quake3/q3radiant/splines/splines.cpp
2005-08-19 00:00:00 +00:00

1244 lines
30 KiB
C++
Executable file

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
//#include "stdafx.h"
//#include "qe3.h"
#include "q_shared.h"
#include "splines.h"
extern "C" {
int FS_Write( const void *buffer, int len, fileHandle_t h );
int FS_ReadFile( const char *qpath, void **buffer );
void FS_FreeFile( void *buffer );
fileHandle_t FS_FOpenFileWrite( const char *filename );
void FS_FCloseFile( fileHandle_t f );
}
float Q_fabs( float f ) {
int tmp = * ( int * ) &f;
tmp &= 0x7FFFFFFF;
return * ( float * ) &tmp;
}
//#include "../shared/windings.h"
//#include "../qcommon/qcommon.h"
//#include "../sys/sys_public.h"
//#include "../game/game_entity.h"
idCameraDef splineList;
idCameraDef *g_splineList = &splineList;
idVec3_t idSplineList::zero(0,0,0);
void glLabeledPoint(idVec3_t &color, idVec3_t &point, float size, const char *label) {
qglColor3fv(color);
qglPointSize(size);
qglBegin(GL_POINTS);
qglVertex3fv(point);
qglEnd();
idVec3_t v = point;
v.x += 1;
v.y += 1;
v.z += 1;
qglRasterPos3fv (v);
qglCallLists (strlen(label), GL_UNSIGNED_BYTE, label);
}
void glBox(idVec3_t &color, idVec3_t &point, float size) {
idVec3_t mins(point);
idVec3_t maxs(point);
mins[0] -= size;
mins[1] += size;
mins[2] -= size;
maxs[0] += size;
maxs[1] -= size;
maxs[2] += size;
qglColor3fv(color);
qglBegin(GL_LINE_LOOP);
qglVertex3f(mins[0],mins[1],mins[2]);
qglVertex3f(maxs[0],mins[1],mins[2]);
qglVertex3f(maxs[0],maxs[1],mins[2]);
qglVertex3f(mins[0],maxs[1],mins[2]);
qglEnd();
qglBegin(GL_LINE_LOOP);
qglVertex3f(mins[0],mins[1],maxs[2]);
qglVertex3f(maxs[0],mins[1],maxs[2]);
qglVertex3f(maxs[0],maxs[1],maxs[2]);
qglVertex3f(mins[0],maxs[1],maxs[2]);
qglEnd();
qglBegin(GL_LINES);
qglVertex3f(mins[0],mins[1],mins[2]);
qglVertex3f(mins[0],mins[1],maxs[2]);
qglVertex3f(mins[0],maxs[1],maxs[2]);
qglVertex3f(mins[0],maxs[1],mins[2]);
qglVertex3f(maxs[0],mins[1],mins[2]);
qglVertex3f(maxs[0],mins[1],maxs[2]);
qglVertex3f(maxs[0],maxs[1],maxs[2]);
qglVertex3f(maxs[0],maxs[1],mins[2]);
qglEnd();
}
void splineTest() {
//g_splineList->load("p:/doom/base/maps/test_base1.camera");
}
void splineDraw() {
//g_splineList->addToRenderer();
}
//extern void D_DebugLine( const idVec3_t &color, const idVec3_t &start, const idVec3_t &end );
void debugLine(idVec3_t &color, float x, float y, float z, float x2, float y2, float z2) {
idVec3_t from(x, y, z);
idVec3_t to(x2, y2, z2);
//D_DebugLine(color, from, to);
}
void idSplineList::addToRenderer() {
if (controlPoints.Num() == 0) {
return;
}
idVec3_t mins, maxs;
idVec3_t yellow(1.0, 1.0, 0);
idVec3_t white(1.0, 1.0, 1.0);
int i;
for(i = 0; i < controlPoints.Num(); i++) {
VectorCopy(*controlPoints[i], mins);
VectorCopy(mins, maxs);
mins[0] -= 8;
mins[1] += 8;
mins[2] -= 8;
maxs[0] += 8;
maxs[1] -= 8;
maxs[2] += 8;
debugLine( yellow, mins[0], mins[1], mins[2], maxs[0], mins[1], mins[2]);
debugLine( yellow, maxs[0], mins[1], mins[2], maxs[0], maxs[1], mins[2]);
debugLine( yellow, maxs[0], maxs[1], mins[2], mins[0], maxs[1], mins[2]);
debugLine( yellow, mins[0], maxs[1], mins[2], mins[0], mins[1], mins[2]);
debugLine( yellow, mins[0], mins[1], maxs[2], maxs[0], mins[1], maxs[2]);
debugLine( yellow, maxs[0], mins[1], maxs[2], maxs[0], maxs[1], maxs[2]);
debugLine( yellow, maxs[0], maxs[1], maxs[2], mins[0], maxs[1], maxs[2]);
