doom3-bfg/neo/libs/jpeg-6/jcmaster.cpp
2012-11-27 21:26:06 +01:00

607 lines
23 KiB
C++

/*
* jcmaster.c
*
* Copyright (C) 1991-1995, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains master control logic for the JPEG compressor.
* These routines are concerned with parameter validation, initial setup,
* and inter-pass control (determining the number of passes and the work
* to be done in each pass).
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private state */
typedef enum {
main_pass, /* input data, also do first output step */
huff_opt_pass, /* Huffman code optimization pass */
output_pass /* data output pass */
} c_pass_type;
typedef struct {
struct jpeg_comp_master pub;/* public fields */
c_pass_type pass_type; /* the type of the current pass */
int pass_number; /* # of passes completed */
int total_passes; /* total # of passes needed */
int scan_number; /* current index in scan_info[] */
} my_comp_master;
typedef my_comp_master * my_master_ptr;
/*
* Support routines that do various essential calculations.
*/
LOCAL void
initial_setup( j_compress_ptr cinfo ) {
/* Do computations that are needed before master selection phase */
int ci;
jpeg_component_info * compptr;
long samplesperrow;
JDIMENSION jd_samplesperrow;
/* Sanity check on image dimensions */
if ( ( cinfo->image_height <= 0 ) || ( cinfo->image_width <= 0 )
|| ( cinfo->num_components <= 0 ) || ( cinfo->input_components <= 0 ) ) {
ERREXIT( cinfo, JERR_EMPTY_IMAGE );
}
/* Make sure image isn't bigger than I can handle */
if ( ( (long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ) ||
( (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION ) ) {
ERREXIT1( cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION );
}
/* Width of an input scanline must be representable as JDIMENSION. */
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
jd_samplesperrow = (JDIMENSION) samplesperrow;
if ( (long) jd_samplesperrow != samplesperrow ) {
ERREXIT( cinfo, JERR_WIDTH_OVERFLOW );
}
/* For now, precision must match compiled-in value... */
if ( cinfo->data_precision != BITS_IN_JSAMPLE ) {
ERREXIT1( cinfo, JERR_BAD_PRECISION, cinfo->data_precision );
}
/* Check that number of components won't exceed internal array sizes */
if ( cinfo->num_components > MAX_COMPONENTS ) {
ERREXIT2( cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS );
}
/* Compute maximum sampling factors; check factor validity */
cinfo->max_h_samp_factor = 1;
cinfo->max_v_samp_factor = 1;
for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++ ) {
if ( ( compptr->h_samp_factor <= 0 ) || ( compptr->h_samp_factor > MAX_SAMP_FACTOR ) ||
( compptr->v_samp_factor <= 0 ) || ( compptr->v_samp_factor > MAX_SAMP_FACTOR ) ) {
ERREXIT( cinfo, JERR_BAD_SAMPLING );
}
cinfo->max_h_samp_factor = MAX( cinfo->max_h_samp_factor,
compptr->h_samp_factor );
cinfo->max_v_samp_factor = MAX( cinfo->max_v_samp_factor,
compptr->v_samp_factor );
}
/* Compute dimensions of components */
for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++ ) {
/* Fill in the correct component_index value; don't rely on application */
compptr->component_index = ci;
/* For compression, we never do DCT scaling. */
compptr->DCT_scaled_size = DCTSIZE;
/* Size in DCT blocks */
compptr->width_in_blocks = (JDIMENSION)
jdiv_round_up( (long) cinfo->image_width * (long) compptr->h_samp_factor,
(long) ( cinfo->max_h_samp_factor * DCTSIZE ) );
compptr->height_in_blocks = (JDIMENSION)
jdiv_round_up( (long) cinfo->image_height * (long) compptr->v_samp_factor,
(long) ( cinfo->max_v_samp_factor * DCTSIZE ) );
/* Size in samples */
compptr->downsampled_width = (JDIMENSION)
jdiv_round_up( (long) cinfo->image_width * (long) compptr->h_samp_factor,
(long) cinfo->max_h_samp_factor );
compptr->downsampled_height = (JDIMENSION)
jdiv_round_up( (long) cinfo->image_height * (long) compptr->v_samp_factor,
(long) cinfo->max_v_samp_factor );
/* Mark component needed (this flag isn't actually used for compression) */
compptr->component_needed = TRUE;
}
/* Compute number of fully interleaved MCU rows (number of times that
* main controller will call coefficient controller).
