gtkradiant/tools/quake2/qdata/video.c

1267 lines
24 KiB
C
Raw Normal View History

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "qdata.h"
#include "inout.h"
byte *soundtrack;
char base[32];
/*
===============================================================================
WAV loading
===============================================================================
*/
typedef struct
{
int rate;
int width;
int channels;
int loopstart;
int samples;
int dataofs; // chunk starts this many bytes from file start
} wavinfo_t;
byte *data_p;
byte *iff_end;
byte *last_chunk;
byte *iff_data;
int iff_chunk_len;
int samplecounts[0x10000];
wavinfo_t wavinfo;
short GetLittleShort( void ){
short val = 0;
val = *data_p;
val = val + ( *( data_p + 1 ) << 8 );
data_p += 2;
return val;
}
int GetLittleLong( void ){
int val = 0;
val = *data_p;
val = val + ( *( data_p + 1 ) << 8 );
val = val + ( *( data_p + 2 ) << 16 );
val = val + ( *( data_p + 3 ) << 24 );
data_p += 4;
return val;
}
void FindNextChunk( char *name ){
while ( 1 )
{
data_p = last_chunk;
if ( data_p >= iff_end ) { // didn't find the chunk
data_p = NULL;
return;
}
data_p += 4;
iff_chunk_len = GetLittleLong();
if ( iff_chunk_len < 0 ) {
data_p = NULL;
return;
}
// if (iff_chunk_len > 1024*1024)
// Sys_Error ("FindNextChunk: %i length is past the 1 meg sanity limit", iff_chunk_len);
data_p -= 8;
last_chunk = data_p + 8 + ( ( iff_chunk_len + 1 ) & ~1 );
if ( !strncmp( data_p, name, 4 ) ) {
return;
}
}
}
void FindChunk( char *name ){
last_chunk = iff_data;
FindNextChunk( name );
}
void DumpChunks( void ){
char str[5];
str[4] = 0;
data_p = iff_data;
do
{
memcpy( str, data_p, 4 );
data_p += 4;
iff_chunk_len = GetLittleLong();
printf( "0x%x : %s (%d)\n", (int)( data_p - 4 ), str, iff_chunk_len );
data_p += ( iff_chunk_len + 1 ) & ~1;
} while ( data_p < iff_end );
}
/*
============
GetWavinfo
============
*/
wavinfo_t GetWavinfo( char *name, byte *wav, int wavlength ){
wavinfo_t info;
int i;
int format;
int samples;
memset( &info, 0, sizeof( info ) );
if ( !wav ) {
return info;
}
iff_data = wav;
iff_end = wav + wavlength;
// find "RIFF" chunk
FindChunk( "RIFF" );
if ( !( data_p && !strncmp( data_p + 8, "WAVE", 4 ) ) ) {
printf( "Missing RIFF/WAVE chunks\n" );
return info;
}
// get "fmt " chunk
iff_data = data_p + 12;
// DumpChunks ();
FindChunk( "fmt " );
if ( !data_p ) {
printf( "Missing fmt chunk\n" );
return info;
}
data_p += 8;
format = GetLittleShort();
if ( format != 1 ) {
printf( "Microsoft PCM format only\n" );
return info;
}
info.channels = GetLittleShort();
info.rate = GetLittleLong();
data_p += 4 + 2;
info.width = GetLittleShort() / 8;
// get cue chunk
FindChunk( "cue " );
if ( data_p ) {
data_p += 32;
info.loopstart = GetLittleLong();
// Com_Printf("loopstart=%d\n", sfx->loopstart);
// if the next chunk is a LIST chunk, look for a cue length marker
FindNextChunk( "LIST" );
if ( data_p ) {
if ( !strncmp( data_p + 28, "mark", 4 ) ) { // this is not a proper parse, but it works with cooledit...
