doom3-bfg/neo/renderer/tr_backend_draw.cpp

3272 lines
99 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2013 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "precompiled.h"
#include "tr_local.h"
idCVar r_drawEyeColor( "r_drawEyeColor", "0", CVAR_RENDERER | CVAR_BOOL, "Draw a colored box, red = left eye, blue = right eye, grey = non-stereo" );
idCVar r_motionBlur( "r_motionBlur", "0", CVAR_RENDERER | CVAR_INTEGER | CVAR_ARCHIVE, "1 - 5, log2 of the number of motion blur samples" );
idCVar r_forceZPassStencilShadows( "r_forceZPassStencilShadows", "0", CVAR_RENDERER | CVAR_BOOL, "force Z-pass rendering for performance testing" );
idCVar r_useStencilShadowPreload( "r_useStencilShadowPreload", "1", CVAR_RENDERER | CVAR_BOOL, "use stencil shadow preload algorithm instead of Z-fail" );
idCVar r_skipShaderPasses( "r_skipShaderPasses", "0", CVAR_RENDERER | CVAR_BOOL, "" );
idCVar r_skipInteractionFastPath( "r_skipInteractionFastPath", "1", CVAR_RENDERER | CVAR_BOOL, "" );
idCVar r_useLightStencilSelect( "r_useLightStencilSelect", "0", CVAR_RENDERER | CVAR_BOOL, "use stencil select pass" );
extern idCVar stereoRender_swapEyes;
backEndState_t backEnd;
/*
================
SetVertexParm
================
*/
static ID_INLINE void SetVertexParm( renderParm_t rp, const float* value )
{
renderProgManager.SetUniformValue( rp, value );
}
/*
================
SetVertexParms
================
*/
static ID_INLINE void SetVertexParms( renderParm_t rp, const float* value, int num )
{
for( int i = 0; i < num; i++ )
{
renderProgManager.SetUniformValue( ( renderParm_t )( rp + i ), value + ( i * 4 ) );
}
}
/*
================
SetFragmentParm
================
*/
static ID_INLINE void SetFragmentParm( renderParm_t rp, const float* value )
{
renderProgManager.SetUniformValue( rp, value );
}
/*
================
RB_SetMVP
================
*/
void RB_SetMVP( const idRenderMatrix& mvp )
{
SetVertexParms( RENDERPARM_MVPMATRIX_X, mvp[0], 4 );
}
/*
================
RB_SetMVPWithStereoOffset
================
*/
static void RB_SetMVPWithStereoOffset( const idRenderMatrix& mvp, const float stereoOffset )
{
idRenderMatrix offset = mvp;
offset[0][3] += stereoOffset;
SetVertexParms( RENDERPARM_MVPMATRIX_X, offset[0], 4 );
}
static const float zero[4] = { 0, 0, 0, 0 };
static const float one[4] = { 1, 1, 1, 1 };
static const float negOne[4] = { -1, -1, -1, -1 };
/*
================
RB_SetVertexColorParms
================
*/
static void RB_SetVertexColorParms( stageVertexColor_t svc )
{
switch( svc )
{
case SVC_IGNORE:
SetVertexParm( RENDERPARM_VERTEXCOLOR_MODULATE, zero );
SetVertexParm( RENDERPARM_VERTEXCOLOR_ADD, one );
break;
case SVC_MODULATE:
SetVertexParm( RENDERPARM_VERTEXCOLOR_MODULATE, one );
SetVertexParm( RENDERPARM_VERTEXCOLOR_ADD, zero );
break;
case SVC_INVERSE_MODULATE:
SetVertexParm( RENDERPARM_VERTEXCOLOR_MODULATE, negOne );
SetVertexParm( RENDERPARM_VERTEXCOLOR_ADD, one );
break;
}
}
/*
================
RB_DrawElementsWithCounters
================
*/
void RB_DrawElementsWithCounters( const drawSurf_t* surf )
{
// get vertex buffer
const vertCacheHandle_t vbHandle = surf->ambientCache;
idVertexBuffer* vertexBuffer;
if( vertexCache.CacheIsStatic( vbHandle ) )
{
vertexBuffer = &vertexCache.staticData.vertexBuffer;
}
else
{
const uint64 frameNum = ( int )( vbHandle >> VERTCACHE_FRAME_SHIFT ) & VERTCACHE_FRAME_MASK;
if( frameNum != ( ( vertexCache.currentFrame - 1 ) & VERTCACHE_FRAME_MASK ) )
{
idLib::Warning( "RB_DrawElementsWithCounters, vertexBuffer == NULL" );
return;
}
vertexBuffer = &vertexCache.frameData[vertexCache.drawListNum].vertexBuffer;
}
const int vertOffset = ( int )( vbHandle >> VERTCACHE_OFFSET_SHIFT ) & VERTCACHE_OFFSET_MASK;
// get index buffer
const vertCacheHandle_t ibHandle = surf->indexCache;
idIndexBuffer* indexBuffer;
if( vertexCache.CacheIsStatic( ibHandle ) )
{
indexBuffer = &vertexCache.staticData.indexBuffer;
}
else
{
const uint64 frameNum = ( int )( ibHandle >> VERTCACHE_FRAME_SHIFT ) & VERTCACHE_FRAME_MASK;
if( frameNum != ( ( vertexCache.currentFrame - 1 ) & VERTCACHE_FRAME_MASK ) )
{
idLib::Warning( "RB_DrawElementsWithCounters, indexBuffer == NULL" );
return;
}
indexBuffer = &vertexCache.frameData[vertexCache.drawListNum].indexBuffer;
}
// RB: 64 bit fixes, changed int to GLintptrARB
const GLintptrARB indexOffset = ( GLintptrARB )( ibHandle >> VERTCACHE_OFFSET_SHIFT ) & VERTCACHE_OFFSET_MASK;
// RB end
RENDERLOG_PRINTF( "Binding Buffers: %p:%i %p:%i\n", vertexBuffer, vertOffset, indexBuffer, indexOffset );
if( surf->jointCache )
{
if( !verify( renderProgManager.ShaderUsesJoints() ) )
{
return;
}
}
else
{
if( !verify( !renderProgManager.ShaderUsesJoints() || renderProgManager.ShaderHasOptionalSkinning() ) )
{
return;
}
}
if( surf->jointCache )
{
idJointBuffer jointBuffer;
if( !vertexCache.GetJointBuffer( surf->jointCache, &jointBuffer ) )
{
idLib::Warning( "RB_DrawElementsWithCounters, jointBuffer == NULL" );
return;
}
assert( ( jointBuffer.GetOffset() & ( glConfig.uniformBufferOffsetAlignment - 1 ) ) == 0 );
// RB: 64 bit fixes, changed GLuint to GLintptrARB
const GLintptrARB ubo = reinterpret_cast< GLintptrARB >( jointBuffer.GetAPIObject() );
// RB end
qglBindBufferRange( GL_UNIFORM_BUFFER, 0, ubo, jointBuffer.GetOffset(), jointBuffer.GetNumJoints() * sizeof( idJointMat ) );
}
renderProgManager.CommitUniforms();
// RB: 64 bit fixes, changed GLuint to GLintptrARB
if( backEnd.glState.currentIndexBuffer != ( GLintptrARB )indexBuffer->GetAPIObject() || !r_useStateCaching.GetBool() )
{
qglBindBufferARB( GL_ELEMENT_ARRAY_BUFFER_ARB, ( GLintptrARB )indexBuffer->GetAPIObject() );
backEnd.glState.currentIndexBuffer = ( GLintptrARB )indexBuffer->GetAPIObject();
}
if( ( backEnd.glState.vertexLayout != LAYOUT_DRAW_VERT ) || ( backEnd.glState.currentVertexBuffer != ( GLintptrARB )vertexBuffer->GetAPIObject() ) || !r_useStateCaching.GetBool() )
{
qglBindBufferARB( GL_ARRAY_BUFFER_ARB, ( GLintptrARB )vertexBuffer->GetAPIObject() );
backEnd.glState.currentVertexBuffer = ( GLintptrARB )vertexBuffer->GetAPIObject();
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_VERTEX );
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_NORMAL );
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_COLOR );
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_COLOR2 );
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_ST );
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_TANGENT );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof( idDrawVert ), ( void* )( DRAWVERT_XYZ_OFFSET ) );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_NORMAL, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof( idDrawVert ), ( void* )( DRAWVERT_NORMAL_OFFSET ) );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof( idDrawVert ), ( void* )( DRAWVERT_COLOR_OFFSET ) );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_COLOR2, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof( idDrawVert ), ( void* )( DRAWVERT_COLOR2_OFFSET ) );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_ST, 2, GL_HALF_FLOAT, GL_TRUE, sizeof( idDrawVert ), ( void* )( DRAWVERT_ST_OFFSET ) );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_TANGENT, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof( idDrawVert ), ( void* )( DRAWVERT_TANGENT_OFFSET ) );
backEnd.glState.vertexLayout = LAYOUT_DRAW_VERT;
}
// RB end
qglDrawElementsBaseVertex( GL_TRIANGLES,
r_singleTriangle.GetBool() ? 3 : surf->numIndexes,
GL_INDEX_TYPE,
( triIndex_t* )indexOffset,
vertOffset / sizeof( idDrawVert ) );
}
/*
======================
RB_GetShaderTextureMatrix
======================
*/
static void RB_GetShaderTextureMatrix( const float* shaderRegisters, const textureStage_t* texture, float matrix[16] )
{
matrix[0 * 4 + 0] = shaderRegisters[ texture->matrix[0][0] ];
matrix[1 * 4 + 0] = shaderRegisters[ texture->matrix[0][1] ];
matrix[2 * 4 + 0] = 0.0f;
matrix[3 * 4 + 0] = shaderRegisters[ texture->matrix[0][2] ];
matrix[0 * 4 + 1] = shaderRegisters[ texture->matrix[1][0] ];
matrix[1 * 4 + 1] = shaderRegisters[ texture->matrix[1][1] ];
matrix[2 * 4 + 1] = 0.0f;
matrix[3 * 4 + 1] = shaderRegisters[ texture->matrix[1][2] ];
// we attempt to keep scrolls from generating incredibly large texture values, but
// center rotations and center scales can still generate offsets that need to be > 1
if( matrix[3 * 4 + 0] < -40.0f || matrix[12] > 40.0f )
{
matrix[3 * 4 + 0] -= ( int )matrix[3 * 4 + 0];
}
if( matrix[13] < -40.0f || matrix[13] > 40.0f )
{
matrix[13] -= ( int )matrix[13];
}
matrix[0 * 4 + 2] = 0.0f;
matrix[1 * 4 + 2] = 0.0f;
matrix[2 * 4 + 2] = 1.0f;
matrix[3 * 4 + 2] = 0.0f;
matrix[0 * 4 + 3] = 0.0f;
matrix[1 * 4 + 3] = 0.0f;
matrix[2 * 4 + 3] = 0.0f;
matrix[3 * 4 + 3] = 1.0f;
}
/*
======================
RB_LoadShaderTextureMatrix
======================
*/
static void RB_LoadShaderTextureMatrix( const float* shaderRegisters, const textureStage_t* texture )
{
float texS[4] = { 1.0f, 0.0f, 0.0f, 0.0f };
float texT[4] = { 0.0f, 1.0f, 0.0f, 0.0f };
if( texture->hasMatrix )
{
float matrix[16];
RB_GetShaderTextureMatrix( shaderRegisters, texture, matrix );
texS[0] = matrix[0 * 4 + 0];
texS[1] = matrix[1 * 4 + 0];
texS[2] = matrix[2 * 4 + 0];
texS[3] = matrix[3 * 4 + 0];
texT[0] = matrix[0 * 4 + 1];
texT[1] = matrix[1 * 4 + 1];
texT[2] = matrix[2 * 4 + 1];
texT[3] = matrix[3 * 4 + 1];
RENDERLOG_PRINTF( "Setting Texture Matrix\n" );
renderLog.Indent();
RENDERLOG_PRINTF( "Texture Matrix S : %4.3f, %4.3f, %4.3f, %4.3f\n", texS[0], texS[1], texS[2], texS[3] );
RENDERLOG_PRINTF( "Texture Matrix T : %4.3f, %4.3f, %4.3f, %4.3f\n", texT[0], texT[1], texT[2], texT[3] );
renderLog.Outdent();
}
SetVertexParm( RENDERPARM_TEXTUREMATRIX_S, texS );
SetVertexParm( RENDERPARM_TEXTUREMATRIX_T, texT );
}
/*
=====================
RB_BakeTextureMatrixIntoTexgen
=====================
*/
static void RB_BakeTextureMatrixIntoTexgen( idPlane lightProject[3], const float* textureMatrix )
{
float genMatrix[16];
float final[16];
genMatrix[0 * 4 + 0] = lightProject[0][0];
genMatrix[1 * 4 + 0] = lightProject[0][1];
genMatrix[2 * 4 + 0] = lightProject[0][2];
genMatrix[3 * 4 + 0] = lightProject[0][3];
genMatrix[0 * 4 + 1] = lightProject[1][0];
genMatrix[1 * 4 + 1] = lightProject[1][1];
genMatrix[2 * 4 + 1] = lightProject[1][2];
genMatrix[3 * 4 + 1] = lightProject[1][3];
genMatrix[0 * 4 + 2] = 0.0f;
genMatrix[1 * 4 + 2] = 0.0f;
genMatrix[2 * 4 + 2] = 0.0f;
genMatrix[3 * 4 + 2] = 0.0f;
genMatrix[0 * 4 + 3] = lightProject[2][0];
genMatrix[1 * 4 + 3] = lightProject[2][1];
genMatrix[2 * 4 + 3] = lightProject[2][2];
genMatrix[3 * 4 + 3] = lightProject[2][3];
R_MatrixMultiply( genMatrix, textureMatrix, final );
lightProject[0][0] = final[0 * 4 + 0];
lightProject[0][1] = final[1 * 4 + 0];
lightProject[0][2] = final[2 * 4 + 0];
lightProject[0][3] = final[3 * 4 + 0];
lightProject[1][0] = final[0 * 4 + 1];
lightProject[1][1] = final[1 * 4 + 1];
lightProject[1][2] = final[2 * 4 + 1];
lightProject[1][3] = final[3 * 4 + 1];
}
/*
======================
RB_BindVariableStageImage
Handles generating a cinematic frame if needed
======================
*/
static void RB_BindVariableStageImage( const textureStage_t* texture, const float* shaderRegisters )
{
if( texture->cinematic )
{
cinData_t cin;
if( r_skipDynamicTextures.GetBool() )
{
globalImages->defaultImage->Bind();
return;
}
// offset time by shaderParm[7] (FIXME: make the time offset a parameter of the shader?)
