doom3-bfg/base/renderprogs/interactionSM.vertex
Robert Beckebans 277964f074 Because I can :)
- Implemented soft shadows using PCF hardware shadow mapping

  The implementation uses sampler2DArrayShadow and PCF which usually
  requires Direct3D 10.1 however it is in the OpenGL 3.2 core so it should
  be widely supported.
  All 3 light types are supported which means parallel lights (sun) use
  scene independent cascaded shadow mapping.
  The implementation is very fast with single taps (400 fps average per
  scene on a GTX 660 ti OC) however I defaulted it to 16 taps so the shadows look
  really good which should you give stable 100 fps on todays hardware.

  The shadow filtering algorithm is based on Carmack's research which was
  released in the original Doom 3 GPL release draw_exp.cpp.

- Changed interaction shaders to use Half-Lambert lighting like in HL2 to
  make the game less dark

- Fixed some of the renderer debugging/development tools like r_showTris
2014-05-10 14:40:01 +02:00

221 lines
No EOL
8 KiB
Text

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2014 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "renderprogs/global.inc"
#if defined( USE_GPU_SKINNING )
uniform matrices_ubo { float4 matrices[408]; };
#endif
struct VS_IN {
float4 position : POSITION;
float2 texcoord : TEXCOORD0;
float4 normal : NORMAL;
float4 tangent : TANGENT;
float4 color : COLOR0;
float4 color2 : COLOR1;
};
struct VS_OUT {
float4 position : POSITION;
float4 texcoord0 : TEXCOORD0;
float4 texcoord1 : TEXCOORD1;
float4 texcoord2 : TEXCOORD2;
float4 texcoord3 : TEXCOORD3;
float4 texcoord4 : TEXCOORD4;
float4 texcoord5 : TEXCOORD5;
float4 texcoord6 : TEXCOORD6;
float4 texcoord7 : TEXCOORD7;
float4 texcoord8 : TEXCOORD8;
float4 texcoord9 : TEXCOORD9;
float4 color : COLOR0;
};
void main( VS_IN vertex, out VS_OUT result ) {
float4 vNormal = vertex.normal * 2.0 - 1.0;
float4 vTangent = vertex.tangent * 2.0 - 1.0;
float3 vBitangent = cross( vNormal.xyz, vTangent.xyz ) * vTangent.w;
#if defined( USE_GPU_SKINNING )
//--------------------------------------------------------------
// GPU transformation of the normal / tangent / bitangent
//
// multiplying with 255.1 give us the same result and is faster than floor( w * 255 + 0.5 )
//--------------------------------------------------------------
const float w0 = vertex.color2.x;
const float w1 = vertex.color2.y;
const float w2 = vertex.color2.z;
const float w3 = vertex.color2.w;
float4 matX, matY, matZ; // must be float4 for vec4
float joint = vertex.color.x * 255.1 * 3;
matX = matrices[int(joint+0)] * w0;
matY = matrices[int(joint+1)] * w0;
matZ = matrices[int(joint+2)] * w0;
joint = vertex.color.y * 255.1 * 3;
matX += matrices[int(joint+0)] * w1;
matY += matrices[int(joint+1)] * w1;
matZ += matrices[int(joint+2)] * w1;
joint = vertex.color.z * 255.1 * 3;
matX += matrices[int(joint+0)] * w2;
matY += matrices[int(joint+1)] * w2;
matZ += matrices[int(joint+2)] * w2;
joint = vertex.color.w * 255.1 * 3;
matX += matrices[int(joint+0)] * w3;
matY += matrices[int(joint+1)] * w3;
matZ += matrices[int(joint+2)] * w3;
float3 normal;
normal.x = dot3( matX, vNormal );
normal.y = dot3( matY, vNormal );
normal.z = dot3( matZ, vNormal );
normal = normalize( normal );
float3 tangent;
tangent.x = dot3( matX, vTangent );
tangent.y = dot3( matY, vTangent );
tangent.z = dot3( matZ, vTangent );
tangent = normalize( tangent );
float3 bitangent;
bitangent.x = dot3( matX, vBitangent );
bitangent.y = dot3( matY, vBitangent );
bitangent.z = dot3( matZ, vBitangent );
bitangent = normalize( bitangent );
float4 modelPosition;
modelPosition.x = dot4( matX, vertex.position );
modelPosition.y = dot4( matY, vertex.position );
modelPosition.z = dot4( matZ, vertex.position );
modelPosition.w = 1.0;