data_p += 24;
i = GetLittleLong(); // samples in loop
info.samples = info.loopstart + i;
}
}
}
else{
info.loopstart = -1;
}
// find data chunk
FindChunk( "data" );
if ( !data_p ) {
printf( "Missing data chunk\n" );
return info;
}
data_p += 4;
samples = GetLittleLong();
if ( info.samples ) {
if ( samples < info.samples ) {
Error( "Sound %s has a bad loop length", name );
}
}
else{
info.samples = samples;
}
info.dataofs = data_p - wav;
return info;
}
//=====================================================================
/*
==============
LoadSoundtrack
==============
*/
void LoadSoundtrack( void ){
char name[1024];
FILE *f;
int len;
int i, val, j;
soundtrack = NULL;
sprintf( name, "%svideo/%s/%s.wav", gamedir, base, base );
printf( "%s\n", name );
f = fopen( name, "rb" );
if ( !f ) {
printf( "no soundtrack for %s\n", base );
return;
}
len = Q_filelength( f );
soundtrack = malloc( len );
fread( soundtrack, 1, len, f );
fclose( f );
wavinfo = GetWavinfo( name, soundtrack, len );
// count samples for compression
memset( samplecounts, 0, sizeof( samplecounts ) );
j = wavinfo.samples / 2;
for ( i = 0 ; i < j ; i++ )
{
val = ( (unsigned short *)( soundtrack + wavinfo.dataofs ) )[i];
samplecounts[val]++;
}
val = 0;
for ( i = 0 ; i < 0x10000 ; i++ )
if ( samplecounts[i] ) {
val++;
}
printf( "%i unique sample values\n", val );
}
/*
==================
WriteSound
==================
*/
void WriteSound( FILE *output, int frame ){
int start, end;
int count;
int empty = 0;
int i;
int sample;
int width;
width = wavinfo.width * wavinfo.channels;
start = frame * wavinfo.rate / 14;
end = ( frame + 1 ) * wavinfo.rate / 14;
count = end - start;
for ( i = 0 ; i < count ; i++ )
{
sample = start + i;
if ( sample > wavinfo.samples || !soundtrack ) {
fwrite( &empty, 1, width, output );
}
else{
fwrite( soundtrack + wavinfo.dataofs + sample * width, 1, width,output );
}
}
}
//==========================================================================
/*
==================
MTF
==================
*/
cblock_t MTF( cblock_t in ){
int i, j, b, code;
byte *out_p;
int index[256];
cblock_t out;
out_p = out.data = malloc( in.count + 4 );
// write count
*out_p++ = in.count & 255;
*out_p++ = ( in.count >> 8 ) & 255;
*out_p++ = ( in.count >> 16 ) & 255;
*out_p++ = ( in.count >> 24 ) & 255;
for ( i = 0 ; i < 256 ; i++ )
index[i] = i;
for ( i = 0 ; i < in.count ; i++ )
{
b = in.data[i];
code = index[b];
*out_p++ = code;
// shuffle b indexes to 0
for ( j = 0 ; j < 256 ; j++ )
if ( index[j] < code ) {
index[j]++;
}
index[b] = 0;
}
out.count = out_p - out.data;
return out;
}
//==========================================================================
int bwt_size;
byte *bwt_data;
int bwtCompare( const void *elem1, const void *elem2 ){
int i;
int i1, i2;
int b1, b2;
i1 = *(int *)elem1;
i2 = *(int *)elem2;
for ( i = 0 ; i < bwt_size ; i++ )
{
b1 = bwt_data[i1];
b2 = bwt_data[i2];
if ( b1 < b2 ) {
return -1;
}
if ( b1 > b2 ) {
return 1;
}
if ( ++i1 == bwt_size ) {
i1 = 0;
}
if ( ++i2 == bwt_size ) {
i2 = 0;
}
}
return 0;
}
/*
==================
BWT
==================
*/
cblock_t BWT( cblock_t in ){
int *sorted;
int i;
byte *out_p;
cblock_t out;
bwt_size = in.count;
bwt_data = in.data;