// We make no attempt to optimize for multiple identical cinematics being in view, or
// for cinematics going at a lower framerate than the renderer.
cin = texture->cinematic->ImageForTime( backEnd.viewDef->renderView.time[0] + idMath::Ftoi( 1000.0f * backEnd.viewDef->renderView.shaderParms[11] ) );
if( cin.imageY != NULL )
{
GL_SelectTexture( 0 );
cin.imageY->Bind();
GL_SelectTexture( 1 );
cin.imageCr->Bind();
GL_SelectTexture( 2 );
cin.imageCb->Bind();
}
else
{
globalImages->blackImage->Bind();
// because the shaders may have already been set - we need to make sure we are not using a bink shader which would
// display incorrectly. We may want to get rid of RB_BindVariableStageImage and inline the code so that the
// SWF GUI case is handled better, too
renderProgManager.BindShader_TextureVertexColor();
}
}
else
{
// FIXME: see why image is invalid
if( texture->image != NULL )
{
texture->image->Bind();
}
}
}
/*
================
RB_PrepareStageTexturing
================
*/
static void RB_PrepareStageTexturing( const shaderStage_t* pStage, const drawSurf_t* surf )
{
float useTexGenParm[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
// set the texture matrix if needed
RB_LoadShaderTextureMatrix( surf->shaderRegisters, &pStage->texture );
// texgens
if( pStage->texture.texgen == TG_REFLECT_CUBE )
{
// see if there is also a bump map specified
const shaderStage_t* bumpStage = surf->material->GetBumpStage();
if( bumpStage != NULL )
{
// per-pixel reflection mapping with bump mapping
GL_SelectTexture( 1 );
bumpStage->texture.image->Bind();
GL_SelectTexture( 0 );
RENDERLOG_PRINTF( "TexGen: TG_REFLECT_CUBE: Bumpy Environment\n" );
if( surf->jointCache )
{
renderProgManager.BindShader_BumpyEnvironmentSkinned();
}
else
{
renderProgManager.BindShader_BumpyEnvironment();
}
}
else
{
RENDERLOG_PRINTF( "TexGen: TG_REFLECT_CUBE: Environment\n" );
if( surf->jointCache )
{
renderProgManager.BindShader_EnvironmentSkinned();
}
else
{
renderProgManager.BindShader_Environment();
}
}
}
else if( pStage->texture.texgen == TG_SKYBOX_CUBE )
{
renderProgManager.BindShader_SkyBox();
}
else if( pStage->texture.texgen == TG_WOBBLESKY_CUBE )
{
const int* parms = surf->material->GetTexGenRegisters();
float wobbleDegrees = surf->shaderRegisters[ parms[0] ] * ( idMath::PI / 180.0f );
float wobbleSpeed = surf->shaderRegisters[ parms[1] ] * ( 2.0f * idMath::PI / 60.0f );
float rotateSpeed = surf->shaderRegisters[ parms[2] ] * ( 2.0f * idMath::PI / 60.0f );
idVec3 axis[3];
{
// very ad-hoc "wobble" transform
float s, c;
idMath::SinCos( wobbleSpeed * backEnd.viewDef->renderView.time[0] * 0.001f, s, c );
float ws, wc;
idMath::SinCos( wobbleDegrees, ws, wc );
axis[2][0] = ws * c;
axis[2][1] = ws * s;
axis[2][2] = wc;
axis[1][0] = -s * s * ws;
axis[1][2] = -s * ws * ws;
axis[1][1] = idMath::Sqrt( idMath::Fabs( 1.0f - ( axis[1][0] * axis[1][0] + axis[1][2] * axis[1][2] ) ) );
// make the second vector exactly perpendicular to the first
axis[1] -= ( axis[2] * axis[1] ) * axis[2];
axis[1].Normalize();
// construct the third with a cross
axis[0].Cross( axis[1], axis[2] );
}
// add the rotate
float rs, rc;
idMath::SinCos( rotateSpeed * backEnd.viewDef->renderView.time[0] * 0.001f, rs, rc );
float transform[12];
transform[0 * 4 + 0] = axis[0][0] * rc + axis[1][0] * rs;
transform[0 * 4 + 1] = axis[0][1] * rc + axis[1][1] * rs;
transform[0 * 4 + 2] = axis[0][2] * rc + axis[1][2] * rs;
transform[0 * 4 + 3] = 0.0f;
transform[1 * 4 + 0] = axis[1][0] * rc - axis[0][0] * rs;
transform[1 * 4 + 1] = axis[1][1] * rc - axis[0][1] * rs;
transform[1 * 4 + 2] = axis[1][2] * rc - axis[0][2] * rs;
transform[1 * 4 + 3] = 0.0f;
transform[2 * 4 + 0] = axis[2][0];
transform[2 * 4 + 1] = axis[2][1];
transform[2 * 4 + 2] = axis[2][2];
transform[2 * 4 + 3] = 0.0f;
SetVertexParms( RENDERPARM_WOBBLESKY_X, transform, 3 );
renderProgManager.BindShader_WobbleSky();
}
else if( ( pStage->texture.texgen == TG_SCREEN ) || ( pStage->texture.texgen == TG_SCREEN2 ) )
{
useTexGenParm[0] = 1.0f;
useTexGenParm[1] = 1.0f;
useTexGenParm[2] = 1.0f;
useTexGenParm[3] = 1.0f;
float mat[16];
R_MatrixMultiply( surf->space->modelViewMatrix, backEnd.viewDef->projectionMatrix, mat );
RENDERLOG_PRINTF( "TexGen : %s\n", ( pStage->texture.texgen == TG_SCREEN ) ? "TG_SCREEN" : "TG_SCREEN2" );
renderLog.Indent();
float plane[4];
plane[0] = mat[0 * 4 + 0];
plane[1] = mat[1 * 4 + 0];
plane[2] = mat[2 * 4 + 0];
plane[3] = mat[3 * 4 + 0];
SetVertexParm( RENDERPARM_TEXGEN_0_S, plane );
RENDERLOG_PRINTF( "TEXGEN_S = %4.3f, %4.3f, %4.3f, %4.3f\n", plane[0], plane[1], plane[2], plane[3] );
plane[0] = mat[0 * 4 + 1];
plane[1] = mat[1 * 4 + 1];
plane[2] = mat[2 * 4 + 1];
plane[3] = mat[3 * 4 + 1];
SetVertexParm( RENDERPARM_TEXGEN_0_T, plane );
RENDERLOG_PRINTF( "TEXGEN_T = %4.3f, %4.3f, %4.3f, %4.3f\n", plane[0], plane[1], plane[2], plane[3] );
plane[0] = mat[0 * 4 + 3];
plane[1] = mat[1 * 4 + 3];
plane[2] = mat[2 * 4 + 3];
plane[3] = mat[3 * 4 + 3];
SetVertexParm( RENDERPARM_TEXGEN_0_Q, plane );
RENDERLOG_PRINTF( "TEXGEN_Q = %4.3f, %4.3f, %4.3f, %4.3f\n", plane[0], plane[1], plane[2], plane[3] );
renderLog.Outdent();
}
else if( pStage->texture.texgen == TG_DIFFUSE_CUBE )
{
// As far as I can tell, this is never used
idLib::Warning( "Using Diffuse Cube! Please contact Brian!" );
}
else if( pStage->texture.texgen == TG_GLASSWARP )
{
// As far as I can tell, this is never used
idLib::Warning( "Using GlassWarp! Please contact Brian!" );
}
SetVertexParm( RENDERPARM_TEXGEN_0_ENABLED, useTexGenParm );
}
/*
================
RB_FinishStageTexturing
================
*/
static void RB_FinishStageTexturing( const shaderStage_t* pStage, const drawSurf_t* surf )
{
if( pStage->texture.cinematic )
{
// unbind the extra bink textures
GL_SelectTexture( 1 );
globalImages->BindNull();
GL_SelectTexture( 2 );
globalImages->BindNull();
GL_SelectTexture( 0 );
}
if( pStage->texture.texgen == TG_REFLECT_CUBE )
{
// see if there is also a bump map specified
const shaderStage_t* bumpStage = surf->material->GetBumpStage();
if( bumpStage != NULL )
{
// per-pixel reflection mapping with bump mapping
GL_SelectTexture( 1 );
globalImages->BindNull();
GL_SelectTexture( 0 );
}
else
{
// per-pixel reflection mapping without bump mapping
}
renderProgManager.Unbind();
}
}
/*
=========================================================================================
DEPTH BUFFER RENDERING
=========================================================================================
*/
/*
==================
RB_FillDepthBufferGeneric
==================
*/
static void RB_FillDepthBufferGeneric( const drawSurf_t* const* drawSurfs, int numDrawSurfs )
{
for( int i = 0; i < numDrawSurfs; i++ )
{
const drawSurf_t* drawSurf = drawSurfs[i];
const idMaterial* shader = drawSurf->material;
// translucent surfaces don't put anything in the depth buffer and don't
// test against it, which makes them fail the mirror clip plane operation
if( shader->Coverage() == MC_TRANSLUCENT )
{
continue;
}
// get the expressions for conditionals / color / texcoords
const float* regs = drawSurf->shaderRegisters;
// if all stages of a material have been conditioned off, don't do anything
int stage = 0;
for( ; stage < shader->GetNumStages(); stage++ )
{
const shaderStage_t* pStage = shader->GetStage( stage );
// check the stage enable condition
if( regs[ pStage->conditionRegister ] != 0 )
{
break;
}
}
if( stage == shader->GetNumStages() )
{
continue;
}
// change the matrix if needed
if( drawSurf->space != backEnd.currentSpace )
{
RB_SetMVP( drawSurf->space->mvp );
backEnd.currentSpace = drawSurf->space;
}
uint64 surfGLState = 0;
// set polygon offset if necessary
if( shader->TestMaterialFlag( MF_POLYGONOFFSET ) )
{
surfGLState |= GLS_POLYGON_OFFSET;
GL_PolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * shader->GetPolygonOffset() );
}
// subviews will just down-modulate the color buffer
float color[4];
if( shader->GetSort() == SS_SUBVIEW )
{
surfGLState |= GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO | GLS_DEPTHFUNC_LESS;