*/
cinfo->total_iMCU_rows = (JDIMENSION)
jdiv_round_up( (long) cinfo->image_height,
(long) ( cinfo->max_v_samp_factor * DCTSIZE ) );
}
#ifdef C_MULTISCAN_FILES_SUPPORTED
LOCAL void
validate_script( j_compress_ptr cinfo ) {
/* Verify that the scan script in cinfo->scan_info[] is valid; also
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
*/
const jpeg_scan_info * scanptr;
int scanno, ncomps, ci, coefi, thisi;
int Ss, Se, Ah, Al;
boolean component_sent[MAX_COMPONENTS];
#ifdef C_PROGRESSIVE_SUPPORTED
int * last_bitpos_ptr;
int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
/* -1 until that coefficient has been seen; then last Al for it */
#endif
if ( cinfo->num_scans <= 0 ) {
ERREXIT1( cinfo, JERR_BAD_SCAN_SCRIPT, 0 );
}
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
* for progressive JPEG, no scan can have this.
*/
scanptr = cinfo->scan_info;
if ( ( scanptr->Ss != 0 ) || ( scanptr->Se != DCTSIZE2 - 1 ) ) {
#ifdef C_PROGRESSIVE_SUPPORTED
cinfo->progressive_mode = TRUE;
last_bitpos_ptr = &last_bitpos[0][0];
for ( ci = 0; ci < cinfo->num_components; ci++ ) {
for ( coefi = 0; coefi < DCTSIZE2; coefi++ ) {
*last_bitpos_ptr++ = -1;
}
}
#else
ERREXIT( cinfo, JERR_NOT_COMPILED );
#endif
} else {
cinfo->progressive_mode = FALSE;
for ( ci = 0; ci < cinfo->num_components; ci++ ) {
component_sent[ci] = FALSE;
}
}
for ( scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++ ) {
/* Validate component indexes */
ncomps = scanptr->comps_in_scan;
if ( ( ncomps <= 0 ) || ( ncomps > MAX_COMPS_IN_SCAN ) ) {
ERREXIT2( cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN );
}
for ( ci = 0; ci < ncomps; ci++ ) {
thisi = scanptr->component_index[ci];
if ( ( thisi < 0 ) || ( thisi >= cinfo->num_components ) ) {
ERREXIT1( cinfo, JERR_BAD_SCAN_SCRIPT, scanno );
}
/* Components must appear in SOF order within each scan */
if ( ( ci > 0 ) && ( thisi <= scanptr->component_index[ci - 1] ) ) {
ERREXIT1( cinfo, JERR_BAD_SCAN_SCRIPT, scanno );
}
}
/* Validate progression parameters */
Ss = scanptr->Ss;
Se = scanptr->Se;
Ah = scanptr->Ah;
Al = scanptr->Al;
if ( cinfo->progressive_mode ) {
#ifdef C_PROGRESSIVE_SUPPORTED
if ( ( Ss < 0 ) || ( Ss >= DCTSIZE2 ) || ( Se < Ss ) || ( Se >= DCTSIZE2 ) ||
( Ah < 0 ) || ( Ah > 13 ) || ( Al < 0 ) || ( Al > 13 ) ) {
ERREXIT1( cinfo, JERR_BAD_PROG_SCRIPT, scanno );
}
if ( Ss == 0 ) {
if ( Se != 0 ) {/* DC and AC together not OK */
ERREXIT1( cinfo, JERR_BAD_PROG_SCRIPT, scanno );
}
} else {
if ( ncomps != 1 ) {/* AC scans must be for only one component */
ERREXIT1( cinfo, JERR_BAD_PROG_SCRIPT, scanno );
}
}
for ( ci = 0; ci < ncomps; ci++ ) {
last_bitpos_ptr = &last_bitpos[scanptr->component_index[ci]][0];
if ( ( Ss != 0 ) && ( last_bitpos_ptr[0] < 0 ) ) {/* AC without prior DC scan */
ERREXIT1( cinfo, JERR_BAD_PROG_SCRIPT, scanno );
}
for ( coefi = Ss; coefi <= Se; coefi++ ) {
if ( last_bitpos_ptr[coefi] < 0 ) {
/* first scan of this coefficient */
if ( Ah != 0 ) {
ERREXIT1( cinfo, JERR_BAD_PROG_SCRIPT, scanno );
}
} else {
/* not first scan */
if ( ( Ah != last_bitpos_ptr[coefi] ) || ( Al != Ah - 1 ) ) {