sorted = malloc( in.count * sizeof( *sorted ) );
for ( i = 0 ; i < in.count ; i++ )
sorted[i] = i;
qsort( sorted, in.count, sizeof( *sorted ), bwtCompare );
out_p = out.data = malloc( in.count + 8 );
// write count
*out_p++ = in.count & 255;
*out_p++ = ( in.count >> 8 ) & 255;
*out_p++ = ( in.count >> 16 ) & 255;
*out_p++ = ( in.count >> 24 ) & 255;
// write head index
for ( i = 0 ; i < in.count ; i++ )
if ( sorted[i] == 0 ) {
break;
}
*out_p++ = i & 255;
*out_p++ = ( i >> 8 ) & 255;
*out_p++ = ( i >> 16 ) & 255;
*out_p++ = ( i >> 24 ) & 255;
// write the L column
for ( i = 0 ; i < in.count ; i++ )
*out_p++ = in.data[( sorted[i] + in.count - 1 ) % in.count];
free( sorted );
out.count = out_p - out.data;
return out;
}
//==========================================================================
typedef struct hnode_s
{
int count;
qboolean used;
int children[2];
} hnode_t;
int numhnodes;
hnode_t hnodes[512];
unsigned charbits[256];
int charbitscount[256];
int SmallestNode( void ){
int i;
int best, bestnode;
best = 99999999;
bestnode = -1;
for ( i = 0 ; i < numhnodes ; i++ )
{
if ( hnodes[i].used ) {
continue;
}
if ( !hnodes[i].count ) {
continue;
}
if ( hnodes[i].count < best ) {
best = hnodes[i].count;
bestnode = i;
}
}
if ( bestnode == -1 ) {
return -1;
}
hnodes[bestnode].used = true;
return bestnode;
}
void BuildChars( int nodenum, unsigned bits, int bitcount ){
hnode_t *node;
if ( nodenum < 256 ) {
if ( bitcount > 32 ) {
Error( "bitcount > 32" );
}
charbits[nodenum] = bits;
charbitscount[nodenum] = bitcount;
return;
}
node = &hnodes[nodenum];
bits <<= 1;
BuildChars( node->children[0], bits, bitcount + 1 );
bits |= 1;
BuildChars( node->children[1], bits, bitcount + 1 );
}
/*
==================
Huffman
==================
*/
cblock_t Huffman( cblock_t in ){
int i;
hnode_t *node;
int outbits, c;
unsigned bits;
byte *out_p;
cblock_t out;
int max, maxchar;
// count
memset( hnodes, 0, sizeof( hnodes ) );
for ( i = 0 ; i < in.count ; i++ )
hnodes[in.data[i]].count++;
// normalize counts
max = 0;
maxchar = 0;
for ( i = 0 ; i < 256 ; i++ )
{
if ( hnodes[i].count > max ) {
max = hnodes[i].count;
maxchar = i;
}
}
if ( max == 0 ) {
Error( "Huffman: max == 0" );
}
for ( i = 0 ; i < 256 ; i++ )
{
hnodes[i].count = ( hnodes[i].count * 255 + max - 1 ) / max;
}
// build the nodes
numhnodes = 256;
while ( numhnodes != 511 )
{
node = &hnodes[numhnodes];
// pick two lowest counts
node->children[0] = SmallestNode();
if ( node->children[0] == -1 ) {
break; // no more
}
node->children[1] = SmallestNode();
if ( node->children[1] == -1 ) {
if ( node->children[0] != numhnodes - 1 ) {
Error( "Bad smallestnode" );
}
break;
}
node->count = hnodes[node->children[0]].count +
hnodes[node->children[1]].count;
numhnodes++;
}
BuildChars( numhnodes - 1, 0, 0 );
out_p = out.data = malloc( in.count * 2 + 1024 );
memset( out_p, 0, in.count * 2 + 1024 );
// write count
*out_p++ = in.count & 255;
*out_p++ = ( in.count >> 8 ) & 255;
*out_p++ = ( in.count >> 16 ) & 255;
*out_p++ = ( in.count >> 24 ) & 255;
// save out the 256 normalized counts so the tree can be recreated
for ( i = 0 ; i < 256 ; i++ )
*out_p++ = hnodes[i].count;
// write bits
outbits = 0;
for ( i = 0 ; i < in.count ; i++ )
{