color[0] = 1.0f;
color[1] = 1.0f;
color[2] = 1.0f;
color[3] = 1.0f;
}
else
{
// others just draw black
color[0] = 0.0f;
color[1] = 0.0f;
color[2] = 0.0f;
color[3] = 1.0f;
}
renderLog.OpenBlock( shader->GetName() );
bool drawSolid = false;
if( shader->Coverage() == MC_OPAQUE )
{
drawSolid = true;
}
else if( shader->Coverage() == MC_PERFORATED )
{
// we may have multiple alpha tested stages
// if the only alpha tested stages are condition register omitted,
// draw a normal opaque surface
bool didDraw = false;
// perforated surfaces may have multiple alpha tested stages
for( stage = 0; stage < shader->GetNumStages(); stage++ )
{
const shaderStage_t* pStage = shader->GetStage( stage );
if( !pStage->hasAlphaTest )
{
continue;
}
// check the stage enable condition
if( regs[ pStage->conditionRegister ] == 0 )
{
continue;
}
// if we at least tried to draw an alpha tested stage,
// we won't draw the opaque surface
didDraw = true;
// set the alpha modulate
color[3] = regs[ pStage->color.registers[3] ];
// skip the entire stage if alpha would be black
if( color[3] <= 0.0f )
{
continue;
}
uint64 stageGLState = surfGLState;
// set privatePolygonOffset if necessary
if( pStage->privatePolygonOffset )
{
GL_PolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * pStage->privatePolygonOffset );
stageGLState |= GLS_POLYGON_OFFSET;
}
GL_Color( color );
#ifdef USE_CORE_PROFILE
GL_State( stageGLState );
idVec4 alphaTestValue( regs[ pStage->alphaTestRegister ] );
SetFragmentParm( RENDERPARM_ALPHA_TEST, alphaTestValue.ToFloatPtr() );
#else
GL_State( stageGLState | GLS_ALPHATEST_FUNC_GREATER | GLS_ALPHATEST_MAKE_REF( idMath::Ftob( 255.0f * regs[ pStage->alphaTestRegister ] ) ) );
#endif
if( drawSurf->jointCache )
{
renderProgManager.BindShader_TextureVertexColorSkinned();
}
else
{
renderProgManager.BindShader_TextureVertexColor();
}
RB_SetVertexColorParms( SVC_IGNORE );
// bind the texture
GL_SelectTexture( 0 );
pStage->texture.image->Bind();
// set texture matrix and texGens
RB_PrepareStageTexturing( pStage, drawSurf );
// must render with less-equal for Z-Cull to work properly
assert( ( GL_GetCurrentState() & GLS_DEPTHFUNC_BITS ) == GLS_DEPTHFUNC_LESS );
// draw it
RB_DrawElementsWithCounters( drawSurf );
// clean up
RB_FinishStageTexturing( pStage, drawSurf );
// unset privatePolygonOffset if necessary
if( pStage->privatePolygonOffset )
{
GL_PolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * shader->GetPolygonOffset() );
}
}
if( !didDraw )
{
drawSolid = true;
}
}
// draw the entire surface solid
if( drawSolid )
{
if( shader->GetSort() == SS_SUBVIEW )
{
renderProgManager.BindShader_Color();
GL_Color( color );
GL_State( surfGLState );
}
else
{
if( drawSurf->jointCache )
{
renderProgManager.BindShader_DepthSkinned();
}
else
{
renderProgManager.BindShader_Depth();
}
GL_State( surfGLState | GLS_ALPHAMASK );
}
// must render with less-equal for Z-Cull to work properly
assert( ( GL_GetCurrentState() & GLS_DEPTHFUNC_BITS ) == GLS_DEPTHFUNC_LESS );
// draw it
RB_DrawElementsWithCounters( drawSurf );
}
renderLog.CloseBlock();
}
#ifdef USE_CORE_PROFILE
SetFragmentParm( RENDERPARM_ALPHA_TEST, vec4_zero.ToFloatPtr() );
#endif
}
/*
=====================
RB_FillDepthBufferFast
Optimized fast path code.
If there are subview surfaces, they must be guarded in the depth buffer to allow
the mirror / subview to show through underneath the current view rendering.
Surfaces with perforated shaders need the full shader setup done, but should be
drawn after the opaque surfaces.
The bulk of the surfaces should be simple opaque geometry that can be drawn very rapidly.
If there are no subview surfaces, we could clear to black and use fast-Z rendering
on the 360.
=====================
*/
static void RB_FillDepthBufferFast( drawSurf_t** drawSurfs, int numDrawSurfs )
{
if( numDrawSurfs == 0 )
{
return;
}
// if we are just doing 2D rendering, no need to fill the depth buffer
if( backEnd.viewDef->viewEntitys == NULL )
{
return;
}
renderLog.OpenMainBlock( MRB_FILL_DEPTH_BUFFER );
renderLog.OpenBlock( "RB_FillDepthBufferFast" );
GL_StartDepthPass( backEnd.viewDef->scissor );
// force MVP change on first surface
backEnd.currentSpace = NULL;
// draw all the subview surfaces, which will already be at the start of the sorted list,
// with the general purpose path
GL_State( GLS_DEFAULT );
int surfNum;
for( surfNum = 0; surfNum < numDrawSurfs; surfNum++ )
{
if( drawSurfs[surfNum]->material->GetSort() != SS_SUBVIEW )
{
break;
}
RB_FillDepthBufferGeneric( &drawSurfs[surfNum], 1 );
}
const drawSurf_t** perforatedSurfaces = ( const drawSurf_t** )_alloca( numDrawSurfs * sizeof( drawSurf_t* ) );
int numPerforatedSurfaces = 0;
// draw all the opaque surfaces and build up a list of perforated surfaces that
// we will defer drawing until all opaque surfaces are done
GL_State( GLS_DEFAULT );
// continue checking past the subview surfaces
for( ; surfNum < numDrawSurfs; surfNum++ )
{
const drawSurf_t* surf = drawSurfs[ surfNum ];
const idMaterial* shader = surf->material;
// translucent surfaces don't put anything in the depth buffer
if( shader->Coverage() == MC_TRANSLUCENT )
{
continue;
}
if( shader->Coverage() == MC_PERFORATED )
{
// save for later drawing
perforatedSurfaces[ numPerforatedSurfaces ] = surf;
numPerforatedSurfaces++;
continue;
}
// set polygon offset?
// set mvp matrix
if( surf->space != backEnd.currentSpace )
{
RB_SetMVP( surf->space->mvp );
backEnd.currentSpace = surf->space;
}
renderLog.OpenBlock( shader->GetName() );
if( surf->jointCache )
{
renderProgManager.BindShader_DepthSkinned();
}
else
{
renderProgManager.BindShader_Depth();
}
// must render with less-equal for Z-Cull to work properly
assert( ( GL_GetCurrentState() & GLS_DEPTHFUNC_BITS ) == GLS_DEPTHFUNC_LESS );
// draw it solid
RB_DrawElementsWithCounters( surf );
renderLog.CloseBlock();
}
// draw all perforated surfaces with the general code path
if( numPerforatedSurfaces > 0 )
{
RB_FillDepthBufferGeneric( perforatedSurfaces, numPerforatedSurfaces );
}
// Allow platform specific data to be collected after the depth pass.
GL_FinishDepthPass();
renderLog.CloseBlock();
renderLog.CloseMainBlock();
}
/*
=========================================================================================
GENERAL INTERACTION RENDERING
=========================================================================================
*/
const int INTERACTION_TEXUNIT_BUMP = 0;
const int INTERACTION_TEXUNIT_FALLOFF = 1;
const int INTERACTION_TEXUNIT_PROJECTION = 2;
const int INTERACTION_TEXUNIT_DIFFUSE = 3;
const int INTERACTION_TEXUNIT_SPECULAR = 4;
/*
==================
RB_SetupInteractionStage
==================
*/
static void RB_SetupInteractionStage( const shaderStage_t* surfaceStage, const float* surfaceRegs, const float lightColor[4],
idVec4 matrix[2], float color[4] )
{
if( surfaceStage->texture.hasMatrix )
{
matrix[0][0] = surfaceRegs[surfaceStage->texture.matrix[0][0]];
matrix[0][1] = surfaceRegs[surfaceStage->texture.matrix[0][1]];
matrix[0][2] = 0.0f;
matrix[0][3] = surfaceRegs[surfaceStage->texture.matrix[0][2]];
matrix[1][0] = surfaceRegs[surfaceStage->texture.matrix[1][0]];
matrix[1][1] = surfaceRegs[surfaceStage->texture.matrix[1][1]];
matrix[1][2] = 0.0f;
matrix[1][3] = surfaceRegs[surfaceStage->texture.matrix[1][2]];
// we attempt to keep scrolls from generating incredibly large texture values, but
// center rotations and center scales can still generate offsets that need to be > 1
if( matrix[0][3] < -40.0f || matrix[0][3] > 40.0f )
{
matrix[0][3] -= idMath::Ftoi( matrix[0][3] );
}
if( matrix[1][3] < -40.0f || matrix[1][3] > 40.0f )
{
matrix[1][3] -= idMath::Ftoi( matrix[1][3] );
}
}
else
{
matrix[0][0] = 1.0f;
matrix[0][1] = 0.0f;
matrix[0][2] = 0.0f;
matrix[0][3] = 0.0f;
matrix[1][0] = 0.0f;
matrix[1][1] = 1.0f;
matrix[1][2] = 0.0f;
matrix[1][3] = 0.0f;
}
if( color != NULL )
{
for( int i = 0; i < 4; i++ )
{
// clamp here, so cards with a greater range don't look different.