debugLine( yellow, mins[0], maxs[1], maxs[2], mins[0], mins[1], maxs[2]);
}
int step = 0;
idVec3_t step1;
for(i = 3; i < controlPoints.Num(); i++) {
for (float tension = 0.0f; tension < 1.001f; tension += 0.1f) {
float x = 0;
float y = 0;
float z = 0;
for (int j = 0; j < 4; j++) {
x += controlPoints[i - (3 - j)]->x * calcSpline(j, tension);
y += controlPoints[i - (3 - j)]->y * calcSpline(j, tension);
z += controlPoints[i - (3 - j)]->z * calcSpline(j, tension);
}
if (step == 0) {
step1[0] = x;
step1[1] = y;
step1[2] = z;
step = 1;
} else {
debugLine( white, step1[0], step1[1], step1[2], x, y, z);
step = 0;
}
}
}
}
void idSplineList::buildSpline() {
//int start = Sys_Milliseconds();
clearSpline();
for(int i = 3; i < controlPoints.Num(); i++) {
for (float tension = 0.0f; tension < 1.001f; tension += granularity) {
float x = 0;
float y = 0;
float z = 0;
for (int j = 0; j < 4; j++) {
x += controlPoints[i - (3 - j)]->x * calcSpline(j, tension);
y += controlPoints[i - (3 - j)]->y * calcSpline(j, tension);
z += controlPoints[i - (3 - j)]->z * calcSpline(j, tension);
}
splinePoints.Append(new idVec3_t(x, y, z));
}
}
dirty = false;
//Com_Printf("Spline build took %f seconds\n", (float)(Sys_Milliseconds() - start) / 1000);
}
void idSplineList::draw(bool editMode) {
int i;
vec4_t yellow(1, 1, 0, 1);
if (controlPoints.Num() == 0) {
return;
}
if (dirty) {
buildSpline();
}
qglColor3fv(controlColor);
qglPointSize(5);
qglBegin(GL_POINTS);
for (i = 0; i < controlPoints.Num(); i++) {
qglVertex3fv(*controlPoints[i]);
}
qglEnd();
if (editMode) {
for(i = 0; i < controlPoints.Num(); i++) {
glBox(activeColor, *controlPoints[i], 4);
}
}
//Draw the curve
qglColor3fv(pathColor);
qglBegin(GL_LINE_STRIP);
int count = splinePoints.Num();
for (i = 0; i < count; i++) {
qglVertex3fv(*splinePoints[i]);
}
qglEnd();
if (editMode) {
qglColor3fv(segmentColor);
qglPointSize(3);
qglBegin(GL_POINTS);
for (i = 0; i < count; i++) {
qglVertex3fv(*splinePoints[i]);
}
qglEnd();
}
if (count > 0) {
//assert(activeSegment >=0 && activeSegment < count);
if (activeSegment >=0 && activeSegment < count) {
glBox(activeColor, *splinePoints[activeSegment], 6);
glBox(yellow, *splinePoints[activeSegment], 8);
}
}
}
float idSplineList::totalDistance() {
if (controlPoints.Num() == 0) {
return 0.0;
}
if (dirty) {
buildSpline();
}
float dist = 0.0;
idVec3_t temp;
int count = splinePoints.Num();
for(int i = 1; i < count; i++) {
temp = *splinePoints[i-1];
temp -= *splinePoints[i];
dist += temp.Length();
}
return dist;
}
void idSplineList::initPosition(long bt, long totalTime) {
if (dirty) {
buildSpline();
}
if (splinePoints.Num() == 0) {
return;
}
baseTime = bt;
time = totalTime;
// calc distance to travel ( this will soon be broken into time segments )
splineTime.Clear();
splineTime.Append(0);
float dist = totalDistance();
float distSoFar = 0.0;
idVec3_t temp;
int count = splinePoints.Num();
//for(int i = 2; i < count - 1; i++) {
for(int i = 1; i < count; i++) {
temp = *splinePoints[i-1];
temp -= *splinePoints[i];
distSoFar += temp.Length();
float percent = distSoFar / dist;
percent *= totalTime;
splineTime.Append(percent + bt);
}
assert(splineTime.Num() == splinePoints.Num());
activeSegment = 0;
}
float idSplineList::calcSpline(int step, float tension) {
switch(step) {
case 0: return (pow(1 - tension, 3)) / 6;