ERREXIT1( cinfo, JERR_BAD_PROG_SCRIPT, scanno );
}
}
last_bitpos_ptr[coefi] = Al;
}
}
#endif
} else {
/* For sequential JPEG, all progression parameters must be these: */
if ( ( Ss != 0 ) || ( Se != DCTSIZE2 - 1 ) || ( Ah != 0 ) || ( Al != 0 ) ) {
ERREXIT1( cinfo, JERR_BAD_PROG_SCRIPT, scanno );
}
/* Make sure components are not sent twice */
for ( ci = 0; ci < ncomps; ci++ ) {
thisi = scanptr->component_index[ci];
if ( component_sent[thisi] ) {
ERREXIT1( cinfo, JERR_BAD_SCAN_SCRIPT, scanno );
}
component_sent[thisi] = TRUE;
}
}
}
/* Now verify that everything got sent. */
if ( cinfo->progressive_mode ) {
#ifdef C_PROGRESSIVE_SUPPORTED
/* For progressive mode, we only check that at least some DC data
* got sent for each component; the spec does not require that all bits
* of all coefficients be transmitted. Would it be wiser to enforce
* transmission of all coefficient bits??
*/
for ( ci = 0; ci < cinfo->num_components; ci++ ) {
if ( last_bitpos[ci][0] < 0 ) {
ERREXIT( cinfo, JERR_MISSING_DATA );
}
}
#endif
} else {
for ( ci = 0; ci < cinfo->num_components; ci++ ) {
if ( !component_sent[ci] ) {
ERREXIT( cinfo, JERR_MISSING_DATA );
}
}
}
}
#endif /* C_MULTISCAN_FILES_SUPPORTED */
LOCAL void
select_scan_parameters( j_compress_ptr cinfo ) {
/* Set up the scan parameters for the current scan */
int ci;
#ifdef C_MULTISCAN_FILES_SUPPORTED
if ( cinfo->scan_info != NULL ) {
/* Prepare for current scan --- the script is already validated */
my_master_ptr master = (my_master_ptr) cinfo->master;
const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
cinfo->comps_in_scan = scanptr->comps_in_scan;
for ( ci = 0; ci < scanptr->comps_in_scan; ci++ ) {
cinfo->cur_comp_info[ci] =
&cinfo->comp_info[scanptr->component_index[ci]];
}
cinfo->Ss = scanptr->Ss;
cinfo->Se = scanptr->Se;
cinfo->Ah = scanptr->Ah;
cinfo->Al = scanptr->Al;
} else
#endif
{
/* Prepare for single sequential-JPEG scan containing all components */
if ( cinfo->num_components > MAX_COMPS_IN_SCAN ) {
ERREXIT2( cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPS_IN_SCAN );
}
cinfo->comps_in_scan = cinfo->num_components;
for ( ci = 0; ci < cinfo->num_components; ci++ ) {
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
}
cinfo->Ss = 0;
cinfo->Se = DCTSIZE2 - 1;
cinfo->Ah = 0;
cinfo->Al = 0;
}
}
LOCAL void
per_scan_setup( j_compress_ptr cinfo ) {
/* Do computations that are needed before processing a JPEG scan */
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
int ci, mcublks, tmp;
jpeg_component_info * compptr;
if ( cinfo->comps_in_scan == 1 ) {
/* Noninterleaved (single-component) scan */
compptr = cinfo->cur_comp_info[0];
/* Overall image size in MCUs */
cinfo->MCUs_per_row = compptr->width_in_blocks;
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
/* For noninterleaved scan, always one block per MCU */
compptr->MCU_width = 1;
compptr->MCU_height = 1;
compptr->MCU_blocks = 1;
compptr->MCU_sample_width = DCTSIZE;
compptr->last_col_width = 1;
/* For noninterleaved scans, it is convenient to define last_row_height
* as the number of block rows present in the last iMCU row.
