm, shaderInfo_t *si,
float scale, float subdivide, qboolean original, radWinding_t *rw, clipWork_t *cw ){
int i, style;
float dist, area, value;
vec3_t mins, maxs, normal, d1, d2, cross, color, gradient;
light_t *light, *splash;
winding_t *w;
/* dummy check */
if ( rw == NULL || rw->numVerts < 3 ) {
return;
}
/* get bounds for winding */
ClearBounds( mins, maxs );
for ( i = 0; i < rw->numVerts; i++ )
AddPointToBounds( rw->verts[ i ].xyz, mins, maxs );
/* subdivide if necessary */
for ( i = 0; i < 3; i++ )
{
if ( maxs[ i ] - mins[ i ] > subdivide ) {
radWinding_t front, back;
/* make axial plane */
VectorClear( normal );
normal[ i ] = 1;
dist = ( maxs[ i ] + mins[ i ] ) * 0.5f;
/* clip the winding */
RadClipWindingEpsilon( rw, normal, dist, RADIOSITY_CLIP_EPSILON, &front, &back, cw );
/* recurse */
RadSubdivideDiffuseLight( lightmapNum, ds, lm, si, scale, subdivide, qfalse, &front, cw );
RadSubdivideDiffuseLight( lightmapNum, ds, lm, si, scale, subdivide, qfalse, &back, cw );
return;
}
}
/* check area */
area = 0.0f;
for ( i = 2; i < rw->numVerts; i++ )
{
VectorSubtract( rw->verts[ i - 1 ].xyz, rw->verts[ 0 ].xyz, d1 );
VectorSubtract( rw->verts[ i ].xyz, rw->verts[ 0 ].xyz, d2 );
CrossProduct( d1, d2, cross );
area += 0.5f * VectorLength( cross );
}
if ( area < 1.0f || area > 20000000.0f ) {
return;
}
/* more subdivision may be necessary */
if ( bouncing ) {
/* get color sample for the surface fragment */
RadSample( lightmapNum, ds, lm, si, rw, color, gradient, &style );
/* if color gradient is too high, subdivide again */
if ( subdivide > minDiffuseSubdivide &&
( gradient[ 0 ] > RADIOSITY_MAX_GRADIENT || gradient[ 1 ] > RADIOSITY_MAX_GRADIENT || gradient[ 2 ] > RADIOSITY_MAX_GRADIENT ) ) {
RadSubdivideDiffuseLight( lightmapNum, ds, lm, si, scale, ( subdivide / 2.0f ), qfalse, rw, cw );
return;
}
}
/* create a regular winding and an average normal */
w = AllocWinding( rw->numVerts );
w->numpoints = rw->numVerts;
VectorClear( normal );
for ( i = 0; i < rw->numVerts; i++ )
{
VectorCopy( rw->verts[ i ].xyz, w->p[ i ] );
VectorAdd( normal, rw->verts[ i ].normal, normal );
}
VectorScale( normal, ( 1.0f / rw->numVerts ), normal );
if ( VectorNormalize( normal, normal ) == 0.0f ) {
return;
}
/* early out? */
if ( bouncing && VectorLength( color ) < RADIOSITY_MIN ) {
return;
}
/* debug code */
//% Sys_Printf( "Size: %d %d %d\n", (int) (maxs[ 0 ] - mins[ 0 ]), (int) (maxs[ 1 ] - mins[ 1 ]), (int) (maxs[ 2 ] - mins[ 2 ]) );
//% Sys_Printf( "Grad: %f %f %f\n", gradient[ 0 ], gradient[ 1 ], gradient[ 2 ] );
/* increment counts */
numDiffuseLights++;
switch ( ds->surfaceType )
{
case MST_PLANAR:
numBrushDiffuseLights++;
break;
case MST_TRIANGLE_SOUP:
numTriangleDiffuseLights++;
break;
case MST_PATCH:
numPatchDiffuseLights++;
break;
}
/* create a light */
light = safe_malloc( sizeof( *light ) );
memset( light, 0, sizeof( *light ) );
/* attach it */
ThreadLock();
light->next = lights;
lights = light;
ThreadUnlock();
/* initialize the light */
light->flags = LIGHT_AREA_DEFAULT;
light->type = EMIT_AREA;
light->si = si;
light->fade = 1.0f;
light->w = w;
/* set falloff threshold */
light->falloffTolerance = falloffTolerance;
/* bouncing light? */
if ( bouncing == qfalse ) {
/* handle first-pass lights in normal q3a style */
value = si->value;
light->photons = value * area * areaScale;
light->add = value * formFactorValueScale * areaScale;
VectorCopy( si->color, light->color );
