2012-05-28 03:33:41 +00:00
/*
This code is based on source provided under the terms of the Id Software
LIMITED USE SOFTWARE LICENSE AGREEMENT , a copy of which is included with the
GtkRadiant sources ( see LICENSE_ID ) . If you did not receive a copy of
LICENSE_ID , please contact Id Software immediately at info @ idsoftware . com .
All changes and additions to the original source which have been developed by
other contributors ( see CONTRIBUTORS ) are provided under the terms of the
license the contributors choose ( see LICENSE ) , to the extent permitted by the
LICENSE_ID . If you did not receive a copy of the contributor license ,
please contact the GtkRadiant maintainers at info @ gtkradiant . com immediately .
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ` ` AS IS ' '
AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED . IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES
( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT
( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
*/
# ifndef __MATH_VECTOR_H__
# define __MATH_VECTOR_H__
# ifdef WIN32
# pragma warning(disable : 4244)
# endif
# include <math.h>
# include <assert.h>
//#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2])
//#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
//#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
//#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
//#define VectorCopy(a,b) ((b).x=(a).x,(b).y=(a).y,(b).z=(a).z])
//#define VectorScale(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s))
# define __VectorMA( v, s, b, o ) ( ( o )[0] = ( v )[0] + ( b )[0] * ( s ),( o )[1] = ( v )[1] + ( b )[1] * ( s ),( o )[2] = ( v )[2] + ( b )[2] * ( s ) )
//#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
# define DotProduct4( x,y ) ( ( x )[0] * ( y )[0] + ( x )[1] * ( y )[1] + ( x )[2] * ( y )[2] + ( x )[3] * ( y )[3] )
# define VectorSubtract4( a,b,c ) ( ( c )[0] = ( a )[0] - ( b )[0],( c )[1] = ( a )[1] - ( b )[1],( c )[2] = ( a )[2] - ( b )[2],( c )[3] = ( a )[3] - ( b )[3] )
# define VectorAdd4( a,b,c ) ( ( c )[0] = ( a )[0] + ( b )[0],( c )[1] = ( a )[1] + ( b )[1],( c )[2] = ( a )[2] + ( b )[2],( c )[3] = ( a )[3] + ( b )[3] )
# define VectorCopy4( a,b ) ( ( b )[0] = ( a )[0],( b )[1] = ( a )[1],( b )[2] = ( a )[2],( b )[3] = ( a )[3] )
# define VectorScale4( v, s, o ) ( ( o )[0] = ( v )[0] * ( s ),( o )[1] = ( v )[1] * ( s ),( o )[2] = ( v )[2] * ( s ),( o )[3] = ( v )[3] * ( s ) )
# define VectorMA4( v, s, b, o ) ( ( o )[0] = ( v )[0] + ( b )[0] * ( s ),( o )[1] = ( v )[1] + ( b )[1] * ( s ),( o )[2] = ( v )[2] + ( b )[2] * ( s ),( o )[3] = ( v )[3] + ( b )[3] * ( s ) )
//#define VectorClear(a) ((a)[0]=(a)[1]=(a)[2]=0)
# define VectorNegate( a,b ) ( ( b )[0] = -( a )[0],( b )[1] = -( a )[1],( b )[2] = -( a )[2] )
//#define VectorSet(v, x, y, z) ((v)[0]=(x), (v)[1]=(y), (v)[2]=(z))
# define Vector4Copy( a,b ) ( ( b )[0] = ( a )[0],( b )[1] = ( a )[1],( b )[2] = ( a )[2],( b )[3] = ( a )[3] )
# define SnapVector( v ) {v[0] = (int)v[0]; v[1] = (int)v[1]; v[2] = (int)v[2]; }
//#include "util_heap.h"
# ifndef EQUAL_EPSILON
# define EQUAL_EPSILON 0.001
# endif
float Q_fabs ( float f ) ;
# ifndef ID_INLINE
# ifdef _WIN32
# define ID_INLINE __inline
# else
# define ID_INLINE inline
# endif
# endif
// if this is defined, vec3 will take four elements, which may allow
// easier SIMD optimizations
//#define FAT_VEC3
//#ifdef __ppc__
//#pragma align(16)
//#endif
class angles_t ;
# ifdef __ppc__
// Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction,
// runs *much* faster than calling sqrt(). We'll use two Newton-Raphson
// refinement steps to get bunch more precision in the 1/sqrt() value for very little cost.