// we could perform overbrighting like we do for lights, but
// it doesn't currently look worth it.
color[i] = idMath::ClampFloat( 0.0f, 1.0f, surfaceRegs[surfaceStage->color.registers[i]] ) * lightColor[i];
}
}
}
/*
=================
RB_DrawSingleInteraction
=================
*/
static void RB_DrawSingleInteraction( drawInteraction_t* din )
{
if( din->bumpImage == NULL )
{
// stage wasn't actually an interaction
return;
}
if( din->diffuseImage == NULL || r_skipDiffuse.GetBool() )
{
// this isn't a YCoCg black, but it doesn't matter, because
// the diffuseColor will also be 0
din->diffuseImage = globalImages->blackImage;
}
if( din->specularImage == NULL || r_skipSpecular.GetBool() || din->ambientLight )
{
din->specularImage = globalImages->blackImage;
}
if( r_skipBump.GetBool() )
{
din->bumpImage = globalImages->flatNormalMap;
}
// if we wouldn't draw anything, don't call the Draw function
const bool diffuseIsBlack = ( din->diffuseImage == globalImages->blackImage )
|| ( ( din->diffuseColor[0] <= 0 ) && ( din->diffuseColor[1] <= 0 ) && ( din->diffuseColor[2] <= 0 ) );
const bool specularIsBlack = ( din->specularImage == globalImages->blackImage )
|| ( ( din->specularColor[0] <= 0 ) && ( din->specularColor[1] <= 0 ) && ( din->specularColor[2] <= 0 ) );
if( diffuseIsBlack && specularIsBlack )
{
return;
}
// bump matrix
SetVertexParm( RENDERPARM_BUMPMATRIX_S, din->bumpMatrix[0].ToFloatPtr() );
SetVertexParm( RENDERPARM_BUMPMATRIX_T, din->bumpMatrix[1].ToFloatPtr() );
// diffuse matrix
SetVertexParm( RENDERPARM_DIFFUSEMATRIX_S, din->diffuseMatrix[0].ToFloatPtr() );
SetVertexParm( RENDERPARM_DIFFUSEMATRIX_T, din->diffuseMatrix[1].ToFloatPtr() );
// specular matrix
SetVertexParm( RENDERPARM_SPECULARMATRIX_S, din->specularMatrix[0].ToFloatPtr() );
SetVertexParm( RENDERPARM_SPECULARMATRIX_T, din->specularMatrix[1].ToFloatPtr() );
RB_SetVertexColorParms( din->vertexColor );
SetFragmentParm( RENDERPARM_DIFFUSEMODIFIER, din->diffuseColor.ToFloatPtr() );
SetFragmentParm( RENDERPARM_SPECULARMODIFIER, din->specularColor.ToFloatPtr() );
// texture 0 will be the per-surface bump map
GL_SelectTexture( INTERACTION_TEXUNIT_BUMP );
din->bumpImage->Bind();
// texture 3 is the per-surface diffuse map
GL_SelectTexture( INTERACTION_TEXUNIT_DIFFUSE );
din->diffuseImage->Bind();
// texture 4 is the per-surface specular map
GL_SelectTexture( INTERACTION_TEXUNIT_SPECULAR );
din->specularImage->Bind();
RB_DrawElementsWithCounters( din->surf );
}
/*
=================
RB_SetupForFastPathInteractions
These are common for all fast path surfaces
=================
*/
static void RB_SetupForFastPathInteractions( const idVec4& diffuseColor, const idVec4& specularColor )
{
const idVec4 sMatrix( 1, 0, 0, 0 );
const idVec4 tMatrix( 0, 1, 0, 0 );
// bump matrix
SetVertexParm( RENDERPARM_BUMPMATRIX_S, sMatrix.ToFloatPtr() );
SetVertexParm( RENDERPARM_BUMPMATRIX_T, tMatrix.ToFloatPtr() );
// diffuse matrix
SetVertexParm( RENDERPARM_DIFFUSEMATRIX_S, sMatrix.ToFloatPtr() );
SetVertexParm( RENDERPARM_DIFFUSEMATRIX_T, tMatrix.ToFloatPtr() );
// specular matrix
SetVertexParm( RENDERPARM_SPECULARMATRIX_S, sMatrix.ToFloatPtr() );
SetVertexParm( RENDERPARM_SPECULARMATRIX_T, tMatrix.ToFloatPtr() );
RB_SetVertexColorParms( SVC_IGNORE );
SetFragmentParm( RENDERPARM_DIFFUSEMODIFIER, diffuseColor.ToFloatPtr() );
SetFragmentParm( RENDERPARM_SPECULARMODIFIER, specularColor.ToFloatPtr() );
}
/*
=============
RB_RenderInteractions
With added sorting and trivial path work.
=============
*/
static void RB_RenderInteractions( const drawSurf_t* surfList, const viewLight_t* vLight, int depthFunc, bool performStencilTest, bool useLightDepthBounds )
{
if( surfList == NULL )
{
return;
}
// change the scissor if needed, it will be constant across all the surfaces lit by the light
if( !backEnd.currentScissor.Equals( vLight->scissorRect ) && r_useScissor.GetBool() )
{
GL_Scissor( backEnd.viewDef->viewport.x1 + vLight->scissorRect.x1,
backEnd.viewDef->viewport.y1 + vLight->scissorRect.y1,
vLight->scissorRect.x2 + 1 - vLight->scissorRect.x1,
vLight->scissorRect.y2 + 1 - vLight->scissorRect.y1 );
backEnd.currentScissor = vLight->scissorRect;
}
// perform setup here that will be constant for all interactions
if( performStencilTest )
{
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHMASK | depthFunc | GLS_STENCIL_FUNC_EQUAL | GLS_STENCIL_MAKE_REF( STENCIL_SHADOW_TEST_VALUE ) | GLS_STENCIL_MAKE_MASK( STENCIL_SHADOW_MASK_VALUE ) );
}
else
{
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHMASK | depthFunc | GLS_STENCIL_FUNC_ALWAYS );
}
// some rare lights have multiple animating stages, loop over them outside the surface list
const idMaterial* lightShader = vLight->lightShader;
const float* lightRegs = vLight->shaderRegisters;
drawInteraction_t inter = {};
inter.ambientLight = lightShader->IsAmbientLight();
//---------------------------------
// Split out the complex surfaces from the fast-path surfaces
// so we can do the fast path ones all in a row.
// The surfaces should already be sorted by space because they
// are added single-threaded, and there is only a negligable amount
// of benefit to trying to sort by materials.
//---------------------------------
static const int MAX_INTERACTIONS_PER_LIGHT = 1024;
static const int MAX_COMPLEX_INTERACTIONS_PER_LIGHT = 128;
idStaticList< const drawSurf_t*, MAX_INTERACTIONS_PER_LIGHT > allSurfaces;
idStaticList< const drawSurf_t*, MAX_COMPLEX_INTERACTIONS_PER_LIGHT > complexSurfaces;
for( const drawSurf_t* walk = surfList; walk != NULL; walk = walk->nextOnLight )
{
// make sure the triangle culling is done
if( walk->shadowVolumeState != SHADOWVOLUME_DONE )
{
assert( walk->shadowVolumeState == SHADOWVOLUME_UNFINISHED || walk->shadowVolumeState == SHADOWVOLUME_DONE );
uint64 start = Sys_Microseconds();
while( walk->shadowVolumeState == SHADOWVOLUME_UNFINISHED )
{
Sys_Yield();
}
uint64 end = Sys_Microseconds();
backEnd.pc.shadowMicroSec += end - start;
}
const idMaterial* surfaceShader = walk->material;
if( surfaceShader->GetFastPathBumpImage() )
{
allSurfaces.Append( walk );
}
else
{
complexSurfaces.Append( walk );
}
}
for( int i = 0; i < complexSurfaces.Num(); i++ )
{
allSurfaces.Append( complexSurfaces[i] );
}
bool lightDepthBoundsDisabled = false;
for( int lightStageNum = 0; lightStageNum < lightShader->GetNumStages(); lightStageNum++ )
{
const shaderStage_t* lightStage = lightShader->GetStage( lightStageNum );
// ignore stages that fail the condition
if( !lightRegs[ lightStage->conditionRegister ] )
{
continue;
}
const float lightScale = r_lightScale.GetFloat();
const idVec4 lightColor(
lightScale * lightRegs[ lightStage->color.registers[0] ],
lightScale * lightRegs[ lightStage->color.registers[1] ],
lightScale * lightRegs[ lightStage->color.registers[2] ],
lightRegs[ lightStage->color.registers[3] ] );
// apply the world-global overbright and the 2x factor for specular
const idVec4 diffuseColor = lightColor;
const idVec4 specularColor = lightColor * 2.0f;
float lightTextureMatrix[16];
if( lightStage->texture.hasMatrix )
{
RB_GetShaderTextureMatrix( lightRegs, &lightStage->texture, lightTextureMatrix );
}
// texture 1 will be the light falloff texture
GL_SelectTexture( INTERACTION_TEXUNIT_FALLOFF );
vLight->falloffImage->Bind();
// texture 2 will be the light projection texture
GL_SelectTexture( INTERACTION_TEXUNIT_PROJECTION );
lightStage->texture.image->Bind();
// force the light textures to not use anisotropic filtering, which is wasted on them
// all of the texture sampler parms should be constant for all interactions, only
// the actual texture image bindings will change
//----------------------------------
// For all surfaces on this light list, generate an interaction for this light stage
//----------------------------------
// setup renderparms assuming we will be drawing trivial surfaces first
RB_SetupForFastPathInteractions( diffuseColor, specularColor );
// even if the space does not change between light stages, each light stage may need a different lightTextureMatrix baked in
backEnd.currentSpace = NULL;
for( int sortedSurfNum = 0; sortedSurfNum < allSurfaces.Num(); sortedSurfNum++ )
{
const drawSurf_t* const surf = allSurfaces[ sortedSurfNum ];
// select the render prog
if( lightShader->IsAmbientLight() )
{
if( surf->jointCache )
{
renderProgManager.BindShader_InteractionAmbientSkinned();
}
else
{
renderProgManager.BindShader_InteractionAmbient();
}
}
else
{
if( surf->jointCache )
{
renderProgManager.BindShader_InteractionSkinned();
}
else
{
renderProgManager.BindShader_Interaction();
}
}
const idMaterial* surfaceShader = surf->material;
const float* surfaceRegs = surf->shaderRegisters;
inter.surf = surf;
// change the MVP matrix, view/light origin and light projection vectors if needed
if( surf->space != backEnd.currentSpace )
{
backEnd.currentSpace = surf->space;
// turn off the light depth bounds test if this model is rendered with a depth hack
if( useLightDepthBounds )
{
if( !surf->space->weaponDepthHack && surf->space->modelDepthHack == 0.0f )
{
if( lightDepthBoundsDisabled )
{
GL_DepthBoundsTest( vLight->scissorRect.zmin, vLight->scissorRect.zmax );
lightDepthBoundsDisabled = false;
}
}
else
{
if( !lightDepthBoundsDisabled )
{
GL_DepthBoundsTest( 0.0f, 0.0f );
lightDepthBoundsDisabled = true;
}
}
}
// model-view-projection
RB_SetMVP( surf->space->mvp );
// tranform the light/view origin into model local space
idVec4 localLightOrigin( 0.0f );
idVec4 localViewOrigin( 1.0f );
R_GlobalPointToLocal( surf->space->modelMatrix, vLight->globalLightOrigin, localLightOrigin.ToVec3() );
R_GlobalPointToLocal( surf->space->modelMatrix, backEnd.viewDef->renderView.vieworg, localViewOrigin.ToVec3() );
// set the local light/view origin
SetVertexParm( RENDERPARM_LOCALLIGHTORIGIN, localLightOrigin.ToFloatPtr() );
SetVertexParm( RENDERPARM_LOCALVIEWORIGIN, localViewOrigin.ToFloatPtr() );
// transform the light project into model local space
idPlane lightProjection[4];
for( int i = 0; i < 4; i++ )
{
R_GlobalPlaneToLocal( surf->space->modelMatrix, vLight->lightProject[i], lightProjection[i] );
}
// optionally multiply the local light projection by the light texture matrix
if( lightStage->texture.hasMatrix )
{
RB_BakeTextureMatrixIntoTexgen( lightProjection, lightTextureMatrix );
}
// set the light projection
SetVertexParm( RENDERPARM_LIGHTPROJECTION_S, lightProjection[0].ToFloatPtr() );
SetVertexParm( RENDERPARM_LIGHTPROJECTION_T, lightProjection[1].ToFloatPtr() );
SetVertexParm( RENDERPARM_LIGHTPROJECTION_Q, lightProjection[2].ToFloatPtr() );
SetVertexParm( RENDERPARM_LIGHTFALLOFF_S, lightProjection[3].ToFloatPtr() );
}
// check for the fast path
if( surfaceShader->GetFastPathBumpImage() && !r_skipInteractionFastPath.GetBool() )
{
renderLog.OpenBlock( surf->material->GetName() );
// texture 0 will be the per-surface bump map
GL_SelectTexture( INTERACTION_TEXUNIT_BUMP );
surfaceShader->GetFastPathBumpImage()->Bind();
// texture 3 is the per-surface diffuse map
GL_SelectTexture( INTERACTION_TEXUNIT_DIFFUSE );
surfaceShader->GetFastPathDiffuseImage()->Bind();
// texture 4 is the per-surface specular map
GL_SelectTexture( INTERACTION_TEXUNIT_SPECULAR );
surfaceShader->GetFastPathSpecularImage()->Bind();
RB_DrawElementsWithCounters( surf );
renderLog.CloseBlock();
continue;
}
renderLog.OpenBlock( surf->material->GetName() );
inter.bumpImage = NULL;
inter.specularImage = NULL;
inter.diffuseImage = NULL;
inter.diffuseColor[0] = inter.diffuseColor[1] = inter.diffuseColor[2] = inter.diffuseColor[3] = 0;
inter.specularColor[0] = inter.specularColor[1] = inter.specularColor[2] = inter.specularColor[3] = 0;
// go through the individual surface stages
//
// This is somewhat arcane because of the old support for video cards that had to render
// interactions in multiple passes.