VectorScale( light->color, light->add, light->emitColor );
light->style = noStyles ? LS_NORMAL : si->lightStyle;
if ( light->style < LS_NORMAL || light->style >= LS_NONE ) {
light->style = LS_NORMAL;
}
/* set origin */
VectorAdd( mins, maxs, light->origin );
VectorScale( light->origin, 0.5f, light->origin );
/* nudge it off the plane a bit */
VectorCopy( normal, light->normal );
VectorMA( light->origin, 1.0f, light->normal, light->origin );
light->dist = DotProduct( light->origin, normal );
/* optionally create a point splashsplash light for first pass */
if ( original && si->backsplashFraction > 0 ) {
/* allocate a new point light */
splash = safe_malloc( sizeof( *splash ) );
memset( splash, 0, sizeof( *splash ) );
splash->next = lights;
lights = splash;
/* set it up */
splash->flags = LIGHT_Q3A_DEFAULT;
splash->type = EMIT_POINT;
splash->photons = light->photons * si->backsplashFraction;
splash->fade = 1.0f;
splash->si = si;
VectorMA( light->origin, si->backsplashDistance, normal, splash->origin );
VectorCopy( si->color, splash->color );
splash->falloffTolerance = falloffTolerance;
splash->style = noStyles ? LS_NORMAL : light->style;
/* add to counts */
numPointLights++;
}
}
else
{
/* handle bounced light (radiosity) a little differently */
value = RADIOSITY_VALUE * si->bounceScale * 0.375f;
light->photons = value * area * bounceScale;
light->add = value * formFactorValueScale * bounceScale;
VectorCopy( color, light->color );
VectorScale( light->color, light->add, light->emitColor );
light->style = noStyles ? LS_NORMAL : style;
if ( light->style < LS_NORMAL || light->style >= LS_NONE ) {
light->style = LS_NORMAL;
}
/* set origin */
WindingCenter( w, light->origin );
/* nudge it off the plane a bit */
VectorCopy( normal, light->normal );
VectorMA( light->origin, 1.0f, light->normal, light->origin );
light->dist = DotProduct( light->origin, normal );
}
/* emit light from both sides? */
if ( si->compileFlags & C_FOG || si->twoSided ) {
light->flags |= LIGHT_TWOSIDED;
}
//% Sys_Printf( "\nAL: C: (%6f, %6f, %6f) [%6f] N: (%6f, %6f, %6f) %s\n",
//% light->color[ 0 ], light->color[ 1 ], light->color[ 2 ], light->add,
//% light->normal[ 0 ], light->normal[ 1 ], light->normal[ 2 ],
//% light->si->shader );
}
/*
RadLightForTriangles()
creates unbounced diffuse lights for triangle soup (misc_models, etc)
*/
void RadLightForTriangles( int num, int lightmapNum, rawLightmap_t *lm, shaderInfo_t *si, float scale, float subdivide, clipWork_t *cw ){
int i, j, k, v;
bspDrawSurface_t *ds;
surfaceInfo_t *info;
float *radVertexLuxel;
radWinding_t rw;
/* get surface */
ds = &bspDrawSurfaces[ num ];
info = &surfaceInfos[ num ];
/* each triangle is a potential emitter */
rw.numVerts = 3;
for ( i = 0; i < ds->numIndexes; i += 3 )
{
/* copy each vert */
for ( j = 0; j < 3; j++ )
{
/* get vertex index and rad vertex luxel */
v = ds->firstVert + bspDrawIndexes[ ds->firstIndex + i + j ];
/* get most everything */
memcpy( &rw.verts[ j ], &yDrawVerts[ v ], sizeof( bspDrawVert_t ) );
/* fix colors */
for ( k = 0; k < MAX_LIGHTMAPS; k++ )
{
radVertexLuxel = RAD_VERTEX_LUXEL( k, ds->firstVert + bspDrawIndexes[ ds->firstIndex + i + j ] );
VectorCopy( radVertexLuxel, rw.verts[ j ].color[ k ] );
rw.verts[ j ].color[ k ][ 3 ] = yDrawVerts[ v ].color[ k ][ 3 ];
}
}
/* subdivide into area lights */
RadSubdivideDiffuseLight( lightmapNum, ds, lm, si, scale, subdivide, qtrue, &rw, cw );