case 1: return (3 * pow(tension, 3) - 6 * pow(tension, 2) + 4) / 6;
case 2: return (-3 * pow(tension, 3) + 3 * pow(tension, 2) + 3 * tension + 1) / 6;
case 3: return pow(tension, 3) / 6;
}
return 0.0;
}
void idSplineList::updateSelection(const idVec3_t &move) {
if (selected) {
dirty = true;
VectorAdd(*selected, move, *selected);
}
}
void idSplineList::setSelectedPoint(idVec3_t *p) {
if (p) {
p->Snap();
for(int i = 0; i < controlPoints.Num(); i++) {
if (*p == *controlPoints[i]) {
selected = controlPoints[i];
}
}
} else {
selected = NULL;
}
}
const idVec3_t *idSplineList::getPosition(long t) {
static idVec3_t interpolatedPos;
int count = splineTime.Num();
if (count == 0) {
return &zero;
}
assert(splineTime.Num() == splinePoints.Num());
while (activeSegment < count) {
if (splineTime[activeSegment] >= t) {
if (activeSegment > 0 && activeSegment < count - 1) {
float timeHi = splineTime[activeSegment + 1];
float timeLo = splineTime[activeSegment - 1];
//float percent = (float)(baseTime + time - t) / time;
float percent = (timeHi - t) / (timeHi - timeLo);
// pick two bounding points
idVec3_t v1 = *splinePoints[activeSegment-1];
idVec3_t v2 = *splinePoints[activeSegment+1];
v2 *= (1.0 - percent);
v1 *= percent;
v2 += v1;
interpolatedPos = v2;
return &interpolatedPos;
}
return splinePoints[activeSegment];
} else {
activeSegment++;
}
}
return splinePoints[count-1];
}
void idSplineList::parse(const char *(*text) ) {
const char *token;
//Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !Q_stricmp (token, "}") ) {
break;
}
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !Q_stricmp (token, "(") || !Q_stricmp(token, "}")) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine(text);
const char *token = Com_Parse(text);
if (Q_stricmp(key.c_str(), "granularity") == 0) {
granularity = atof(token);
} else if (Q_stricmp(key.c_str(), "name") == 0) {
name = token;
}
token = Com_Parse(text);
} while (1);
if ( !Q_stricmp (token, "}") ) {
break;
}
Com_UngetToken();
// read the control point
idVec3_t point;
Com_Parse1DMatrix( text, 3, point );
addPoint(point.x, point.y, point.z);
} while (1);
//Com_UngetToken();
//Com_MatchToken( text, "}" );
dirty = true;
}
void idSplineList::write(fileHandle_t file, const char *p) {
idStr s = va("\t\t%s {\n", p);
FS_Write(s.c_str(), s.length(), file);
//s = va("\t\tname %s\n", name.c_str());
//FS_Write(s.c_str(), s.length(), file);
s = va("\t\t\tgranularity %f\n", granularity);
FS_Write(s.c_str(), s.length(), file);
int count = controlPoints.Num();
for (int i = 0; i < count; i++) {
s = va("\t\t\t( %f %f %f )\n", controlPoints[i]->x, controlPoints[i]->y, controlPoints[i]->z);
FS_Write(s.c_str(), s.length(), file);
}
s = "\t\t}\n";
FS_Write(s.c_str(), s.length(), file);
}
void idCameraDef::getActiveSegmentInfo(int segment, idVec3_t &origin, idVec3_t &direction, float *fov) {
#if 0
if (!cameraSpline.validTime()) {
buildCamera();
}
double d = (double)segment / numSegments();
getCameraInfo(d * totalTime * 1000, origin, direction, fov);
#endif
/*
if (!cameraSpline.validTime()) {
buildCamera();
}
origin = *cameraSpline.getSegmentPoint(segment);
idVec3_t temp;
int numTargets = getTargetSpline()->controlPoints.Num();
int count = cameraSpline.splineTime.Num();
if (numTargets == 0) {
// follow the path
if (cameraSpline.getActiveSegment() < count - 1) {