//
// We also have the very rare case of some materials that have conditional interactions
// for the "hell writing" that can be shined on them.
for( int surfaceStageNum = 0; surfaceStageNum < surfaceShader->GetNumStages(); surfaceStageNum++ )
{
const shaderStage_t* surfaceStage = surfaceShader->GetStage( surfaceStageNum );
switch( surfaceStage->lighting )
{
case SL_COVERAGE:
{
// ignore any coverage stages since they should only be used for the depth fill pass
// for diffuse stages that use alpha test.
break;
}
case SL_AMBIENT:
{
// ignore ambient stages while drawing interactions
break;
}
case SL_BUMP:
{
// ignore stage that fails the condition
if( !surfaceRegs[ surfaceStage->conditionRegister ] )
{
break;
}
// draw any previous interaction
if( inter.bumpImage != NULL )
{
RB_DrawSingleInteraction( &inter );
}
inter.bumpImage = surfaceStage->texture.image;
inter.diffuseImage = NULL;
inter.specularImage = NULL;
RB_SetupInteractionStage( surfaceStage, surfaceRegs, NULL,
inter.bumpMatrix, NULL );
break;
}
case SL_DIFFUSE:
{
// ignore stage that fails the condition
if( !surfaceRegs[ surfaceStage->conditionRegister ] )
{
break;
}
// draw any previous interaction
if( inter.diffuseImage != NULL )
{
RB_DrawSingleInteraction( &inter );
}
inter.diffuseImage = surfaceStage->texture.image;
inter.vertexColor = surfaceStage->vertexColor;
RB_SetupInteractionStage( surfaceStage, surfaceRegs, diffuseColor.ToFloatPtr(),
inter.diffuseMatrix, inter.diffuseColor.ToFloatPtr() );
break;
}
case SL_SPECULAR:
{
// ignore stage that fails the condition
if( !surfaceRegs[ surfaceStage->conditionRegister ] )
{
break;
}
// draw any previous interaction
if( inter.specularImage != NULL )
{
RB_DrawSingleInteraction( &inter );
}
inter.specularImage = surfaceStage->texture.image;
inter.vertexColor = surfaceStage->vertexColor;
RB_SetupInteractionStage( surfaceStage, surfaceRegs, specularColor.ToFloatPtr(),
inter.specularMatrix, inter.specularColor.ToFloatPtr() );
break;
}
}
}
// draw the final interaction
RB_DrawSingleInteraction( &inter );
renderLog.CloseBlock();
}
}
if( useLightDepthBounds && lightDepthBoundsDisabled )
{
GL_DepthBoundsTest( vLight->scissorRect.zmin, vLight->scissorRect.zmax );
}
renderProgManager.Unbind();
}
/*
==============================================================================================
STENCIL SHADOW RENDERING
==============================================================================================
*/
/*
=====================
RB_StencilShadowPass
The stencil buffer should have been set to 128 on any surfaces that might receive shadows.
=====================
*/
static void RB_StencilShadowPass( const drawSurf_t* drawSurfs, const viewLight_t* vLight )
{
if( r_skipShadows.GetBool() )
{
return;
}
if( drawSurfs == NULL )
{
return;
}
RENDERLOG_PRINTF( "---------- RB_StencilShadowPass ----------\n" );
renderProgManager.BindShader_Shadow();
GL_SelectTexture( 0 );
globalImages->BindNull();
uint64 glState = 0;
// for visualizing the shadows
if( r_showShadows.GetInteger() )
{
// set the debug shadow color
SetFragmentParm( RENDERPARM_COLOR, colorMagenta.ToFloatPtr() );
if( r_showShadows.GetInteger() == 2 )
{
// draw filled in
glState = GLS_DEPTHMASK | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_LESS;
}
else
{
// draw as lines, filling the depth buffer
glState = GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO | GLS_POLYMODE_LINE | GLS_DEPTHFUNC_ALWAYS;
}
}
else
{
// don't write to the color or depth buffer, just the stencil buffer
glState = GLS_DEPTHMASK | GLS_COLORMASK | GLS_ALPHAMASK | GLS_DEPTHFUNC_LESS;
}
GL_PolygonOffset( r_shadowPolygonFactor.GetFloat(), -r_shadowPolygonOffset.GetFloat() );
// the actual stencil func will be set in the draw code, but we need to make sure it isn't
// disabled here, and that the value will get reset for the interactions without looking
// like a no-change-required
GL_State( glState | GLS_STENCIL_OP_FAIL_KEEP | GLS_STENCIL_OP_ZFAIL_KEEP | GLS_STENCIL_OP_PASS_INCR |
GLS_STENCIL_MAKE_REF( STENCIL_SHADOW_TEST_VALUE ) | GLS_STENCIL_MAKE_MASK( STENCIL_SHADOW_MASK_VALUE ) | GLS_POLYGON_OFFSET );
// Two Sided Stencil reduces two draw calls to one for slightly faster shadows
GL_Cull( CT_TWO_SIDED );
// process the chain of shadows with the current rendering state
backEnd.currentSpace = NULL;
for( const drawSurf_t* drawSurf = drawSurfs; drawSurf != NULL; drawSurf = drawSurf->nextOnLight )
{
if( drawSurf->scissorRect.IsEmpty() )
{
continue; // !@# FIXME: find out why this is sometimes being hit!
// temporarily jump over the scissor and draw so the gl error callback doesn't get hit
}
// make sure the shadow volume is done
if( drawSurf->shadowVolumeState != SHADOWVOLUME_DONE )
{
assert( drawSurf->shadowVolumeState == SHADOWVOLUME_UNFINISHED || drawSurf->shadowVolumeState == SHADOWVOLUME_DONE );
uint64 start = Sys_Microseconds();
while( drawSurf->shadowVolumeState == SHADOWVOLUME_UNFINISHED )
{
Sys_Yield();
}
uint64 end = Sys_Microseconds();
backEnd.pc.shadowMicroSec += end - start;
}
if( drawSurf->numIndexes == 0 )
{
continue; // a job may have created an empty shadow volume
}
if( !backEnd.currentScissor.Equals( drawSurf->scissorRect ) && r_useScissor.GetBool() )
{
// change the scissor
GL_Scissor( backEnd.viewDef->viewport.x1 + drawSurf->scissorRect.x1,
backEnd.viewDef->viewport.y1 + drawSurf->scissorRect.y1,
drawSurf->scissorRect.x2 + 1 - drawSurf->scissorRect.x1,
drawSurf->scissorRect.y2 + 1 - drawSurf->scissorRect.y1 );
backEnd.currentScissor = drawSurf->scissorRect;
}
if( drawSurf->space != backEnd.currentSpace )
{
// change the matrix
RB_SetMVP( drawSurf->space->mvp );
// set the local light position to allow the vertex program to project the shadow volume end cap to infinity
idVec4 localLight( 0.0f );
R_GlobalPointToLocal( drawSurf->space->modelMatrix, vLight->globalLightOrigin, localLight.ToVec3() );
SetVertexParm( RENDERPARM_LOCALLIGHTORIGIN, localLight.ToFloatPtr() );
backEnd.currentSpace = drawSurf->space;
}
if( r_showShadows.GetInteger() == 0 )
{
if( drawSurf->jointCache )
{
renderProgManager.BindShader_ShadowSkinned();
}
else
{
renderProgManager.BindShader_Shadow();
}
}
else
{
if( drawSurf->jointCache )
{
renderProgManager.BindShader_ShadowDebugSkinned();
}
else
{
renderProgManager.BindShader_ShadowDebug();
}
}
// set depth bounds per shadow
if( r_useShadowDepthBounds.GetBool() )
{
GL_DepthBoundsTest( drawSurf->scissorRect.zmin, drawSurf->scissorRect.zmax );
}
// Determine whether or not the shadow volume needs to be rendered with Z-pass or
// Z-fail. It is worthwhile to spend significant resources to reduce the number of
// cases where shadow volumes need to be rendered with Z-fail because Z-fail
// rendering can be significantly slower even on today's hardware. For instance,
// on NVIDIA hardware Z-fail rendering causes the Z-Cull to be used in reverse:
// Z-near becomes Z-far (trivial accept becomes trivial reject). Using the Z-Cull
// in reverse is far less efficient because the Z-Cull only stores Z-near per 16x16
// pixels while the Z-far is stored per 4x2 pixels. (The Z-near coallesce buffer
// which has 4x4 granularity is only used when updating the depth which is not the
// case for shadow volumes.) Note that it is also important to NOT use a Z-Cull
// reconstruct because that would clear the Z-near of the Z-Cull which results in
// no trivial rejection for Z-fail stencil shadow rendering.