// We'll then multiply 1/sqrt times the original value to get the sqrt.
// This is about 12.4 times faster than sqrt() and according to my testing (not exhaustive)
// it returns fairly accurate results (error below 1.0e-5 up to 100000.0 in 0.1 increments).
static inline float idSqrt ( float x ) {
const float half = 0.5 ;
const float one = 1.0 ;
float B , y0 , y1 ;
// This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0
if ( fabs ( x ) = = 0.0 ) {
return x ;
}
B = x ;
# ifdef __GNUC__
asm ( " frsqrte %0,%1 " : " =f " ( y0 ) : " f " ( B ) ) ;
# else
y0 = __frsqrte ( B ) ;
# endif
/* First refinement step */
y1 = y0 + half * y0 * ( one - B * y0 * y0 ) ;
/* Second refinement step -- copy the output of the last step to the input of this step */
y0 = y1 ;
y1 = y0 + half * y0 * ( one - B * y0 * y0 ) ;
/* Get sqrt(x) from x * 1/sqrt(x) */
return x * y1 ;
}
# else
static inline double idSqrt ( double x ) {
return sqrt ( x ) ;
}
# endif
//class idVec3 : public idHeap<idVec3> {
class idVec3 {
public :
# ifndef FAT_VEC3
float x , y , z ;
# else
float x , y , z , dist ;
# endif
# ifndef FAT_VEC3
idVec3 ( ) { } ;
# else
idVec3 ( ) { dist = 0.0f ; } ;
# endif
idVec3 ( const float x , const float y , const float z ) ;
operator float * ( ) ;
float operator [ ] ( const int index ) const ;
float & operator [ ] ( const int index ) ;
void set ( const float x , const float y , const float z ) ;
idVec3 operator - ( ) const ;
idVec3 & operator = ( const idVec3 & a ) ;
float operator * ( const idVec3 & a ) const ;
idVec3 operator * ( const float a ) const ;
friend idVec3 operator * ( float a , idVec3 b ) ;
idVec3 operator + ( const idVec3 & a ) const ;
idVec3 operator - ( const idVec3 & a ) const ;
idVec3 & operator + = ( const idVec3 & a ) ;
idVec3 & operator - = ( const idVec3 & a ) ;
idVec3 & operator * = ( const float a ) ;
int operator = = ( const idVec3 & a ) const ;
int operator ! = ( const idVec3 & a ) const ;
idVec3 Cross ( const idVec3 & a ) const ;
idVec3 & Cross ( const idVec3 & a , const idVec3 & b ) ;
float Length ( void ) const ;
float Normalize ( void ) ;
void Zero ( void ) ;
void Snap ( void ) ;
void SnapTowards ( const idVec3 & to ) ;
float toYaw ( void ) ;
float toPitch ( void ) ;
angles_t toAngles ( void ) ;
friend idVec3 LerpVector ( const idVec3 & w1 , const idVec3 & w2 , const float t ) ;
char * string ( void ) ;
} ;
extern idVec3 vec_zero ;
ID_INLINE idVec3 : : idVec3 ( const float x , const float y , const float z ) {
this - > x = x ;
this - > y = y ;
this - > z = z ;
# ifdef FAT_VEC3
this - > dist = 0.0f ;
# endif
}
ID_INLINE float idVec3 : : operator [ ] ( const int index ) const {
return ( & x ) [ index ] ;
}
ID_INLINE float & idVec3 : : operator [ ] ( const int index ) {
return ( & x ) [ index ] ;
}
ID_INLINE idVec3 : : operator float * ( void ) {
return & x ;
}
ID_INLINE idVec3 idVec3 : : operator - ( ) const {
return idVec3 ( - x , - y , - z ) ;
}