temp = *cameraSpline.splinePoints[cameraSpline.getActiveSegment()+1];
}
} else if (numTargets == 1) {
temp = *getTargetSpline()->controlPoints[0];
} else {
temp = *getTargetSpline()->getSegmentPoint(segment);
}
temp -= origin;
temp.Normalize();
direction = temp;
*/
}
bool idCameraDef::getCameraInfo(long time, idVec3_t &origin, idVec3_t &direction, float *fv) {
if ((time - startTime) / 1000 > totalTime) {
return false;
}
for (int i = 0; i < events.Num(); i++) {
if (time >= startTime + events[i]->getTime() && !events[i]->getTriggered()) {
events[i]->setTriggered(true);
if (events[i]->getType() == idCameraEvent::EVENT_TARGET) {
setActiveTargetByName(events[i]->getParam());
getActiveTarget()->start(startTime + events[i]->getTime());
//Com_Printf("Triggered event switch to target: %s\n",events[i]->getParam());
} else if (events[i]->getType() == idCameraEvent::EVENT_TRIGGER) {
//idEntity *ent = NULL;
//ent = level.FindTarget( ent, events[i]->getParam());
//if (ent) {
// ent->signal( SIG_TRIGGER );
// ent->ProcessEvent( &EV_Activate, world );
//}
} else if (events[i]->getType() == idCameraEvent::EVENT_FOV) {
//*fv = fov = atof(events[i]->getParam());
} else if (events[i]->getType() == idCameraEvent::EVENT_STOP) {
return false;
}
}
}
origin = *cameraPosition->getPosition(time);
*fv = fov.getFOV(time);
idVec3_t temp = origin;
int numTargets = targetPositions.Num();
if (numTargets == 0) {
/*
// follow the path
if (cameraSpline.getActiveSegment() < count - 1) {
temp = *cameraSpline.splinePoints[cameraSpline.getActiveSegment()+1];
if (temp == origin) {
int index = cameraSpline.getActiveSegment() + 2;
while (temp == origin && index < count - 1) {
temp = *cameraSpline.splinePoints[index++];
}
}
}
*/
} else {
temp = *getActiveTarget()->getPosition(time);
}
temp -= origin;
temp.Normalize();
direction = temp;
return true;
}
bool idCameraDef::waitEvent(int index) {
//for (int i = 0; i < events.Num(); i++) {
// if (events[i]->getSegment() == index && events[i]->getType() == idCameraEvent::EVENT_WAIT) {
// return true;
// }
//}
return false;
}
#define NUM_CCELERATION_SEGS 10
#define CELL_AMT 5
void idCameraDef::buildCamera() {
int i;
int lastSwitch = 0;
idList<float> waits;
idList<int> targets;
totalTime = baseTime;
cameraPosition->setTime(totalTime * 1000);
// we have a base time layout for the path and the target path
// now we need to layer on any wait or speed changes
for (i = 0; i < events.Num(); i++) {
idCameraEvent *ev = events[i];
events[i]->setTriggered(false);
switch (events[i]->getType()) {
case idCameraEvent::EVENT_TARGET : {
targets.Append(i);
break;
}
case idCameraEvent::EVENT_WAIT : {
waits.Append(atof(events[i]->getParam()));
cameraPosition->addVelocity(events[i]->getTime(), atof(events[i]->getParam()) * 1000, 0);
break;
}
case idCameraEvent::EVENT_TARGETWAIT : {
//targetWaits.Append(i);
break;
}
case idCameraEvent::EVENT_SPEED : {
/*
// take the average delay between up to the next five segments
float adjust = atof(events[i]->getParam());
int index = events[i]->getSegment();
total = 0;
count = 0;
// get total amount of time over the remainder of the segment
for (j = index; j < cameraSpline.numSegments() - 1; j++) {
total += cameraSpline.getSegmentTime(j + 1) - cameraSpline.getSegmentTime(j);
count++;
}
// multiply that by the adjustment
double newTotal = total * adjust;
// what is the difference..