const bool renderZPass = ( drawSurf->renderZFail == 0 ) || r_forceZPassStencilShadows.GetBool();
if( renderZPass )
{
// Z-pass
qglStencilOpSeparate( GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR );
qglStencilOpSeparate( GL_BACK, GL_KEEP, GL_KEEP, GL_DECR );
}
else if( r_useStencilShadowPreload.GetBool() )
{
// preload + Z-pass
qglStencilOpSeparate( GL_FRONT, GL_KEEP, GL_DECR, GL_DECR );
qglStencilOpSeparate( GL_BACK, GL_KEEP, GL_INCR, GL_INCR );
}
else
{
// Z-fail
}
// get vertex buffer
const vertCacheHandle_t vbHandle = drawSurf->shadowCache;
idVertexBuffer* vertexBuffer;
if( vertexCache.CacheIsStatic( vbHandle ) )
{
vertexBuffer = &vertexCache.staticData.vertexBuffer;
}
else
{
const uint64 frameNum = ( int )( vbHandle >> VERTCACHE_FRAME_SHIFT ) & VERTCACHE_FRAME_MASK;
if( frameNum != ( ( vertexCache.currentFrame - 1 ) & VERTCACHE_FRAME_MASK ) )
{
idLib::Warning( "RB_DrawElementsWithCounters, vertexBuffer == NULL" );
continue;
}
vertexBuffer = &vertexCache.frameData[vertexCache.drawListNum].vertexBuffer;
}
const int vertOffset = ( int )( vbHandle >> VERTCACHE_OFFSET_SHIFT ) & VERTCACHE_OFFSET_MASK;
// get index buffer
const vertCacheHandle_t ibHandle = drawSurf->indexCache;
idIndexBuffer* indexBuffer;
if( vertexCache.CacheIsStatic( ibHandle ) )
{
indexBuffer = &vertexCache.staticData.indexBuffer;
}
else
{
const uint64 frameNum = ( int )( ibHandle >> VERTCACHE_FRAME_SHIFT ) & VERTCACHE_FRAME_MASK;
if( frameNum != ( ( vertexCache.currentFrame - 1 ) & VERTCACHE_FRAME_MASK ) )
{
idLib::Warning( "RB_DrawElementsWithCounters, indexBuffer == NULL" );
continue;
}
indexBuffer = &vertexCache.frameData[vertexCache.drawListNum].indexBuffer;
}
const uint64 indexOffset = ( int )( ibHandle >> VERTCACHE_OFFSET_SHIFT ) & VERTCACHE_OFFSET_MASK;
RENDERLOG_PRINTF( "Binding Buffers: %p %p\n", vertexBuffer, indexBuffer );
// RB: 64 bit fixes, changed GLuint to GLintptrARB
if( backEnd.glState.currentIndexBuffer != ( GLintptrARB )indexBuffer->GetAPIObject() || !r_useStateCaching.GetBool() )
{
qglBindBufferARB( GL_ELEMENT_ARRAY_BUFFER_ARB, ( GLintptrARB )indexBuffer->GetAPIObject() );
backEnd.glState.currentIndexBuffer = ( GLintptrARB )indexBuffer->GetAPIObject();
}
if( drawSurf->jointCache )
{
assert( renderProgManager.ShaderUsesJoints() );
idJointBuffer jointBuffer;
if( !vertexCache.GetJointBuffer( drawSurf->jointCache, &jointBuffer ) )
{
idLib::Warning( "RB_DrawElementsWithCounters, jointBuffer == NULL" );
continue;
}
assert( ( jointBuffer.GetOffset() & ( glConfig.uniformBufferOffsetAlignment - 1 ) ) == 0 );
const GLintptrARB ubo = reinterpret_cast< GLintptrARB >( jointBuffer.GetAPIObject() );
qglBindBufferRange( GL_UNIFORM_BUFFER, 0, ubo, jointBuffer.GetOffset(), jointBuffer.GetNumJoints() * sizeof( idJointMat ) );
if( ( backEnd.glState.vertexLayout != LAYOUT_DRAW_SHADOW_VERT_SKINNED ) || ( backEnd.glState.currentVertexBuffer != ( GLintptrARB )vertexBuffer->GetAPIObject() ) || !r_useStateCaching.GetBool() )
{
qglBindBufferARB( GL_ARRAY_BUFFER_ARB, ( GLintptrARB )vertexBuffer->GetAPIObject() );
backEnd.glState.currentVertexBuffer = ( GLintptrARB )vertexBuffer->GetAPIObject();
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_VERTEX );
qglDisableVertexAttribArrayARB( PC_ATTRIB_INDEX_NORMAL );
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_COLOR );
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_COLOR2 );
qglDisableVertexAttribArrayARB( PC_ATTRIB_INDEX_ST );
qglDisableVertexAttribArrayARB( PC_ATTRIB_INDEX_TANGENT );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_VERTEX, 4, GL_FLOAT, GL_FALSE, sizeof( idShadowVertSkinned ), ( void* )( SHADOWVERTSKINNED_XYZW_OFFSET ) );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_COLOR, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof( idShadowVertSkinned ), ( void* )( SHADOWVERTSKINNED_COLOR_OFFSET ) );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_COLOR2, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof( idShadowVertSkinned ), ( void* )( SHADOWVERTSKINNED_COLOR2_OFFSET ) );
backEnd.glState.vertexLayout = LAYOUT_DRAW_SHADOW_VERT_SKINNED;
}
}
else
{
if( ( backEnd.glState.vertexLayout != LAYOUT_DRAW_SHADOW_VERT ) || ( backEnd.glState.currentVertexBuffer != ( GLintptrARB )vertexBuffer->GetAPIObject() ) || !r_useStateCaching.GetBool() )
{
qglBindBufferARB( GL_ARRAY_BUFFER_ARB, ( GLintptrARB )vertexBuffer->GetAPIObject() );
backEnd.glState.currentVertexBuffer = ( GLintptrARB )vertexBuffer->GetAPIObject();
qglEnableVertexAttribArrayARB( PC_ATTRIB_INDEX_VERTEX );
qglDisableVertexAttribArrayARB( PC_ATTRIB_INDEX_NORMAL );
qglDisableVertexAttribArrayARB( PC_ATTRIB_INDEX_COLOR );
qglDisableVertexAttribArrayARB( PC_ATTRIB_INDEX_COLOR2 );
qglDisableVertexAttribArrayARB( PC_ATTRIB_INDEX_ST );
qglDisableVertexAttribArrayARB( PC_ATTRIB_INDEX_TANGENT );
qglVertexAttribPointerARB( PC_ATTRIB_INDEX_VERTEX, 4, GL_FLOAT, GL_FALSE, sizeof( idShadowVert ), ( void* )( SHADOWVERT_XYZW_OFFSET ) );
backEnd.glState.vertexLayout = LAYOUT_DRAW_SHADOW_VERT;
}
}
// RB end
renderProgManager.CommitUniforms();
if( drawSurf->jointCache )
{
qglDrawElementsBaseVertex( GL_TRIANGLES, r_singleTriangle.GetBool() ? 3 : drawSurf->numIndexes, GL_INDEX_TYPE, ( triIndex_t* )indexOffset, vertOffset / sizeof( idShadowVertSkinned ) );
}
else
{
qglDrawElementsBaseVertex( GL_TRIANGLES, r_singleTriangle.GetBool() ? 3 : drawSurf->numIndexes, GL_INDEX_TYPE, ( triIndex_t* )indexOffset, vertOffset / sizeof( idShadowVert ) );
}
if( !renderZPass && r_useStencilShadowPreload.GetBool() )
{
// render again with Z-pass
qglStencilOpSeparate( GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR );
qglStencilOpSeparate( GL_BACK, GL_KEEP, GL_KEEP, GL_DECR );
if( drawSurf->jointCache )
{
qglDrawElementsBaseVertex( GL_TRIANGLES, r_singleTriangle.GetBool() ? 3 : drawSurf->numIndexes, GL_INDEX_TYPE, ( triIndex_t* )indexOffset, vertOffset / sizeof( idShadowVertSkinned ) );
}
else
{
qglDrawElementsBaseVertex( GL_TRIANGLES, r_singleTriangle.GetBool() ? 3 : drawSurf->numIndexes, GL_INDEX_TYPE, ( triIndex_t* )indexOffset, vertOffset / sizeof( idShadowVert ) );
}
}
}
// cleanup the shadow specific rendering state
GL_Cull( CT_FRONT_SIDED );
// reset depth bounds
if( r_useShadowDepthBounds.GetBool() )
{
if( r_useLightDepthBounds.GetBool() )
{
GL_DepthBoundsTest( vLight->scissorRect.zmin, vLight->scissorRect.zmax );
}
else
{
GL_DepthBoundsTest( 0.0f, 0.0f );
}
}
}
/*
==================
RB_StencilSelectLight
Deform the zeroOneCubeModel to exactly cover the light volume. Render the deformed cube model to the stencil buffer in
such a way that only fragments that are directly visible and contained within the volume will be written creating a
mask to be used by the following stencil shadow and draw interaction passes.
==================
*/
static void RB_StencilSelectLight( const viewLight_t* vLight )
{
renderLog.OpenBlock( "Stencil Select" );
// enable the light scissor
if( !backEnd.currentScissor.Equals( vLight->scissorRect ) && r_useScissor.GetBool() )
{
GL_Scissor( backEnd.viewDef->viewport.x1 + vLight->scissorRect.x1,
backEnd.viewDef->viewport.y1 + vLight->scissorRect.y1,
vLight->scissorRect.x2 + 1 - vLight->scissorRect.x1,
vLight->scissorRect.y2 + 1 - vLight->scissorRect.y1 );
backEnd.currentScissor = vLight->scissorRect;
}
// clear stencil buffer to 0 (not drawable)
uint64 glStateMinusStencil = GL_GetCurrentStateMinusStencil();
GL_State( glStateMinusStencil | GLS_STENCIL_FUNC_ALWAYS | GLS_STENCIL_MAKE_REF( STENCIL_SHADOW_TEST_VALUE ) | GLS_STENCIL_MAKE_MASK( STENCIL_SHADOW_MASK_VALUE ) ); // make sure stencil mask passes for the clear
GL_Clear( false, false, true, 0, 0.0f, 0.0f, 0.0f, 0.0f ); // clear to 0 for stencil select
// set the depthbounds
GL_DepthBoundsTest( vLight->scissorRect.zmin, vLight->scissorRect.zmax );
GL_State( GLS_COLORMASK | GLS_ALPHAMASK | GLS_DEPTHMASK | GLS_DEPTHFUNC_LESS | GLS_STENCIL_FUNC_ALWAYS | GLS_STENCIL_MAKE_REF( STENCIL_SHADOW_TEST_VALUE ) | GLS_STENCIL_MAKE_MASK( STENCIL_SHADOW_MASK_VALUE ) );
GL_Cull( CT_TWO_SIDED );
renderProgManager.BindShader_Depth();
// set the matrix for deforming the 'zeroOneCubeModel' into the frustum to exactly cover the light volume
idRenderMatrix invProjectMVPMatrix;
idRenderMatrix::Multiply( backEnd.viewDef->worldSpace.mvp, vLight->inverseBaseLightProject, invProjectMVPMatrix );
RB_SetMVP( invProjectMVPMatrix );
// two-sided stencil test
qglStencilOpSeparate( GL_FRONT, GL_KEEP, GL_REPLACE, GL_ZERO );
qglStencilOpSeparate( GL_BACK, GL_KEEP, GL_ZERO, GL_REPLACE );
RB_DrawElementsWithCounters( &backEnd.zeroOneCubeSurface );
// reset stencil state
GL_Cull( CT_FRONT_SIDED );
renderProgManager.Unbind();
// unset the depthbounds
GL_DepthBoundsTest( 0.0f, 0.0f );
renderLog.CloseBlock();
}
/*
==============================================================================================
DRAW INTERACTIONS
==============================================================================================
*/
/*
==================
RB_DrawInteractions
==================
*/
static void RB_DrawInteractions()
{
if( r_skipInteractions.GetBool() )
{
return;
}
renderLog.OpenMainBlock( MRB_DRAW_INTERACTIONS );
renderLog.OpenBlock( "RB_DrawInteractions" );
GL_SelectTexture( 0 );
const bool useLightDepthBounds = r_useLightDepthBounds.GetBool();
//
// for each light, perform shadowing and adding
//
for( const viewLight_t* vLight = backEnd.viewDef->viewLights; vLight != NULL; vLight = vLight->next )
{
// do fogging later
if( vLight->lightShader->IsFogLight() )
{
continue;
}
if( vLight->lightShader->IsBlendLight() )
{
continue;
}
if( vLight->localInteractions == NULL && vLight->globalInteractions == NULL && vLight->translucentInteractions == NULL )
{
continue;
}
const idMaterial* lightShader = vLight->lightShader;
renderLog.OpenBlock( lightShader->GetName() );
// set the depth bounds for the whole light
if( useLightDepthBounds )
{
GL_DepthBoundsTest( vLight->scissorRect.zmin, vLight->scissorRect.zmax );
}
// only need to clear the stencil buffer and perform stencil testing if there are shadows
const bool performStencilTest = ( vLight->globalShadows != NULL || vLight->localShadows != NULL );
// mirror flips the sense of the stencil select, and I don't want to risk accidentally breaking it
// in the normal case, so simply disable the stencil select in the mirror case
const bool useLightStencilSelect = ( r_useLightStencilSelect.GetBool() && backEnd.viewDef->isMirror == false );
if( performStencilTest )
{
if( useLightStencilSelect )
{
// write a stencil mask for the visible light bounds to hi-stencil
RB_StencilSelectLight( vLight );
}
else
{
// always clear whole S-Cull tiles
idScreenRect rect;
rect.x1 = ( vLight->scissorRect.x1 + 0 ) & ~15;
rect.y1 = ( vLight->scissorRect.y1 + 0 ) & ~15;
rect.x2 = ( vLight->scissorRect.x2 + 15 ) & ~15;
rect.y2 = ( vLight->scissorRect.y2 + 15 ) & ~15;
if( !backEnd.currentScissor.Equals( rect ) && r_useScissor.GetBool() )
{
GL_Scissor( backEnd.viewDef->viewport.x1 + rect.x1,
backEnd.viewDef->viewport.y1 + rect.y1,
rect.x2 + 1 - rect.x1,
rect.y2 + 1 - rect.y1 );
backEnd.currentScissor = rect;
}
GL_State( GLS_DEFAULT ); // make sure stencil mask passes for the clear
GL_Clear( false, false, true, STENCIL_SHADOW_TEST_VALUE, 0.0f, 0.0f, 0.0f, 0.0f );
}
}
if( vLight->globalShadows != NULL )
{
renderLog.OpenBlock( "Global Light Shadows" );
RB_StencilShadowPass( vLight->globalShadows, vLight );
renderLog.CloseBlock();
}
if( vLight->localInteractions != NULL )
{
renderLog.OpenBlock( "Local Light Interactions" );
RB_RenderInteractions( vLight->localInteractions, vLight, GLS_DEPTHFUNC_EQUAL, performStencilTest, useLightDepthBounds );
renderLog.CloseBlock();
}
if( vLight->localShadows != NULL )
{
renderLog.OpenBlock( "Local Light Shadows" );
RB_StencilShadowPass( vLight->localShadows, vLight );
renderLog.CloseBlock();
}
if( vLight->globalInteractions != NULL )
{
renderLog.OpenBlock( "Global Light Interactions" );
RB_RenderInteractions( vLight->globalInteractions, vLight, GLS_DEPTHFUNC_EQUAL, performStencilTest, useLightDepthBounds );
renderLog.CloseBlock();
}
if( vLight->translucentInteractions != NULL && !r_skipTranslucent.GetBool() )
{
renderLog.OpenBlock( "Translucent Interactions" );
// Disable the depth bounds test because translucent surfaces don't work with
// the depth bounds tests since they did not write depth during the depth pass.
if( useLightDepthBounds )
{
GL_DepthBoundsTest( 0.0f, 0.0f );
}
// The depth buffer wasn't filled in for translucent surfaces, so they
// can never be constrained to perforated surfaces with the depthfunc equal.