c = charbitscount[in.data[i]];
bits = charbits[in.data[i]];
while ( c )
{
c--;
if ( bits & ( 1 << c ) ) {
out_p[outbits >> 3] |= 1 << ( outbits & 7 );
}
outbits++;
}
}
out_p += ( outbits + 7 ) >> 3;
out.count = out_p - out.data;
return out;
}
//==========================================================================
/*
==================
RLE
==================
*/
#define RLE_CODE 0xe8
#define RLE_TRIPPLE 0xe9
int rle_counts[256];
int rle_bytes[256];
cblock_t RLE( cblock_t in ){
int i;
byte *out_p;
int val;
int repeat;
cblock_t out;
out_p = out.data = malloc( in.count * 2 );
// write count
*out_p++ = in.count & 255;
*out_p++ = ( in.count >> 8 ) & 255;
*out_p++ = ( in.count >> 16 ) & 255;
*out_p++ = ( in.count >> 24 ) & 255;
for ( i = 0 ; i < in.count ; )
{
val = in.data[i];
rle_bytes[val]++;
repeat = 1;
i++;
while ( i < in.count && repeat < 255 && in.data[i] == val )
{
repeat++;
i++;
}
if ( repeat < 256 ) {
rle_counts[repeat]++;
}
if ( repeat > 3 || val == RLE_CODE ) {
*out_p++ = RLE_CODE;
*out_p++ = val;
*out_p++ = repeat;
}
else
{
while ( repeat-- )
*out_p++ = val;
}
}
out.count = out_p - out.data;
return out;
}
//==========================================================================
unsigned lzss_head[256];
unsigned lzss_next[0x20000];
/*
==================
LZSS
==================
*/
#define BACK_WINDOW 0x10000
#define BACK_BITS 16
#define FRONT_WINDOW 16
#define FRONT_BITS 4
cblock_t LZSS( cblock_t in ){
int i;
byte *out_p;
cblock_t out;
int val;
int j, start, max;
int bestlength, beststart;
int outbits;
if ( in.count >= sizeof( lzss_next ) / 4 ) {
Error( "LZSS: too big" );
}
memset( lzss_head, -1, sizeof( lzss_head ) );
out_p = out.data = malloc( in.count * 2 );
memset( out.data, 0, in.count * 2 );
// write count
*out_p++ = in.count & 255;
*out_p++ = ( in.count >> 8 ) & 255;
*out_p++ = ( in.count >> 16 ) & 255;
*out_p++ = ( in.count >> 24 ) & 255;
outbits = 0;
for ( i = 0 ; i < in.count ; )
{
val = in.data[i];
#if 1
// chained search
bestlength = 0;
beststart = 0;
max = FRONT_WINDOW;
if ( i + max > in.count ) {
max = in.count - i;
}
start = lzss_head[val];
while ( start != -1 && start >= i - BACK_WINDOW )
{
// count match length
for ( j = 0 ; j < max ; j++ )
if ( in.data[start + j] != in.data[i + j] ) {
break;
}
if ( j > bestlength ) {
bestlength = j;
beststart = start;
}
start = lzss_next[start];
}
#else
// slow simple search
// search for a match
max = FRONT_WINDOW;
if ( i + max > in.count ) {
max = in.count - i;
}
start = i - BACK_WINDOW;
if ( start < 0 ) {
start = 0;
}
bestlength = 0;
beststart = 0;
for ( ; start < i ; start++ )
{
if ( in.data[start] != val ) {
continue;
}
// count match length
for ( j = 0 ; j < max ; j++ )
if ( in.data[start + j] != in.data[i + j] ) {
break;
}
if ( j > bestlength ) {
bestlength = j;
beststart = start;
}
}
#endif
beststart = BACK_WINDOW - ( i - beststart );
if ( bestlength < 3 ) { // output a single char
bestlength = 1;
out_p[outbits >> 3] |= 1 << ( outbits & 7 ); // set bit to mark char
outbits++;
for ( j = 0 ; j < 8 ; j++, outbits++ )
if ( val & ( 1 << j ) ) {
out_p[outbits >> 3] |= 1 << ( outbits & 7 );
}
}
else
{ // output a phrase
outbits++; // leave a 0 bit to mark phrase