*/
tmp = (int) ( compptr->height_in_blocks % compptr->v_samp_factor );
if ( tmp == 0 ) {
tmp = compptr->v_samp_factor;
}
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
cinfo->blocks_in_MCU = 1;
cinfo->MCU_membership[0] = 0;
} else {
/* Interleaved (multi-component) scan */
if ( ( cinfo->comps_in_scan <= 0 ) || ( cinfo->comps_in_scan > MAX_COMPS_IN_SCAN ) ) {
ERREXIT2( cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
MAX_COMPS_IN_SCAN );
}
/* Overall image size in MCUs */
cinfo->MCUs_per_row = (JDIMENSION)
jdiv_round_up( (long) cinfo->image_width,
(long) ( cinfo->max_h_samp_factor * DCTSIZE ) );
cinfo->MCU_rows_in_scan = (JDIMENSION)
jdiv_round_up( (long) cinfo->image_height,
(long) ( cinfo->max_v_samp_factor * DCTSIZE ) );
cinfo->blocks_in_MCU = 0;
for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
compptr = cinfo->cur_comp_info[ci];
/* Sampling factors give # of blocks of component in each MCU */
compptr->MCU_width = compptr->h_samp_factor;
compptr->MCU_height = compptr->v_samp_factor;
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE;
/* Figure number of non-dummy blocks in last MCU column & row */
tmp = (int) ( compptr->width_in_blocks % compptr->MCU_width );
if ( tmp == 0 ) {
tmp = compptr->MCU_width;
}
compptr->last_col_width = tmp;
tmp = (int) ( compptr->height_in_blocks % compptr->MCU_height );
if ( tmp == 0 ) {
tmp = compptr->MCU_height;
}
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
mcublks = compptr->MCU_blocks;
if ( cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU ) {
ERREXIT( cinfo, JERR_BAD_MCU_SIZE );
}
while ( mcublks-- > 0 ) {
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
}
}
}
/* Convert restart specified in rows to actual MCU count. */
/* Note that count must fit in 16 bits, so we provide limiting. */
if ( cinfo->restart_in_rows > 0 ) {
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
cinfo->restart_interval = (unsigned int) MIN( nominal, 65535L );
}
}
/*
* Per-pass setup.
* This is called at the beginning of each pass. We determine which modules
* will be active during this pass and give them appropriate start_pass calls.
* We also set is_last_pass to indicate whether any more passes will be
* required.
*/
METHODDEF void
prepare_for_pass( j_compress_ptr cinfo ) {
my_master_ptr master = (my_master_ptr) cinfo->master;
switch ( master->pass_type ) {
case main_pass:
/* Initial pass: will collect input data, and do either Huffman
* optimization or data output for the first scan.
*/
select_scan_parameters( cinfo );
per_scan_setup( cinfo );
if ( !cinfo->raw_data_in ) {
( *cinfo->cconvert->start_pass )( cinfo );
( *cinfo->downsample->start_pass )( cinfo );
( *cinfo->prep->start_pass )( cinfo, JBUF_PASS_THRU );
}
( *cinfo->fdct->start_pass )( cinfo );
( *cinfo->entropy->start_pass )( cinfo, cinfo->optimize_coding );
( *cinfo->coef->start_pass )( cinfo,
( master->total_passes > 1 ?
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU ) );
( *cinfo->main->start_pass )( cinfo, JBUF_PASS_THRU );
if ( cinfo->optimize_coding ) {
/* No immediate data output; postpone writing frame/scan headers */
master->pub.call_pass_startup = FALSE;
} else {
/* Will write frame/scan headers at first jpeg_write_scanlines call */
master->pub.call_pass_startup = TRUE;
}
break;
#ifdef ENTROPY_OPT_SUPPORTED
case huff_opt_pass:
/* Do Huffman optimization for a scan after the first one. */
select_scan_parameters( cinfo );
per_scan_setup( cinfo );
if ( ( cinfo->Ss != 0 ) || ( cinfo->Ah == 0 ) || ( cinfo->arith_code ) ) {
( *cinfo->entropy->start_pass )( cinfo, TRUE );
( *cinfo->coef->start_pass )( cinfo, JBUF_CRANK_DEST );
master->pub.call_pass_startup = FALSE;
break;
}
/* Special case: Huffman DC refinement scans need no Huffman table
* and therefore we can skip the optimization pass for them.