// Translucent surfaces do not receive shadows. This is a case where a
// shadow buffer solution would work but stencil shadows do not because
// stencil shadows only affect surfaces that contribute to the view depth
// buffer and translucent surfaces do not contribute to the view depth buffer.
RB_RenderInteractions( vLight->translucentInteractions, vLight, GLS_DEPTHFUNC_LESS, false, false );
renderLog.CloseBlock();
}
renderLog.CloseBlock();
}
// disable stencil shadow test
GL_State( GLS_DEFAULT );
// unbind texture units
for( int i = 0; i < 5; i++ )
{
GL_SelectTexture( i );
globalImages->BindNull();
}
GL_SelectTexture( 0 );
// reset depth bounds
if( useLightDepthBounds )
{
GL_DepthBoundsTest( 0.0f, 0.0f );
}
renderLog.CloseBlock();
renderLog.CloseMainBlock();
}
/*
=============================================================================================
NON-INTERACTION SHADER PASSES
=============================================================================================
*/
/*
=====================
RB_DrawShaderPasses
Draw non-light dependent passes
If we are rendering Guis, the drawSurf_t::sort value is a depth offset that can
be multiplied by guiEye for polarity and screenSeparation for scale.
=====================
*/
static int RB_DrawShaderPasses( const drawSurf_t* const* const drawSurfs, const int numDrawSurfs,
const float guiStereoScreenOffset, const int stereoEye )
{
// only obey skipAmbient if we are rendering a view
if( backEnd.viewDef->viewEntitys && r_skipAmbient.GetBool() )
{
return numDrawSurfs;
}
renderLog.OpenBlock( "RB_DrawShaderPasses" );
GL_SelectTexture( 1 );
globalImages->BindNull();
GL_SelectTexture( 0 );
backEnd.currentSpace = ( const viewEntity_t* )1; // using NULL makes /analyze think surf->space needs to be checked...
float currentGuiStereoOffset = 0.0f;
int i = 0;
for( ; i < numDrawSurfs; i++ )
{
const drawSurf_t* surf = drawSurfs[i];
const idMaterial* shader = surf->material;
if( !shader->HasAmbient() )
{
continue;
}
if( shader->IsPortalSky() )
{
continue;
}
// some deforms may disable themselves by setting numIndexes = 0
if( surf->numIndexes == 0 )
{
continue;
}
if( shader->SuppressInSubview() )
{
continue;
}
if( backEnd.viewDef->isXraySubview && surf->space->entityDef )
{
if( surf->space->entityDef->parms.xrayIndex != 2 )
{
continue;
}
}
// we need to draw the post process shaders after we have drawn the fog lights
if( shader->GetSort() >= SS_POST_PROCESS && !backEnd.currentRenderCopied )
{
break;
}
// if we are rendering a 3D view and the surface's eye index doesn't match
// the current view's eye index then we skip the surface
// if the stereoEye value of a surface is 0 then we need to draw it for both eyes.
const int shaderStereoEye = shader->GetStereoEye();
const bool isEyeValid = stereoRender_swapEyes.GetBool() ? ( shaderStereoEye == stereoEye ) : ( shaderStereoEye != stereoEye );
if( ( stereoEye != 0 ) && ( shaderStereoEye != 0 ) && ( isEyeValid ) )
{
continue;
}
renderLog.OpenBlock( shader->GetName() );
// determine the stereoDepth offset
// guiStereoScreenOffset will always be zero for 3D views, so the !=
// check will never force an update due to the current sort value.
const float thisGuiStereoOffset = guiStereoScreenOffset * surf->sort;
// change the matrix and other space related vars if needed
if( surf->space != backEnd.currentSpace || thisGuiStereoOffset != currentGuiStereoOffset )
{
backEnd.currentSpace = surf->space;
currentGuiStereoOffset = thisGuiStereoOffset;
const viewEntity_t* space = backEnd.currentSpace;
if( guiStereoScreenOffset != 0.0f )
{
RB_SetMVPWithStereoOffset( space->mvp, currentGuiStereoOffset );
}
else
{
RB_SetMVP( space->mvp );
}
// set eye position in local space
idVec4 localViewOrigin( 1.0f );
R_GlobalPointToLocal( space->modelMatrix, backEnd.viewDef->renderView.vieworg, localViewOrigin.ToVec3() );
SetVertexParm( RENDERPARM_LOCALVIEWORIGIN, localViewOrigin.ToFloatPtr() );
// set model Matrix
float modelMatrixTranspose[16];
R_MatrixTranspose( space->modelMatrix, modelMatrixTranspose );
SetVertexParms( RENDERPARM_MODELMATRIX_X, modelMatrixTranspose, 4 );
// Set ModelView Matrix
float modelViewMatrixTranspose[16];
R_MatrixTranspose( space->modelViewMatrix, modelViewMatrixTranspose );
SetVertexParms( RENDERPARM_MODELVIEWMATRIX_X, modelViewMatrixTranspose, 4 );
}
// change the scissor if needed
if( !backEnd.currentScissor.Equals( surf->scissorRect ) && r_useScissor.GetBool() )
{
GL_Scissor( backEnd.viewDef->viewport.x1 + surf->scissorRect.x1,
backEnd.viewDef->viewport.y1 + surf->scissorRect.y1,
surf->scissorRect.x2 + 1 - surf->scissorRect.x1,
surf->scissorRect.y2 + 1 - surf->scissorRect.y1 );
backEnd.currentScissor = surf->scissorRect;
}
// get the expressions for conditionals / color / texcoords
const float* regs = surf->shaderRegisters;
// set face culling appropriately
if( surf->space->isGuiSurface )
{
GL_Cull( CT_TWO_SIDED );
}
else
{
GL_Cull( shader->GetCullType() );
}
uint64 surfGLState = surf->extraGLState;
// set polygon offset if necessary
if( shader->TestMaterialFlag( MF_POLYGONOFFSET ) )
{
GL_PolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * shader->GetPolygonOffset() );
surfGLState = GLS_POLYGON_OFFSET;
}
for( int stage = 0; stage < shader->GetNumStages(); stage++ )
{
const shaderStage_t* pStage = shader->GetStage( stage );
// check the enable condition
if( regs[ pStage->conditionRegister ] == 0 )
{
continue;
}
// skip the stages involved in lighting
if( pStage->lighting != SL_AMBIENT )
{
continue;
}
uint64 stageGLState = surfGLState;
if( ( surfGLState & GLS_OVERRIDE ) == 0 )
{
stageGLState |= pStage->drawStateBits;
}
// skip if the stage is ( GL_ZERO, GL_ONE ), which is used for some alpha masks
if( ( stageGLState & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) ) == ( GLS_SRCBLEND_ZERO | GLS_DSTBLEND_ONE ) )
{
continue;
}
// see if we are a new-style stage
newShaderStage_t* newStage = pStage->newStage;
if( newStage != NULL )
{
//--------------------------
//
// new style stages
//
//--------------------------
if( r_skipNewAmbient.GetBool() )
{
continue;
}
renderLog.OpenBlock( "New Shader Stage" );
GL_State( stageGLState );
// RB: CRITICAL BUGFIX: changed newStage->glslProgram to vertexProgram and fragmentProgram
// otherwise it will result in an out of bounds crash in RB_DrawElementsWithCounters
renderProgManager.BindShader( newStage->vertexProgram, newStage->fragmentProgram );
// RB end
for( int j = 0; j < newStage->numVertexParms; j++ )
{
float parm[4];
parm[0] = regs[ newStage->vertexParms[j][0] ];
parm[1] = regs[ newStage->vertexParms[j][1] ];
parm[2] = regs[ newStage->vertexParms[j][2] ];
parm[3] = regs[ newStage->vertexParms[j][3] ];
SetVertexParm( ( renderParm_t )( RENDERPARM_USER + j ), parm );
}
// set rpEnableSkinning if the shader has optional support for skinning
if( surf->jointCache && renderProgManager.ShaderHasOptionalSkinning() )
{
const idVec4 skinningParm( 1.0f );
SetVertexParm( RENDERPARM_ENABLE_SKINNING, skinningParm.ToFloatPtr() );
}
// bind texture units
for( int j = 0; j < newStage->numFragmentProgramImages; j++ )
{
idImage* image = newStage->fragmentProgramImages[j];
if( image != NULL )
{
GL_SelectTexture( j );
image->Bind();
}
}
// draw it
RB_DrawElementsWithCounters( surf );
// unbind texture units
for( int j = 0; j < newStage->numFragmentProgramImages; j++ )
{
idImage* image = newStage->fragmentProgramImages[j];
if( image != NULL )
{
GL_SelectTexture( j );
globalImages->BindNull();
}
}
// clear rpEnableSkinning if it was set
if( surf->jointCache && renderProgManager.ShaderHasOptionalSkinning() )
{
const idVec4 skinningParm( 0.0f );
SetVertexParm( RENDERPARM_ENABLE_SKINNING, skinningParm.ToFloatPtr() );
}
GL_SelectTexture( 0 );
renderProgManager.Unbind();
renderLog.CloseBlock();
continue;
}
//--------------------------
//
// old style stages
//
//--------------------------
// set the color
float color[4];
color[0] = regs[ pStage->color.registers[0] ];
color[1] = regs[ pStage->color.registers[1] ];
color[2] = regs[ pStage->color.registers[2] ];
color[3] = regs[ pStage->color.registers[3] ];
// skip the entire stage if an add would be black
if( ( stageGLState & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) ) == ( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE )
&& color[0] <= 0 && color[1] <= 0 && color[2] <= 0 )
{
continue;
}
// skip the entire stage if a blend would be completely transparent
if( ( stageGLState & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) ) == ( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA )
&& color[3] <= 0 )
{
continue;
}
stageVertexColor_t svc = pStage->vertexColor;
renderLog.OpenBlock( "Old Shader Stage" );
GL_Color( color );
if( surf->space->isGuiSurface )
{
// Force gui surfaces to always be SVC_MODULATE
svc = SVC_MODULATE;
// use special shaders for bink cinematics
if( pStage->texture.cinematic )
{
if( ( stageGLState & GLS_OVERRIDE ) != 0 )
{
// This is a hack... Only SWF Guis set GLS_OVERRIDE
// Old style guis do not, and we don't want them to use the new GUI renederProg
renderProgManager.BindShader_BinkGUI();
}
else
{
renderProgManager.BindShader_Bink();
}
}
else
{
if( ( stageGLState & GLS_OVERRIDE ) != 0 )
{
// This is a hack... Only SWF Guis set GLS_OVERRIDE
// Old style guis do not, and we don't want them to use the new GUI renderProg
renderProgManager.BindShader_GUI();
}
else
{
if( surf->jointCache )
{
renderProgManager.BindShader_TextureVertexColorSkinned();
}
else
{
renderProgManager.BindShader_TextureVertexColor();
}
}
}
}
else if( ( pStage->texture.texgen == TG_SCREEN ) || ( pStage->texture.texgen == TG_SCREEN2 ) )
{
renderProgManager.BindShader_TextureTexGenVertexColor();
}
else if( pStage->texture.cinematic )
{
renderProgManager.BindShader_Bink();
}
else
{
if( surf->jointCache )
{
renderProgManager.BindShader_TextureVertexColorSkinned();
}
else
{
renderProgManager.BindShader_TextureVertexColor();
}
}
RB_SetVertexColorParms( svc );
// bind the texture
RB_BindVariableStageImage( &pStage->texture, regs );
// set privatePolygonOffset if necessary
if( pStage->privatePolygonOffset )
{
GL_PolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * pStage->privatePolygonOffset );
stageGLState |= GLS_POLYGON_OFFSET;
}
// set the state
GL_State( stageGLState );
RB_PrepareStageTexturing( pStage, surf );
// draw it
RB_DrawElementsWithCounters( surf );
RB_FinishStageTexturing( pStage, surf );
// unset privatePolygonOffset if necessary
if( pStage->privatePolygonOffset )
{
GL_PolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * shader->GetPolygonOffset() );
}
renderLog.CloseBlock();
}
renderLog.CloseBlock();
}
GL_Cull( CT_FRONT_SIDED );
GL_Color( 1.0f, 1.0f, 1.0f );
renderLog.CloseBlock();
return i;
}
/*
=============================================================================================
BLEND LIGHT PROJECTION
=============================================================================================
*/
/*
=====================
RB_T_BlendLight
=====================
*/
static void RB_T_BlendLight( const drawSurf_t* drawSurfs, const viewLight_t* vLight )
{
backEnd.currentSpace = NULL;
for( const drawSurf_t* drawSurf = drawSurfs; drawSurf != NULL; drawSurf = drawSurf->nextOnLight )
{
if( drawSurf->scissorRect.IsEmpty() )
{
continue; // !@# FIXME: find out why this is sometimes being hit!