for ( j = 0 ; j < BACK_BITS ; j++, outbits++ )
if ( beststart & ( 1 << j ) ) {
out_p[outbits >> 3] |= 1 << ( outbits & 7 );
}
for ( j = 0 ; j < FRONT_BITS ; j++, outbits++ )
if ( bestlength & ( 1 << j ) ) {
out_p[outbits >> 3] |= 1 << ( outbits & 7 );
}
}
while ( bestlength-- )
{
val = in.data[i];
lzss_next[i] = lzss_head[val];
lzss_head[val] = i;
i++;
}
}
out_p += ( outbits + 7 ) >> 3;
out.count = out_p - out.data;
return out;
}
//==========================================================================
#define MIN_REPT 15
#define MAX_REPT 0
#define HUF_TOKENS ( 256 + MAX_REPT )
unsigned charbits1[256][HUF_TOKENS];
int charbitscount1[256][HUF_TOKENS];
hnode_t hnodes1[256][HUF_TOKENS * 2];
int numhnodes1[256];
int order0counts[256];
/*
==================
SmallestNode1
==================
*/
int SmallestNode1( hnode_t *hnodes, int numhnodes ){
int i;
int best, bestnode;
best = 99999999;
bestnode = -1;
for ( i = 0 ; i < numhnodes ; i++ )
{
if ( hnodes[i].used ) {
continue;
}
if ( !hnodes[i].count ) {
continue;
}
if ( hnodes[i].count < best ) {
best = hnodes[i].count;
bestnode = i;
}
}
if ( bestnode == -1 ) {
return -1;
}
hnodes[bestnode].used = true;
return bestnode;
}
/*
==================
BuildChars1
==================
*/
void BuildChars1( int prev, int nodenum, unsigned bits, int bitcount ){
hnode_t *node;
if ( nodenum < HUF_TOKENS ) {
if ( bitcount > 32 ) {
Error( "bitcount > 32" );
}
charbits1[prev][nodenum] = bits;
charbitscount1[prev][nodenum] = bitcount;
return;
}
node = &hnodes1[prev][nodenum];
bits <<= 1;
BuildChars1( prev, node->children[0], bits, bitcount + 1 );
bits |= 1;
BuildChars1( prev, node->children[1], bits, bitcount + 1 );
}
/*
==================
BuildTree1
==================
*/
void BuildTree1( int prev ){
hnode_t *node, *nodebase;
int numhnodes;
// build the nodes
numhnodes = HUF_TOKENS;
nodebase = hnodes1[prev];
while ( 1 )
{
node = &nodebase[numhnodes];
// pick two lowest counts
node->children[0] = SmallestNode1( nodebase, numhnodes );
if ( node->children[0] == -1 ) {
break; // no more
}
node->children[1] = SmallestNode1( nodebase, numhnodes );
if ( node->children[1] == -1 ) {
break;
}
node->count = nodebase[node->children[0]].count +
nodebase[node->children[1]].count;
numhnodes++;
}
numhnodes1[prev] = numhnodes - 1;
BuildChars1( prev, numhnodes - 1, 0, 0 );
}
/*
==================
Huffman1_Count
==================
*/
void Huffman1_Count( cblock_t in ){
int i;
int prev;
int v;
int rept;
prev = 0;
for ( i = 0 ; i < in.count ; i++ )
{
v = in.data[i];
order0counts[v]++;
hnodes1[prev][v].count++;
prev = v;
#if 1
for ( rept = 1 ; i + rept < in.count && rept < MAX_REPT ; rept++ )
if ( in.data[i + rept] != v ) {
break;
}
if ( rept > MIN_REPT ) {
hnodes1[prev][255 + rept].count++;
i += rept - 1;
}
#endif
}
}
/*
==================
Huffman1_Build
==================
*/
byte scaled[256][HUF_TOKENS];
void Huffman1_Build( FILE *f ){
int i, j, v;
int max;
int total;
for ( i = 0 ; i < 256 ; i++ )
{
// normalize and save the counts
max = 0;
for ( j = 0 ; j < HUF_TOKENS ; j++ )
{
if ( hnodes1[i][j].count > max ) {
max = hnodes1[i][j].count;
}
}
if ( max == 0 ) {
max = 1;
}
total = 0;
for ( j = 0 ; j < HUF_TOKENS ; j++ )
{ // easy to overflow 32 bits here!