*/
master->pass_type = output_pass;
master->pass_number++;
/*FALLTHROUGH*/
#endif
case output_pass:
/* Do a data-output pass. */
/* We need not repeat per-scan setup if prior optimization pass did it. */
if ( !cinfo->optimize_coding ) {
select_scan_parameters( cinfo );
per_scan_setup( cinfo );
}
( *cinfo->entropy->start_pass )( cinfo, FALSE );
( *cinfo->coef->start_pass )( cinfo, JBUF_CRANK_DEST );
/* We emit frame/scan headers now */
if ( master->scan_number == 0 ) {
( *cinfo->marker->write_frame_header )( cinfo );
}
( *cinfo->marker->write_scan_header )( cinfo );
master->pub.call_pass_startup = FALSE;
break;
default:
ERREXIT( cinfo, JERR_NOT_COMPILED );
}
master->pub.is_last_pass = ( master->pass_number == master->total_passes - 1 );
/* Set up progress monitor's pass info if present */
if ( cinfo->progress != NULL ) {
cinfo->progress->completed_passes = master->pass_number;
cinfo->progress->total_passes = master->total_passes;
}
}
/*
* Special start-of-pass hook.
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
* In single-pass processing, we need this hook because we don't want to
* write frame/scan headers during jpeg_start_compress; we want to let the
* application write COM markers etc. between jpeg_start_compress and the
* jpeg_write_scanlines loop.
* In multi-pass processing, this routine is not used.
*/
METHODDEF void
pass_startup( j_compress_ptr cinfo ) {
cinfo->master->call_pass_startup = FALSE;/* reset flag so call only once */
( *cinfo->marker->write_frame_header )( cinfo );
( *cinfo->marker->write_scan_header )( cinfo );
}
/*
* Finish up at end of pass.
*/
METHODDEF void
finish_pass_master( j_compress_ptr cinfo ) {
my_master_ptr master = (my_master_ptr) cinfo->master;
/* The entropy coder always needs an end-of-pass call,
* either to analyze statistics or to flush its output buffer.
*/
( *cinfo->entropy->finish_pass )( cinfo );
/* Update state for next pass */
switch ( master->pass_type ) {
case main_pass:
/* next pass is either output of scan 0 (after optimization)
* or output of scan 1 (if no optimization).
*/
master->pass_type = output_pass;
if ( !cinfo->optimize_coding ) {
master->scan_number++;
}
break;
case huff_opt_pass:
/* next pass is always output of current scan */
master->pass_type = output_pass;
break;
case output_pass:
/* next pass is either optimization or output of next scan */
if ( cinfo->optimize_coding ) {
master->pass_type = huff_opt_pass;
}
master->scan_number++;
break;
}
master->pass_number++;
}
/*
* Initialize master compression control.
*/
GLOBAL void
jinit_c_master_control( j_compress_ptr cinfo, boolean transcode_only ) {
my_master_ptr master;
master = (my_master_ptr)
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF( my_comp_master ) );
cinfo->master = (struct jpeg_comp_master *) master;
master->pub.prepare_for_pass = prepare_for_pass;
master->pub.pass_startup = pass_startup;
master->pub.finish_pass = finish_pass_master;
master->pub.is_last_pass = FALSE;
/* Validate parameters, determine derived values */
initial_setup( cinfo );
if ( cinfo->scan_info != NULL ) {
#ifdef C_MULTISCAN_FILES_SUPPORTED
validate_script( cinfo );
#else
ERREXIT( cinfo, JERR_NOT_COMPILED );
#endif
} else {
cinfo->progressive_mode = FALSE;
cinfo->num_scans = 1;
}
if ( cinfo->progressive_mode ) {/* TEMPORARY HACK ??? */
cinfo->optimize_coding = TRUE;
} /* assume default tables no good for progressive mode */
/* Initialize my private state */
if ( transcode_only ) {
/* no main pass in transcoding */
if ( cinfo->optimize_coding ) {
master->pass_type = huff_opt_pass;
} else {
master->pass_type = output_pass;
}
} else {
/* for normal compression, first pass is always this type: */
master->pass_type = main_pass;
}
master->scan_number = 0;
master->pass_number = 0;
if ( cinfo->optimize_coding ) {
master->total_passes = cinfo->num_scans * 2;
} else {
master->total_passes = cinfo->num_scans;
}
}