ID_INLINE idVec3 & idVec3 : : operator = ( const idVec3 & a ) {
x = a . x ;
y = a . y ;
z = a . z ;
return * this ;
}
ID_INLINE void idVec3 : : set ( const float x , const float y , const float z ) {
this - > x = x ;
this - > y = y ;
this - > z = z ;
}
ID_INLINE idVec3 idVec3 : : operator - ( const idVec3 & a ) const {
return idVec3 ( x - a . x , y - a . y , z - a . z ) ;
}
ID_INLINE float idVec3 : : operator * ( const idVec3 & a ) const {
return x * a . x + y * a . y + z * a . z ;
}
ID_INLINE idVec3 idVec3 : : operator * ( const float a ) const {
return idVec3 ( x * a , y * a , z * a ) ;
}
ID_INLINE idVec3 operator * ( const float a , const idVec3 b ) {
return idVec3 ( b . x * a , b . y * a , b . z * a ) ;
}
ID_INLINE idVec3 idVec3 : : operator + ( const idVec3 & a ) const {
return idVec3 ( x + a . x , y + a . y , z + a . z ) ;
}
ID_INLINE idVec3 & idVec3 : : operator + = ( const idVec3 & a ) {
x + = a . x ;
y + = a . y ;
z + = a . z ;
return * this ;
}
ID_INLINE idVec3 & idVec3 : : operator - = ( const idVec3 & a ) {
x - = a . x ;
y - = a . y ;
z - = a . z ;
return * this ;
}
ID_INLINE idVec3 & idVec3 : : operator * = ( const float a ) {
x * = a ;
y * = a ;
z * = a ;
return * this ;
}
ID_INLINE int idVec3 : : operator = = ( const idVec3 & a ) const {
if ( Q_fabs ( x - a . x ) > EQUAL_EPSILON ) {
return false ;
}
if ( Q_fabs ( y - a . y ) > EQUAL_EPSILON ) {
return false ;
}
if ( Q_fabs ( z - a . z ) > EQUAL_EPSILON ) {
return false ;
}
return true ;
}
ID_INLINE int idVec3 : : operator ! = ( const idVec3 & a ) const {
if ( Q_fabs ( x - a . x ) > EQUAL_EPSILON ) {
return true ;
}
if ( Q_fabs ( y - a . y ) > EQUAL_EPSILON ) {
return true ;
}
if ( Q_fabs ( z - a . z ) > EQUAL_EPSILON ) {
return true ;
}
return false ;
}
ID_INLINE idVec3 idVec3 : : Cross ( const idVec3 & a ) const {
return idVec3 ( y * a . z - z * a . y , z * a . x - x * a . z , x * a . y - y * a . x ) ;
}
ID_INLINE idVec3 & idVec3 : : Cross ( const idVec3 & a , const idVec3 & b ) {
x = a . y * b . z - a . z * b . y ;
y = a . z * b . x - a . x * b . z ;
z = a . x * b . y - a . y * b . x ;
return * this ;
}
ID_INLINE float idVec3 : : Length ( void ) const {
float length ;
length = x * x + y * y + z * z ;
return ( float ) idSqrt ( length ) ;
}
ID_INLINE float idVec3 : : Normalize ( void ) {
float length ;
float ilength ;
length = this - > Length ( ) ;
if ( length ) {
ilength = 1.0f / length ;
x * = ilength ;
y * = ilength ;
z * = ilength ;
}
return length ;
}
ID_INLINE void idVec3 : : Zero ( void ) {
x = 0.0f ;
y = 0.0f ;
z = 0.0f ;
}
ID_INLINE void idVec3 : : Snap ( void ) {
x = float ( int ( x ) ) ;
y = float ( int ( y ) ) ;
z = float ( int ( z ) ) ;
}
/*
= = = = = = = = = = = = = = = = = = = = = =
SnapTowards
Round a vector to integers for more efficient network
transmission , but make sure that it rounds towards a given point
rather than blindly truncating . This prevents it from truncating
into a wall .