newTotal -= total;
totalTime += newTotal / 1000;
// per segment difference
newTotal /= count;
int additive = newTotal;
// now propogate that difference out to each segment
for (j = index; j < cameraSpline.numSegments(); j++) {
cameraSpline.addSegmentTime(j, additive);
additive += newTotal;
}
break;
*/
}
}
}
for (i = 0; i < waits.Num(); i++) {
totalTime += waits[i];
}
// on a new target switch, we need to take time to this point ( since last target switch )
// and allocate it across the active target, then reset time to this point
long timeSoFar = 0;
long total = totalTime * 1000;
for (i = 0; i < targets.Num(); i++) {
long t;
if (i < targets.Num() - 1) {
t = events[targets[i+1]]->getTime();
} else {
t = total - timeSoFar;
}
// t is how much time to use for this target
setActiveTargetByName(events[targets[i]]->getParam());
getActiveTarget()->setTime(t);
timeSoFar += t;
}
}
void idCameraDef::startCamera(long t) {
buildCamera();
cameraPosition->start(t);
//for (int i = 0; i < targetPositions.Num(); i++) {
// targetPositions[i]->
//}
startTime = t;
cameraRunning = true;
}
void idCameraDef::parse(const char *(*text) ) {
const char *token;
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !Q_stricmp (token, "}") ) {
break;
}
if (Q_stricmp(token, "time") == 0) {
baseTime = Com_ParseFloat(text);
}
if (Q_stricmp(token, "camera_fixed") == 0) {
cameraPosition = new idFixedPosition();
cameraPosition->parse(text);
}
if (Q_stricmp(token, "camera_interpolated") == 0) {
cameraPosition = new idInterpolatedPosition();
cameraPosition->parse(text);
}
if (Q_stricmp(token, "camera_spline") == 0) {
cameraPosition = new idSplinePosition();
cameraPosition->parse(text);
}
if (Q_stricmp(token, "target_fixed") == 0) {
idFixedPosition *pos = new idFixedPosition();
pos->parse(text);
targetPositions.Append(pos);
}
if (Q_stricmp(token, "target_interpolated") == 0) {
idInterpolatedPosition *pos = new idInterpolatedPosition();
pos->parse(text);
targetPositions.Append(pos);
}
if (Q_stricmp(token, "target_spline") == 0) {
idSplinePosition *pos = new idSplinePosition();
pos->parse(text);
targetPositions.Append(pos);
}
if (Q_stricmp(token, "fov") == 0) {
fov.parse(text);
}
if (Q_stricmp(token, "event") == 0) {
idCameraEvent *event = new idCameraEvent();
event->parse(text);
addEvent(event);
}
} while (1);
Com_UngetToken();
Com_MatchToken( text, "}" );
}
bool idCameraDef::load(const char *filename) {
char *buf;
const char *buf_p;
int length = FS_ReadFile( filename, (void **)&buf );
if ( !buf ) {
return false;
}
clear();
Com_BeginParseSession( filename );
buf_p = buf;
parse(&buf_p);
Com_EndParseSession();
FS_FreeFile( buf );
return true;
}
void idCameraDef::save(const char *filename) {
fileHandle_t file = FS_FOpenFileWrite(filename);
if (file) {
int i;
idStr s = "cameraPathDef { \n";
FS_Write(s.c_str(), s.length(), file);
s = va("\ttime %f\n", baseTime);
FS_Write(s.c_str(), s.length(), file);
cameraPosition->write(file, va("camera_%s",cameraPosition->typeStr()));
for (i = 0; i < numTargets(); i++) {