v = ( hnodes1[i][j].count * (double)255 + max - 1 ) / max;
if ( v > 255 ) {
Error( "v > 255" );
}
scaled[i][j] = hnodes1[i][j].count = v;
if ( v ) {
total++;
}
}
if ( total == 1 ) { // must have two tokens
if ( !scaled[i][0] ) {
scaled[i][0] = hnodes1[i][0].count = 1;
}
else{
scaled[i][1] = hnodes1[i][1].count = 1;
}
}
BuildTree1( i );
}
#if 0
// count up the total bits
total = 0;
for ( i = 0 ; i < 256 ; i++ )
for ( j = 0 ; j < 256 ; j++ )
total += charbitscount1[i][j] * hnodes1[i][j].count;
total = ( total + 7 ) / 8;
printf( "%i bytes huffman1 compressed\n", total );
#endif
fwrite( scaled, 1, sizeof( scaled ), f );
}
/*
==================
Huffman1
Order 1 compression with pre-built table
==================
*/
cblock_t Huffman1( cblock_t in ){
int i;
int outbits, c;
unsigned bits;
byte *out_p;
cblock_t out;
int prev;
int v;
int rept;
out_p = out.data = malloc( in.count * 2 + 1024 );
memset( out_p, 0, in.count * 2 + 1024 );
// write count
*out_p++ = in.count & 255;
*out_p++ = ( in.count >> 8 ) & 255;
*out_p++ = ( in.count >> 16 ) & 255;
*out_p++ = ( in.count >> 24 ) & 255;
// write bits
outbits = 0;
prev = 0;
for ( i = 0 ; i < in.count ; i++ )
{
v = in.data[i];
c = charbitscount1[prev][v];
bits = charbits1[prev][v];
if ( !c ) {
Error( "!bits" );
}
while ( c )
{
c--;
if ( bits & ( 1 << c ) ) {
out_p[outbits >> 3] |= 1 << ( outbits & 7 );
}
outbits++;
}
prev = v;
#if 1
// check for repeat encodes
for ( rept = 1 ; i + rept < in.count && rept < MAX_REPT ; rept++ )
if ( in.data[i + rept] != v ) {
break;
}
if ( rept > MIN_REPT ) {
c = charbitscount1[prev][255 + rept];
bits = charbits1[prev][255 + rept];
if ( !c ) {
Error( "!bits" );
}
while ( c )
{
c--;
if ( bits & ( 1 << c ) ) {
out_p[outbits >> 3] |= 1 << ( outbits & 7 );
}
outbits++;
}
i += rept - 1;
}
#endif
}
out_p += ( outbits + 7 ) >> 3;
out.count = out_p - out.data;
return out;
}
//==========================================================================
/*
===================
LoadFrame
===================
*/
cblock_t LoadFrame( char *base, int frame, int digits, byte **palette ){
int ten3, ten2, ten1, ten0;
cblock_t in;
int width, height;
char name[1024];
FILE *f;
in.data = NULL;
in.count = -1;
ten3 = frame / 1000;
ten2 = ( frame - ten3 * 1000 ) / 100;
ten1 = ( frame - ten3 * 1000 - ten2 * 100 ) / 10;
ten0 = frame % 10;
if ( digits == 4 ) {
sprintf( name, "%svideo/%s/%s%i%i%i%i.pcx", gamedir, base, base, ten3, ten2, ten1, ten0 );
}
else{
sprintf( name, "%svideo/%s/%s%i%i%i.pcx", gamedir, base, base, ten2, ten1, ten0 );
}
f = fopen( name, "rb" );
if ( !f ) {
in.data = NULL;
return in;
}
fclose( f );
printf( "%s\n", name );
Load256Image( name, &in.data, palette, &width, &height );
in.count = width * height;
// FIXME: map 0 and 255!