}
}
/*
RadLightForPatch()
creates unbounced diffuse lights for patches
*/
#define PLANAR_EPSILON 0.1f
void RadLightForPatch( int num, int lightmapNum, rawLightmap_t *lm, shaderInfo_t *si, float scale, float subdivide, clipWork_t *cw ){
int i, x, y, v, t, pw[ 5 ], r;
bspDrawSurface_t *ds;
surfaceInfo_t *info;
bspDrawVert_t *bogus;
bspDrawVert_t *dv[ 4 ];
mesh_t src, *subdivided, *mesh;
float *radVertexLuxel;
float dist;
vec4_t plane;
qboolean planar;
radWinding_t rw;
/* get surface */
ds = &bspDrawSurfaces[ num ];
info = &surfaceInfos[ num ];
/* construct a bogus vert list with color index stuffed into color[ 0 ] */
bogus = safe_malloc( ds->numVerts * sizeof( bspDrawVert_t ) );
memcpy( bogus, &yDrawVerts[ ds->firstVert ], ds->numVerts * sizeof( bspDrawVert_t ) );
for ( i = 0; i < ds->numVerts; i++ )
bogus[ i ].color[ 0 ][ 0 ] = i;
/* build a subdivided mesh identical to shadow facets for this patch */
/* this MUST MATCH FacetsForPatch() identically! */
src.width = ds->patchWidth;
src.height = ds->patchHeight;
src.verts = bogus;
//% subdivided = SubdivideMesh( src, 8, 512 );
subdivided = SubdivideMesh2( src, info->patchIterations );
PutMeshOnCurve( *subdivided );
//% MakeMeshNormals( *subdivided );
mesh = RemoveLinearMeshColumnsRows( subdivided );
FreeMesh( subdivided );
free( bogus );
/* FIXME: build interpolation table into color[ 1 ] */
/* fix up color indexes */
for ( i = 0; i < ( mesh->width * mesh->height ); i++ )
{
dv[ 0 ] = &mesh->verts[ i ];
if ( dv[ 0 ]->color[ 0 ][ 0 ] >= ds->numVerts ) {
dv[ 0 ]->color[ 0 ][ 0 ] = ds->numVerts - 1;
}
}
/* iterate through the mesh quads */
for ( y = 0; y < ( mesh->height - 1 ); y++ )
{
for ( x = 0; x < ( mesh->width - 1 ); x++ )
{
/* set indexes */
pw[ 0 ] = x + ( y * mesh->width );
pw[ 1 ] = x + ( ( y + 1 ) * mesh->width );
pw[ 2 ] = x + 1 + ( ( y + 1 ) * mesh->width );
pw[ 3 ] = x + 1 + ( y * mesh->width );
pw[ 4 ] = x + ( y * mesh->width ); /* same as pw[ 0 ] */
/* set radix */
r = ( x + y ) & 1;
/* get drawverts */
dv[ 0 ] = &mesh->verts[ pw[ r + 0 ] ];
dv[ 1 ] = &mesh->verts[ pw[ r + 1 ] ];
dv[ 2 ] = &mesh->verts[ pw[ r + 2 ] ];
dv[ 3 ] = &mesh->verts[ pw[ r + 3 ] ];
/* planar? */
planar = PlaneFromPoints( plane, dv[ 0 ]->xyz, dv[ 1 ]->xyz, dv[ 2 ]->xyz );
if ( planar ) {
dist = DotProduct( dv[ 1 ]->xyz, plane ) - plane[ 3 ];
if ( fabs( dist ) > PLANAR_EPSILON ) {
planar = qfalse;
}
}
/* generate a quad */
if ( planar ) {
rw.numVerts = 4;
for ( v = 0; v < 4; v++ )
{
/* get most everything */
memcpy( &rw.verts[ v ], dv[ v ], sizeof( bspDrawVert_t ) );
/* fix colors */
for ( i = 0; i < MAX_LIGHTMAPS; i++ )
{
radVertexLuxel = RAD_VERTEX_LUXEL( i, ds->firstVert + dv[ v ]->color[ 0 ][ 0 ] );
VectorCopy( radVertexLuxel, rw.verts[ v ].color[ i ] );
rw.verts[ v ].color[ i ][ 3 ] = dv[ v ]->color[ i ][ 3 ];
}
}
/* subdivide into area lights */
RadSubdivideDiffuseLight( lightmapNum, ds, lm, si, scale, subdivide, qtrue, &rw, cw );
}
/* generate 2 tris */
else
{
rw.numVerts = 3;
for ( t = 0; t < 2; t++ )
{
for ( v = 0; v < 3 + t; v++ )
{
/* get "other" triangle (stupid hacky logic, but whatevah) */
if ( v == 1 && t == 1 ) {
v++;
}
/* get most everything */
memcpy( &rw.verts[ v ], dv[ v ], sizeof( bspDrawVert_t ) );
/* fix colors */
for ( i = 0; i < MAX_LIGHTMAPS; i++ )
{
radVertexLuxel = RAD_VERTEX_LUXEL( i, ds->firstVert + dv[ v ]->color[ 0 ][ 0 ] );
VectorCopy( radVertexLuxel, rw.verts[ v ].color[ i ] );