targetPositions[i]->write(file, va("target_%s", targetPositions[i]->typeStr()));
}
for (i = 0; i < events.Num(); i++) {
events[i]->write(file, "event");
}
fov.write(file, "fov");
s = "}\n";
FS_Write(s.c_str(), s.length(), file);
}
FS_FCloseFile(file);
}
int idCameraDef::sortEvents(const void *p1, const void *p2) {
idCameraEvent *ev1 = (idCameraEvent*)(p1);
idCameraEvent *ev2 = (idCameraEvent*)(p2);
if (ev1->getTime() > ev2->getTime()) {
return -1;
}
if (ev1->getTime() < ev2->getTime()) {
return 1;
}
return 0;
}
void idCameraDef::addEvent(idCameraEvent *event) {
events.Append(event);
//events.Sort(&sortEvents);
}
void idCameraDef::addEvent(idCameraEvent::eventType t, const char *param, long time) {
addEvent(new idCameraEvent(t, param, time));
buildCamera();
}
const char *idCameraEvent::eventStr[] = {
"NA",
"WAIT",
"TARGETWAIT",
"SPEED",
"TARGET",
"SNAPTARGET",
"FOV",
"SCRIPT",
"TRIGGER",
"STOP"
};
void idCameraEvent::parse(const char *(*text) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp (token, "}") ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine(text);
const char *token = Com_Parse(text);
if (Q_stricmp(key.c_str(), "type") == 0) {
type = static_cast<idCameraEvent::eventType>(atoi(token));
} else if (Q_stricmp(key.c_str(), "param") == 0) {
paramStr = token;
} else if (Q_stricmp(key.c_str(), "time") == 0) {
time = atoi(token);
}
token = Com_Parse(text);
} while (1);
if ( !strcmp (token, "}") ) {
break;
}
} while (1);
Com_UngetToken();
Com_MatchToken( text, "}" );
}
void idCameraEvent::write(fileHandle_t file, const char *name) {
idStr s = va("\t%s {\n", name);
FS_Write(s.c_str(), s.length(), file);
s = va("\t\ttype %d\n", static_cast<int>(type));
FS_Write(s.c_str(), s.length(), file);
s = va("\t\tparam %s\n", paramStr.c_str());
FS_Write(s.c_str(), s.length(), file);
s = va("\t\ttime %d\n", time);
FS_Write(s.c_str(), s.length(), file);
s = "\t}\n";
FS_Write(s.c_str(), s.length(), file);
}
const char *idCameraPosition::positionStr[] = {
"Fixed",
"Interpolated",
"Spline",
};
const idVec3_t *idInterpolatedPosition::getPosition(long t) {
static idVec3_t interpolatedPos;
float velocity = getVelocity(t);
float timePassed = t - lastTime;
lastTime = t;
// convert to seconds
timePassed /= 1000;
float distToTravel = timePassed *= velocity;
idVec3_t temp = startPos;
temp -= endPos;
float distance = temp.Length();
distSoFar += distToTravel;
float percent = (float)(distSoFar) / distance;
if (percent > 1.0) {
percent = 1.0;
} else if (percent < 0.0) {
percent = 0.0;
}
// the following line does a straigt calc on percentage of time
// float percent = (float)(startTime + time - t) / time;
idVec3_t v1 = startPos;
idVec3_t v2 = endPos;
v1 *= (1.0 - percent);
v2 *= percent;
v1 += v2;
interpolatedPos = v1;
return &interpolatedPos;
}
void idCameraFOV::parse(const char *(*text) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp (token, "}") ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine(text);
const char *token = Com_Parse(text);
if (Q_stricmp(key.c_str(), "fov") == 0) {
fov = atof(token);
} else if (Q_stricmp(key.c_str(), "startFOV") == 0) {
