quake3/q3radiant/MATHLIB.CPP

312 lines
6.4 KiB
C++
Raw Normal View History

2005-08-19 00:00:00 +00:00
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// mathlib.c -- math primitives
#include "stdafx.h"
#include "cmdlib.h"
#include "mathlib.h"
vec3_t vec3_origin = {0.0f,0.0f,0.0f};
float VectorLength(vec3_t v)
{
int i;
float length;
length = 0.0f;
for (i=0 ; i< 3 ; i++)
length += v[i]*v[i];
length = (float)sqrt (length);
return length;
}
qboolean VectorCompare (vec3_t v1, vec3_t v2)
{
int i;
for (i=0 ; i<3 ; i++)
if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
return false;
return true;
}
vec_t Q_rint (vec_t in)
{
if (g_PrefsDlg.m_bNoClamp)
return in;
else
return (float)floor (in + 0.5);
}
void VectorMA (vec3_t va, float scale, vec3_t vb, vec3_t vc)
{
vc[0] = va[0] + scale*vb[0];
vc[1] = va[1] + scale*vb[1];
vc[2] = va[2] + scale*vb[2];
}
void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
{
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
vec_t _DotProduct (vec3_t v1, vec3_t v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]-vb[0];
out[1] = va[1]-vb[1];
out[2] = va[2]-vb[2];
}
void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]+vb[0];
out[1] = va[1]+vb[1];
out[2] = va[2]+vb[2];
}
void _VectorCopy (vec3_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
vec_t VectorNormalize (vec3_t v)
{
int i;
float length;
length = 0.0f;
for (i=0 ; i< 3 ; i++)
length += v[i]*v[i];
length = (float)sqrt (length);
if (length == 0)
return (vec_t)0;
for (i=0 ; i< 3 ; i++)
v[i] /= length;
return length;
}
void VectorInverse (vec3_t v)
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void VectorScale (vec3_t v, vec_t scale, vec3_t out)
{
out[0] = v[0] * scale;
out[1] = v[1] * scale;
out[2] = v[2] * scale;
}
void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out)
{
vec3_t vWork, va;
VectorCopy(vIn, va);
VectorCopy(va, vWork);
int nIndex[3][2];
nIndex[0][0] = 1; nIndex[0][1] = 2;
nIndex[1][0] = 2; nIndex[1][1] = 0;
nIndex[2][0] = 0; nIndex[2][1] = 1;
for (int i = 0; i < 3; i++)
{
if (vRotation[i] != 0)
{
double dAngle = vRotation[i] * Q_PI / 180.0;
double c = cos(dAngle);
double s = sin(dAngle);
vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s;
vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c;
}
VectorCopy(vWork, va);
}
VectorCopy(vWork, out);
}
void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out)
{
vec3_t vTemp, vTemp2;
VectorSubtract(vIn, vOrigin, vTemp);
VectorRotate(vTemp, vRotation, vTemp2);
VectorAdd(vTemp2, vOrigin, out);
}
void VectorPolar(vec3_t v, float radius, float theta, float phi)
{
v[0]=float(radius * cos(theta) * cos(phi));
v[1]=float(radius * sin(theta) * cos(phi));
v[2]=float(radius * sin(phi));
}
void VectorSnap(vec3_t v)
{
for (int i = 0; i < 3; i++)
{
v[i] = floor (v[i] + 0.5);
}
}
void _Vector5Add (vec5_t va, vec5_t vb, vec5_t out)
{
out[0] = va[0]+vb[0];
out[1] = va[1]+vb[1];
out[2] = va[2]+vb[2];
out[3] = va[3]+vb[3];
out[4] = va[4]+vb[4];
}
void _Vector5Scale (vec5_t v, vec_t scale, vec5_t out)
{
out[0] = v[0] * scale;
out[1] = v[1] * scale;
out[2] = v[2] * scale;
out[3] = v[3] * scale;
out[4] = v[4] * scale;
}
void _Vector53Copy (vec5_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
// NOTE: added these from Ritual's Q3Radiant
void ClearBounds (vec3_t mins, vec3_t maxs)
{
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
{
int i;
vec_t val;
for (i=0 ; i<3 ; i++)
{
val = v[i];
if (val < mins[i])
mins[i] = val;
if (val > maxs[i])
maxs[i] = val;
}
}
#define PITCH 0 // up / down
#define YAW 1 // left / right
#define ROLL 2 // fall over
#ifndef M_PI
#define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h
#endif
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle;
static float sr, sp, sy, cr, cp, cy;
// static to help MS compiler fp bugs
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI*2 / 360);
sp = sin(angle);
cp = cos(angle);
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right)
{
right[0] = -sr*sp*cy+cr*sy;
right[1] = -sr*sp*sy-cr*cy;
right[2] = -sr*cp;
}
if (up)
{
up[0] = cr*sp*cy+sr*sy;
up[1] = cr*sp*sy-sr*cy;
up[2] = cr*cp;
}
}
void VectorToAngles( vec3_t vec, vec3_t angles )
{
float forward;
float yaw, pitch;
if ( ( vec[ 0 ] == 0 ) && ( vec[ 1 ] == 0 ) )
{
yaw = 0;
if ( vec[ 2 ] > 0 )
{
pitch = 90;
}
else
{
pitch = 270;
}
}
else
{
yaw = atan2( vec[ 1 ], vec[ 0 ] ) * 180 / M_PI;
if ( yaw < 0 )
{
yaw += 360;
}
forward = ( float )sqrt( vec[ 0 ] * vec[ 0 ] + vec[ 1 ] * vec[ 1 ] );
pitch = atan2( vec[ 2 ], forward ) * 180 / M_PI;
if ( pitch < 0 )
{
pitch += 360;
}
}
angles[ 0 ] = pitch;
angles[ 1 ] = yaw;
angles[ 2 ] = 0;
}