#if 0
// rle compress
rle = RLE( in );
free( in.data );
return rle;
#endif
return in;
}
/*
===============
Cmd_Video
video <directory> <framedigits>
===============
*/
void Cmd_Video( void ){
char savename[1024];
char name[1024];
FILE *output;
int startframe, frame;
byte *palette;
int width, height;
byte current_palette[768];
int command;
int i;
int digits;
cblock_t in, huffman;
int swap;
GetToken( false );
strcpy( base, token );
if ( g_release ) {
// sprintf (savename, "video/%s.cin", token);
// ReleaseFile (savename);
return;
}
GetToken( false );
digits = atoi( token );
// optionally skip frames
if ( TokenAvailable() ) {
GetToken( false );
startframe = atoi( token );
}
else{
startframe = 0;
}
sprintf( savename, "%svideo/%s.cin", gamedir, base );
// clear stuff
memset( charbits1, 0, sizeof( charbits1 ) );
memset( charbitscount1, 0, sizeof( charbitscount1 ) );
memset( hnodes1, 0, sizeof( hnodes1 ) );
memset( numhnodes1, 0, sizeof( numhnodes1 ) );
memset( order0counts, 0, sizeof( order0counts ) );
// load the entire sound wav file if present
LoadSoundtrack();
if ( digits == 4 ) {
sprintf( name, "%svideo/%s/%s0000.pcx", gamedir, base, base );
}
else{
sprintf( name, "%svideo/%s/%s000.pcx", gamedir, base, base );
}
printf( "%s\n", name );
Load256Image( name, NULL, &palette, &width, &height );
output = fopen( savename, "wb" );
if ( !output ) {
Error( "Can't open %s", savename );
}
// write header info
i = LittleLong( width );
fwrite( &i, 4, 1, output );
i = LittleLong( height );
fwrite( &i, 4, 1, output );
i = LittleLong( wavinfo.rate );
fwrite( &i, 4, 1, output );
i = LittleLong( wavinfo.width );
fwrite( &i, 4, 1, output );
i = LittleLong( wavinfo.channels );
fwrite( &i, 4, 1, output );
// build the dictionary
for ( frame = startframe ; ; frame++ )
{
printf( "counting ", frame );
in = LoadFrame( base, frame, digits, &palette );
if ( !in.data ) {
break;
}
Huffman1_Count( in );
free( in.data );
}
printf( "\n" );
// build nodes and write counts
Huffman1_Build( output );
memset( current_palette, 0, sizeof( current_palette ) );
// compress it with the dictionary
for ( frame = startframe ; ; frame++ )
{
printf( "packing ", frame );
in = LoadFrame( base, frame, digits, &palette );
if ( !in.data ) {
break;
}
// see if the palette has changed
for ( i = 0 ; i < 768 ; i++ )
if ( palette[i] != current_palette[i] ) {
// write a palette change
memcpy( current_palette, palette, sizeof( current_palette ) );
command = LittleLong( 1 );
fwrite( &command, 1, 4, output );
fwrite( current_palette, 1, sizeof( current_palette ), output );
break;
}
if ( i == 768 ) {
command = 0; // no palette change
fwrite( &command, 1, 4, output );
}
// save the image
huffman = Huffman1( in );
printf( "%5i bytes after huffman1\n", huffman.count );
swap = LittleLong( huffman.count );
fwrite( &swap, 1, sizeof( swap ), output );
fwrite( huffman.data, 1, huffman.count, output );
// save some sound samples
WriteSound( output, frame );
free( palette );
free( in.data );
free( huffman.data );
}
printf( "\n" );
// write end-of-file command
command = 2;
fwrite( &command, 1, 4, output );
printf( "Total size: %i\n", ftell( output ) );
fclose( output );
if ( soundtrack ) {
free( soundtrack );
}
}