startFOV = atof(token);
} else if (Q_stricmp(key.c_str(), "endFOV") == 0) {
endFOV = atof(token);
} else if (Q_stricmp(key.c_str(), "time") == 0) {
time = atoi(token);
}
token = Com_Parse(text);
} while (1);
if ( !strcmp (token, "}") ) {
break;
}
} while (1);
Com_UngetToken();
Com_MatchToken( text, "}" );
}
bool idCameraPosition::parseToken(const char *key, const char *(*text)) {
const char *token = Com_Parse(text);
if (Q_stricmp(key, "time") == 0) {
time = atol(token);
return true;
} else if (Q_stricmp(key, "type") == 0) {
type = static_cast<idCameraPosition::positionType>(atoi(token));
return true;
} else if (Q_stricmp(key, "velocity") == 0) {
long t = atol(token);
token = Com_Parse(text);
long d = atol(token);
token = Com_Parse(text);
float s = atof(token);
addVelocity(t, d, s);
return true;
} else if (Q_stricmp(key, "baseVelocity") == 0) {
baseVelocity = atof(token);
return true;
} else if (Q_stricmp(key, "name") == 0) {
name = token;
return true;
} else if (Q_stricmp(key, "time") == 0) {
time = atoi(token);
return true;
}
Com_UngetToken();
return false;
}
void idFixedPosition::parse(const char *(*text) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp (token, "}") ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine(text);
const char *token = Com_Parse(text);
if (Q_stricmp(key.c_str(), "pos") == 0) {
Com_UngetToken();
Com_Parse1DMatrix( text, 3, pos );
} else {
Com_UngetToken();
idCameraPosition::parseToken(key.c_str(), text);
}
token = Com_Parse(text);
} while (1);
if ( !strcmp (token, "}") ) {
break;
}
} while (1);
Com_UngetToken();
Com_MatchToken( text, "}" );
}
void idInterpolatedPosition::parse(const char *(*text) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp (token, "}") ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine(text);
const char *token = Com_Parse(text);
if (Q_stricmp(key.c_str(), "startPos") == 0) {
Com_UngetToken();
Com_Parse1DMatrix( text, 3, startPos );
} else if (Q_stricmp(key.c_str(), "endPos") == 0) {
Com_UngetToken();
Com_Parse1DMatrix( text, 3, endPos );
} else {
Com_UngetToken();
idCameraPosition::parseToken(key.c_str(), text);
}
token = Com_Parse(text);
} while (1);
if ( !strcmp (token, "}") ) {
break;
}
} while (1);
Com_UngetToken();
Com_MatchToken( text, "}" );
}
void idSplinePosition::parse(const char *(*text) ) {
const char *token;
Com_MatchToken( text, "{" );
do {
token = Com_Parse( text );
if ( !token[0] ) {
break;
}
if ( !strcmp (token, "}") ) {
break;
}
// here we may have to jump over brush epairs ( only used in editor )
do {
// if token is not a brace, it is a key for a key/value pair
if ( !token[0] || !strcmp (token, "(") || !strcmp(token, "}")) {
break;
}
Com_UngetToken();
idStr key = Com_ParseOnLine(text);
const char *token = Com_Parse(text);
if (Q_stricmp(key.c_str(), "target") == 0) {
target.parse(text);
} else {
Com_UngetToken();
idCameraPosition::parseToken(key.c_str(), text);
}
token = Com_Parse(text);
} while (1);
if ( !strcmp (token, "}") ) {
break;
}
} while (1);
Com_UngetToken();
Com_MatchToken( text, "}" );