= = = = = = = = = = = = = = = = = = = = = =
*/
ID_INLINE void idVec3 : : SnapTowards ( const idVec3 & to ) {
if ( to . x < = x ) {
x = float ( int ( x ) ) ;
}
else {
x = float ( int ( x ) + 1 ) ;
}
if ( to . y < = y ) {
y = float ( int ( y ) ) ;
}
else {
y = float ( int ( y ) + 1 ) ;
}
if ( to . z < = z ) {
z = float ( int ( z ) ) ;
}
else {
z = float ( int ( z ) + 1 ) ;
}
}
//===============================================================
class Bounds {
public :
idVec3 b [ 2 ] ;
Bounds ( ) ;
Bounds ( const idVec3 & mins , const idVec3 & maxs ) ;
void Clear ( ) ;
void Zero ( ) ;
float Radius ( ) ; // radius from origin, not from center
idVec3 Center ( ) ;
void AddPoint ( const idVec3 & v ) ;
void AddBounds ( const Bounds & bb ) ;
bool IsCleared ( ) ;
bool ContainsPoint ( const idVec3 & p ) ;
bool IntersectsBounds ( const Bounds & b2 ) ; // touching is NOT intersecting
} ;
extern Bounds boundsZero ;
ID_INLINE Bounds : : Bounds ( ) {
}
ID_INLINE bool Bounds : : IsCleared ( ) {
return b [ 0 ] [ 0 ] > b [ 1 ] [ 0 ] ;
}
ID_INLINE bool Bounds : : ContainsPoint ( const idVec3 & p ) {
if ( p [ 0 ] < b [ 0 ] [ 0 ] | | p [ 1 ] < b [ 0 ] [ 1 ] | | p [ 2 ] < b [ 0 ] [ 2 ]
| | p [ 0 ] > b [ 1 ] [ 0 ] | | p [ 1 ] > b [ 1 ] [ 1 ] | | p [ 2 ] > b [ 1 ] [ 2 ] ) {
return false ;
}
return true ;
}
ID_INLINE bool Bounds : : IntersectsBounds ( const Bounds & b2 ) {
if ( b2 . b [ 1 ] [ 0 ] < b [ 0 ] [ 0 ] | | b2 . b [ 1 ] [ 1 ] < b [ 0 ] [ 1 ] | | b2 . b [ 1 ] [ 2 ] < b [ 0 ] [ 2 ]
| | b2 . b [ 0 ] [ 0 ] > b [ 1 ] [ 0 ] | | b2 . b [ 0 ] [ 1 ] > b [ 1 ] [ 1 ] | | b2 . b [ 0 ] [ 2 ] > b [ 1 ] [ 2 ] ) {
return false ;
}
return true ;
}
ID_INLINE Bounds : : Bounds ( const idVec3 & mins , const idVec3 & maxs ) {
b [ 0 ] = mins ;
b [ 1 ] = maxs ;
}
ID_INLINE idVec3 Bounds : : Center ( ) {
return idVec3 ( ( b [ 1 ] [ 0 ] + b [ 0 ] [ 0 ] ) * 0.5f , ( b [ 1 ] [ 1 ] + b [ 0 ] [ 1 ] ) * 0.5f , ( b [ 1 ] [ 2 ] + b [ 0 ] [ 2 ] ) * 0.5f ) ;
}
ID_INLINE void Bounds : : Clear ( ) {
b [ 0 ] [ 0 ] = b [ 0 ] [ 1 ] = b [ 0 ] [ 2 ] = 99999 ;
b [ 1 ] [ 0 ] = b [ 1 ] [ 1 ] = b [ 1 ] [ 2 ] = - 99999 ;
}
ID_INLINE void Bounds : : Zero ( ) {
b [ 0 ] [ 0 ] = b [ 0 ] [ 1 ] = b [ 0 ] [ 2 ] =
b [ 1 ] [ 0 ] = b [ 1 ] [ 1 ] = b [ 1 ] [ 2 ] = 0 ;
}
ID_INLINE void Bounds : : AddPoint ( const idVec3 & v ) {
if ( v [ 0 ] < b [ 0 ] [ 0 ] ) {
b [ 0 ] [ 0 ] = v [ 0 ] ;
}
if ( v [ 0 ] > b [ 1 ] [ 0 ] ) {
b [ 1 ] [ 0 ] = v [ 0 ] ;
}
if ( v [ 1 ] < b [ 0 ] [ 1 ] ) {
b [ 0 ] [ 1 ] = v [ 1 ] ;