rw.verts[ v ].color[ i ][ 3 ] = dv[ v ]->color[ i ][ 3 ];
}
}
/* subdivide into area lights */
RadSubdivideDiffuseLight( lightmapNum, ds, lm, si, scale, subdivide, qtrue, &rw, cw );
}
}
}
}
/* free the mesh */
FreeMesh( mesh );
}
/*
RadLight()
creates unbounced diffuse lights for a given surface
*/
void RadLight( int num ){
int lightmapNum;
float scale, subdivide;
int contentFlags, surfaceFlags, compileFlags;
bspDrawSurface_t *ds;
surfaceInfo_t *info;
rawLightmap_t *lm;
shaderInfo_t *si;
clipWork_t cw;
/* get drawsurface, lightmap, and shader info */
ds = &bspDrawSurfaces[ num ];
info = &surfaceInfos[ num ];
lm = info->lm;
si = info->si;
scale = si->bounceScale;
/* find nodraw bit */
contentFlags = surfaceFlags = compileFlags = 0;
ApplySurfaceParm( "nodraw", &contentFlags, &surfaceFlags, &compileFlags );
/* early outs? */
if ( scale <= 0.0f || ( si->compileFlags & C_SKY ) || si->autosprite ||
( bspShaders[ ds->shaderNum ].contentFlags & contentFlags ) || ( bspShaders[ ds->shaderNum ].surfaceFlags & surfaceFlags ) ||
( si->compileFlags & compileFlags ) ) {
return;
}
/* determine how much we need to chop up the surface */
if ( si->lightSubdivide ) {
subdivide = si->lightSubdivide;
}
else{
subdivide = diffuseSubdivide;
}
/* inc counts */
numDiffuseSurfaces++;
/* iterate through styles (this could be more efficient, yes) */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* switch on type */
if ( ds->lightmapStyles[ lightmapNum ] != LS_NONE && ds->lightmapStyles[ lightmapNum ] != LS_UNUSED ) {
switch ( ds->surfaceType )
{
case MST_PLANAR:
case MST_TRIANGLE_SOUP:
RadLightForTriangles( num, lightmapNum, lm, si, scale, subdivide, &cw );
break;
case MST_PATCH:
RadLightForPatch( num, lightmapNum, lm, si, scale, subdivide, &cw );
break;
default:
break;
}
}
}
}
/*
RadCreateDiffuseLights()
creates lights for unbounced light on surfaces in the bsp
*/
int iterations = 0;
void RadCreateDiffuseLights( void ){
/* startup */
Sys_FPrintf( SYS_VRB, "--- RadCreateDiffuseLights ---\n" );
numDiffuseSurfaces = 0;
numDiffuseLights = 0;
numBrushDiffuseLights = 0;
numTriangleDiffuseLights = 0;
numPatchDiffuseLights = 0;
numAreaLights = 0;
/* hit every surface (threaded) */
RunThreadsOnIndividual( numBSPDrawSurfaces, qtrue, RadLight );
/* dump the lights generated to a file */
if ( dump ) {
char dumpName[ 1024 ], ext[ 64 ];
FILE *file;
light_t *light;
Q_strncpyz( dumpName, source, sizeof( dumpName ) );
StripExtension( dumpName );
snprintf( ext, sizeof( ext ), "_bounce_%03d.map", iterations );
strncat( dumpName, ext, sizeof( dumpName ) );
file = fopen( dumpName, "wb" );
Sys_Printf( "Writing %s...\n", dumpName );
if ( file ) {
for ( light = lights; light; light = light->next )
{
fprintf( file,
"{\n"
"\"classname\" \"light\"\n"
"\"light\" \"%d\"\n"
"\"origin\" \"%.0f %.0f %.0f\"\n"
"\"_color\" \"%.3f %.3f %.3f\"\n"
"}\n",
(int) light->add,
light->origin[ 0 ],
light->origin[ 1 ],
light->origin[ 2 ],
light->color[ 0 ],
light->color[ 1 ],
light->color[ 2 ] );
}
fclose( file );
}
}
/* increment */
iterations++;
/* print counts */
Sys_Printf( "%8d diffuse surfaces\n", numDiffuseSurfaces );
Sys_FPrintf( SYS_VRB, "%8d total diffuse lights\n", numDiffuseLights );
Sys_FPrintf( SYS_VRB, "%8d brush diffuse lights\n", numBrushDiffuseLights );
Sys_FPrintf( SYS_VRB, "%8d patch diffuse lights\n", numPatchDiffuseLights );
Sys_FPrintf( SYS_VRB, "%8d triangle diffuse lights\n", numTriangleDiffuseLights );
}