}
void idCameraFOV::write(fileHandle_t file, const char *p) {
idStr s = va("\t%s {\n", p);
FS_Write(s.c_str(), s.length(), file);
s = va("\t\tfov %f\n", fov);
FS_Write(s.c_str(), s.length(), file);
s = va("\t\tstartFOV %f\n", startFOV);
FS_Write(s.c_str(), s.length(), file);
s = va("\t\tendFOV %f\n", endFOV);
FS_Write(s.c_str(), s.length(), file);
s = va("\t\ttime %i\n", time);
FS_Write(s.c_str(), s.length(), file);
s = "\t}\n";
FS_Write(s.c_str(), s.length(), file);
}
void idCameraPosition::write(fileHandle_t file, const char *p) {
idStr s = va("\t\ttime %i\n", time);
FS_Write(s.c_str(), s.length(), file);
s = va("\t\ttype %i\n", static_cast<int>(type));
FS_Write(s.c_str(), s.length(), file);
s = va("\t\tname %s\n", name.c_str());
FS_Write(s.c_str(), s.length(), file);
s = va("\t\tbaseVelocity %f\n", baseVelocity);
FS_Write(s.c_str(), s.length(), file);
for (int i = 0; i < velocities.Num(); i++) {
s = va("\t\tvelocity %i %i %f\n", velocities[i]->startTime, velocities[i]->time, velocities[i]->speed);
FS_Write(s.c_str(), s.length(), file);
}
}
void idFixedPosition::write(fileHandle_t file, const char *p) {
idStr s = va("\t%s {\n", p);
FS_Write(s.c_str(), s.length(), file);
idCameraPosition::write(file, p);
s = va("\t\tpos ( %f %f %f )\n", pos.x, pos.y, pos.z);
FS_Write(s.c_str(), s.length(), file);
s = "\t}\n";
FS_Write(s.c_str(), s.length(), file);
}
void idInterpolatedPosition::write(fileHandle_t file, const char *p) {
idStr s = va("\t%s {\n", p);
FS_Write(s.c_str(), s.length(), file);
idCameraPosition::write(file, p);
s = va("\t\tstartPos ( %f %f %f )\n", startPos.x, startPos.y, startPos.z);
FS_Write(s.c_str(), s.length(), file);
s = va("\t\tendPos ( %f %f %f )\n", endPos.x, endPos.y, endPos.z);
FS_Write(s.c_str(), s.length(), file);
s = "\t}\n";
FS_Write(s.c_str(), s.length(), file);
}
void idSplinePosition::write(fileHandle_t file, const char *p) {
idStr s = va("\t%s {\n", p);
FS_Write(s.c_str(), s.length(), file);
idCameraPosition::write(file, p);
target.write(file, "target");
s = "\t}\n";
FS_Write(s.c_str(), s.length(), file);
}
void idCameraDef::addTarget(const char *name, idCameraPosition::positionType type) {
const char *text = (name == NULL) ? va("target0%d", numTargets()+1) : name;
idCameraPosition *pos = newFromType(type);
if (pos) {
pos->setName(name);
targetPositions.Append(pos);
activeTarget = numTargets()-1;
if (activeTarget == 0) {
// first one
addEvent(idCameraEvent::EVENT_TARGET, name, 0);
}
}
}
idCameraDef camera;
extern "C" {
qboolean loadCamera(const char *name) {
camera.clear();
return static_cast<qboolean>(camera.load(name));
}
qboolean getCameraInfo(int time, float *origin, float*angles) {
idVec3_t dir, org;
org[0] = origin[0];
org[1] = origin[1];
org[2] = origin[2];
float fov = 90;
if (camera.getCameraInfo(time, org, dir, &fov)) {
origin[0] = org[0];
origin[1] = org[1];
origin[2] = org[2];
angles[1] = atan2 (dir[1], dir[0])*180/3.14159;
angles[0] = asin (dir[2])*180/3.14159;
return qtrue;
}
return qfalse;
}
void startCamera(int time) {
camera.startCamera(time);
}
}