#else
float4 modelPosition = vertex.position;
float3 normal = vNormal.xyz;
float3 tangent = vTangent.xyz;
float3 bitangent = vBitangent.xyz;
#endif
result.position.x = dot4( modelPosition, rpMVPmatrixX );
result.position.y = dot4( modelPosition, rpMVPmatrixY );
result.position.z = dot4( modelPosition, rpMVPmatrixZ );
result.position.w = dot4( modelPosition, rpMVPmatrixW );
float4 defaultTexCoord = float4( 0.0f, 0.5f, 0.0f, 1.0f );
//calculate vector to light
float4 toLightLocal = rpLocalLightOrigin - modelPosition;
//--------------------------------------------------------------
//result.texcoord0 is the direction to the light in tangent space
result.texcoord0.x = dot3( tangent, toLightLocal );
result.texcoord0.y = dot3( bitangent, toLightLocal );
result.texcoord0.z = dot3( normal, toLightLocal );
result.texcoord0.w = 1.0f;
//textures 1 takes the base coordinates by the texture matrix
result.texcoord1 = defaultTexCoord;
result.texcoord1.x = dot4( vertex.texcoord.xy, rpBumpMatrixS );
result.texcoord1.y = dot4( vertex.texcoord.xy, rpBumpMatrixT );
//# texture 2 has one texgen
result.texcoord2 = defaultTexCoord;
result.texcoord2.x = dot4( modelPosition, rpLightFalloffS );
//# texture 3 has three texgens
result.texcoord3.x = dot4( modelPosition, rpLightProjectionS );
result.texcoord3.y = dot4( modelPosition, rpLightProjectionT );
result.texcoord3.z = 0.0f;
result.texcoord3.w = dot4( modelPosition, rpLightProjectionQ );
//# textures 4 takes the base coordinates by the texture matrix
result.texcoord4 = defaultTexCoord;
result.texcoord4.x = dot4( vertex.texcoord.xy, rpDiffuseMatrixS );
result.texcoord4.y = dot4( vertex.texcoord.xy, rpDiffuseMatrixT );
//# textures 5 takes the base coordinates by the texture matrix
result.texcoord5 = defaultTexCoord;
result.texcoord5.x = dot4( vertex.texcoord.xy, rpSpecularMatrixS );
result.texcoord5.y = dot4( vertex.texcoord.xy, rpSpecularMatrixT );
//# texture 6's texcoords will be the halfangle in texture space
//# calculate normalized vector to light in R0
toLightLocal = normalize( toLightLocal );
//# calculate normalized vector to viewer in R1
float4 toView = normalize( rpLocalViewOrigin - modelPosition );
//# add together to become the half angle vector in object space (non-normalized)
float4 halfAngleVector = toLightLocal + toView;
//# put into texture space
result.texcoord6.x = dot3( tangent, halfAngleVector );
result.texcoord6.y = dot3( bitangent, halfAngleVector );
result.texcoord6.z = dot3( normal, halfAngleVector );
result.texcoord6.w = 1.0f;
result.texcoord7 = modelPosition;
float4 worldPosition;
worldPosition.x = dot4( modelPosition, rpModelMatrixX );
worldPosition.y = dot4( modelPosition, rpModelMatrixY );
worldPosition.z = dot4( modelPosition, rpModelMatrixZ );
worldPosition.w = dot4( modelPosition, rpModelMatrixW );
float4 toLightGlobal = rpGlobalLightOrigin - worldPosition;
result.texcoord8 = toLightGlobal;
float4 viewPosition;
viewPosition.x = dot4( modelPosition, rpModelViewMatrixX );
viewPosition.y = dot4( modelPosition, rpModelViewMatrixY );
viewPosition.z = dot4( modelPosition, rpModelViewMatrixZ );
viewPosition.w = dot4( modelPosition, rpModelViewMatrixW );
result.texcoord9 = viewPosition;
#if defined( USE_GPU_SKINNING )
// for joint transformation of the tangent space, we use color and
// color2 for weighting information, so hopefully there aren't any
// effects that need vertex color...
result.color = float4( 1.0f, 1.0f, 1.0f, 1.0f );
#else
//# generate the vertex color, which can be 1.0, color, or 1.0 - color
//# for 1.0 : env[16] = 0, env[17] = 1
//# for color : env[16] = 1, env[17] = 0
//# for 1.0-color : env[16] = -1, env[17] = 1
result.color = ( swizzleColor( vertex.color ) * rpVertexColorModulate ) + rpVertexColorAdd;
#endif
}