}
if ( v [ 1 ] > b [ 1 ] [ 1 ] ) {
b [ 1 ] [ 1 ] = v [ 1 ] ;
}
if ( v [ 2 ] < b [ 0 ] [ 2 ] ) {
b [ 0 ] [ 2 ] = v [ 2 ] ;
}
if ( v [ 2 ] > b [ 1 ] [ 2 ] ) {
b [ 1 ] [ 2 ] = v [ 2 ] ;
}
}
ID_INLINE void Bounds : : AddBounds ( const Bounds & bb ) {
if ( bb . b [ 0 ] [ 0 ] < b [ 0 ] [ 0 ] ) {
b [ 0 ] [ 0 ] = bb . b [ 0 ] [ 0 ] ;
}
if ( bb . b [ 0 ] [ 1 ] < b [ 0 ] [ 1 ] ) {
b [ 0 ] [ 1 ] = bb . b [ 0 ] [ 1 ] ;
}
if ( bb . b [ 0 ] [ 2 ] < b [ 0 ] [ 2 ] ) {
b [ 0 ] [ 2 ] = bb . b [ 0 ] [ 2 ] ;
}
if ( bb . b [ 1 ] [ 0 ] > b [ 1 ] [ 0 ] ) {
b [ 1 ] [ 0 ] = bb . b [ 1 ] [ 0 ] ;
}
if ( bb . b [ 1 ] [ 1 ] > b [ 1 ] [ 1 ] ) {
b [ 1 ] [ 1 ] = bb . b [ 1 ] [ 1 ] ;
}
if ( bb . b [ 1 ] [ 2 ] > b [ 1 ] [ 2 ] ) {
b [ 1 ] [ 2 ] = bb . b [ 1 ] [ 2 ] ;
}
}
ID_INLINE float Bounds : : Radius ( ) {
int i ;
float total ;
float a , aa ;
total = 0 ;
for ( i = 0 ; i < 3 ; i + + ) {
a = ( float ) fabs ( b [ 0 ] [ i ] ) ;
aa = ( float ) fabs ( b [ 1 ] [ i ] ) ;
if ( aa > a ) {
a = aa ;
}
total + = a * a ;
}
return ( float ) idSqrt ( total ) ;
}
//===============================================================
class idVec2 {
public :
float x ;
float y ;
operator float * ( ) ;
float operator [ ] ( int index ) const ;
float & operator [ ] ( int index ) ;
} ;
ID_INLINE float idVec2 : : operator [ ] ( int index ) const {
return ( & x ) [ index ] ;
}
ID_INLINE float & idVec2 : : operator [ ] ( int index ) {
return ( & x ) [ index ] ;
}
ID_INLINE idVec2 : : operator float * ( void ) {
return & x ;
}
class idVec4 : public idVec3 {
public :
# ifndef FAT_VEC3
float dist ;
# endif
idVec4 ( ) ;
~ idVec4 ( ) { } ;
idVec4 ( float x , float y , float z , float dist ) ;
float operator [ ] ( int index ) const ;
float & operator [ ] ( int index ) ;
} ;
ID_INLINE idVec4 : : idVec4 ( ) { }
ID_INLINE idVec4 : : idVec4 ( float x , float y , float z , float dist ) {
this - > x = x ;
this - > y = y ;
this - > z = z ;
this - > dist = dist ;
}
ID_INLINE float idVec4 : : operator [ ] ( int index ) const {
return ( & x ) [ index ] ;
}
ID_INLINE float & idVec4 : : operator [ ] ( int index ) {
return ( & x ) [ index ] ;
}
class idVec5_t : public idVec3 {
public :
float s ;
float t ;
float operator [ ] ( int index ) const ;
float & operator [ ] ( int index ) ;
} ;
ID_INLINE float idVec5_t : : operator [ ] ( int index ) const {
return ( & x ) [ index ] ;
}
ID_INLINE float & idVec5_t : : operator [ ] ( int index ) {
return ( & x ) [ index ] ;
}
# endif /* !__MATH_VECTOR_H__ */