// temporarily jump over the scissor and draw so the gl error callback doesn't get hit
}
if( !backEnd.currentScissor.Equals( drawSurf->scissorRect ) && r_useScissor.GetBool() )
{
// change the scissor
GL_Scissor( backEnd.viewDef->viewport.x1 + drawSurf->scissorRect.x1,
backEnd.viewDef->viewport.y1 + drawSurf->scissorRect.y1,
drawSurf->scissorRect.x2 + 1 - drawSurf->scissorRect.x1,
drawSurf->scissorRect.y2 + 1 - drawSurf->scissorRect.y1 );
backEnd.currentScissor = drawSurf->scissorRect;
}
if( drawSurf->space != backEnd.currentSpace )
{
// change the matrix
RB_SetMVP( drawSurf->space->mvp );
// change the light projection matrix
idPlane lightProjectInCurrentSpace[4];
for( int i = 0; i < 4; i++ )
{
R_GlobalPlaneToLocal( drawSurf->space->modelMatrix, vLight->lightProject[i], lightProjectInCurrentSpace[i] );
}
SetVertexParm( RENDERPARM_TEXGEN_0_S, lightProjectInCurrentSpace[0].ToFloatPtr() );
SetVertexParm( RENDERPARM_TEXGEN_0_T, lightProjectInCurrentSpace[1].ToFloatPtr() );
SetVertexParm( RENDERPARM_TEXGEN_0_Q, lightProjectInCurrentSpace[2].ToFloatPtr() );
SetVertexParm( RENDERPARM_TEXGEN_1_S, lightProjectInCurrentSpace[3].ToFloatPtr() ); // falloff
backEnd.currentSpace = drawSurf->space;
}
RB_DrawElementsWithCounters( drawSurf );
}
}
/*
=====================
RB_BlendLight
Dual texture together the falloff and projection texture with a blend
mode to the framebuffer, instead of interacting with the surface texture
=====================
*/
static void RB_BlendLight( const drawSurf_t* drawSurfs, const drawSurf_t* drawSurfs2, const viewLight_t* vLight )
{
if( drawSurfs == NULL )
{
return;
}
if( r_skipBlendLights.GetBool() )
{
return;
}
renderLog.OpenBlock( vLight->lightShader->GetName() );
const idMaterial* lightShader = vLight->lightShader;
const float* regs = vLight->shaderRegisters;
// texture 1 will get the falloff texture
GL_SelectTexture( 1 );
vLight->falloffImage->Bind();
// texture 0 will get the projected texture
GL_SelectTexture( 0 );
renderProgManager.BindShader_BlendLight();
for( int i = 0; i < lightShader->GetNumStages(); i++ )
{
const shaderStage_t* stage = lightShader->GetStage( i );
if( !regs[ stage->conditionRegister ] )
{
continue;
}
GL_State( GLS_DEPTHMASK | stage->drawStateBits | GLS_DEPTHFUNC_EQUAL );
GL_SelectTexture( 0 );
stage->texture.image->Bind();
if( stage->texture.hasMatrix )
{
RB_LoadShaderTextureMatrix( regs, &stage->texture );
}
// get the modulate values from the light, including alpha, unlike normal lights
float lightColor[4];
lightColor[0] = regs[ stage->color.registers[0] ];
lightColor[1] = regs[ stage->color.registers[1] ];
lightColor[2] = regs[ stage->color.registers[2] ];
lightColor[3] = regs[ stage->color.registers[3] ];
GL_Color( lightColor );
RB_T_BlendLight( drawSurfs, vLight );
RB_T_BlendLight( drawSurfs2, vLight );
}
GL_SelectTexture( 1 );
globalImages->BindNull();
GL_SelectTexture( 0 );
renderProgManager.Unbind();
renderLog.CloseBlock();
}
/*
=========================================================================================================
FOG LIGHTS
=========================================================================================================
*/
/*
=====================
RB_T_BasicFog
=====================
*/
static void RB_T_BasicFog( const drawSurf_t* drawSurfs, const idPlane fogPlanes[4], const idRenderMatrix* inverseBaseLightProject )
{
backEnd.currentSpace = NULL;
for( const drawSurf_t* drawSurf = drawSurfs; drawSurf != NULL; drawSurf = drawSurf->nextOnLight )
{
if( drawSurf->scissorRect.IsEmpty() )
{
continue; // !@# FIXME: find out why this is sometimes being hit!
// temporarily jump over the scissor and draw so the gl error callback doesn't get hit
}
if( !backEnd.currentScissor.Equals( drawSurf->scissorRect ) && r_useScissor.GetBool() )
{
// change the scissor
GL_Scissor( backEnd.viewDef->viewport.x1 + drawSurf->scissorRect.x1,
backEnd.viewDef->viewport.y1 + drawSurf->scissorRect.y1,
drawSurf->scissorRect.x2 + 1 - drawSurf->scissorRect.x1,
drawSurf->scissorRect.y2 + 1 - drawSurf->scissorRect.y1 );
backEnd.currentScissor = drawSurf->scissorRect;
}
if( drawSurf->space != backEnd.currentSpace )
{
idPlane localFogPlanes[4];
if( inverseBaseLightProject == NULL )
{
RB_SetMVP( drawSurf->space->mvp );
for( int i = 0; i < 4; i++ )
{
R_GlobalPlaneToLocal( drawSurf->space->modelMatrix, fogPlanes[i], localFogPlanes[i] );
}
}
else
{
idRenderMatrix invProjectMVPMatrix;
idRenderMatrix::Multiply( backEnd.viewDef->worldSpace.mvp, *inverseBaseLightProject, invProjectMVPMatrix );
RB_SetMVP( invProjectMVPMatrix );
for( int i = 0; i < 4; i++ )
{
inverseBaseLightProject->InverseTransformPlane( fogPlanes[i], localFogPlanes[i], false );
}
}
SetVertexParm( RENDERPARM_TEXGEN_0_S, localFogPlanes[0].ToFloatPtr() );
SetVertexParm( RENDERPARM_TEXGEN_0_T, localFogPlanes[1].ToFloatPtr() );
SetVertexParm( RENDERPARM_TEXGEN_1_T, localFogPlanes[2].ToFloatPtr() );
SetVertexParm( RENDERPARM_TEXGEN_1_S, localFogPlanes[3].ToFloatPtr() );
backEnd.currentSpace = ( inverseBaseLightProject == NULL ) ? drawSurf->space : NULL;
}
if( drawSurf->jointCache )
{
renderProgManager.BindShader_FogSkinned();
}
else
{
renderProgManager.BindShader_Fog();
}
RB_DrawElementsWithCounters( drawSurf );
}
}
/*
==================
RB_FogPass
==================
*/
static void RB_FogPass( const drawSurf_t* drawSurfs, const drawSurf_t* drawSurfs2, const viewLight_t* vLight )
{
renderLog.OpenBlock( vLight->lightShader->GetName() );
// find the current color and density of the fog
const idMaterial* lightShader = vLight->lightShader;
const float* regs = vLight->shaderRegisters;
// assume fog shaders have only a single stage
const shaderStage_t* stage = lightShader->GetStage( 0 );
float lightColor[4];
lightColor[0] = regs[ stage->color.registers[0] ];
lightColor[1] = regs[ stage->color.registers[1] ];
lightColor[2] = regs[ stage->color.registers[2] ];
lightColor[3] = regs[ stage->color.registers[3] ];
GL_Color( lightColor );
// calculate the falloff planes
float a;
// if they left the default value on, set a fog distance of 500
if( lightColor[3] <= 1.0f )
{
a = -0.5f / DEFAULT_FOG_DISTANCE;
}
else
{
// otherwise, distance = alpha color
a = -0.5f / lightColor[3];
}
// texture 0 is the falloff image
GL_SelectTexture( 0 );
globalImages->fogImage->Bind();
// texture 1 is the entering plane fade correction
GL_SelectTexture( 1 );
globalImages->fogEnterImage->Bind();
// S is based on the view origin
const float s = vLight->fogPlane.Distance( backEnd.viewDef->renderView.vieworg );
const float FOG_SCALE = 0.001f;
idPlane fogPlanes[4];
// S-0
fogPlanes[0][0] = a * backEnd.viewDef->worldSpace.modelViewMatrix[0 * 4 + 2];
fogPlanes[0][1] = a * backEnd.viewDef->worldSpace.modelViewMatrix[1 * 4 + 2];
fogPlanes[0][2] = a * backEnd.viewDef->worldSpace.modelViewMatrix[2 * 4 + 2];
fogPlanes[0][3] = a * backEnd.viewDef->worldSpace.modelViewMatrix[3 * 4 + 2] + 0.5f;
// T-0
fogPlanes[1][0] = 0.0f;//a * backEnd.viewDef->worldSpace.modelViewMatrix[0*4+0];
fogPlanes[1][1] = 0.0f;//a * backEnd.viewDef->worldSpace.modelViewMatrix[1*4+0];
fogPlanes[1][2] = 0.0f;//a * backEnd.viewDef->worldSpace.modelViewMatrix[2*4+0];
fogPlanes[1][3] = 0.5f;//a * backEnd.viewDef->worldSpace.modelViewMatrix[3*4+0] + 0.5f;
// T-1 will get a texgen for the fade plane, which is always the "top" plane on unrotated lights
fogPlanes[2][0] = FOG_SCALE * vLight->fogPlane[0];
fogPlanes[2][1] = FOG_SCALE * vLight->fogPlane[1];
fogPlanes[2][2] = FOG_SCALE * vLight->fogPlane[2];
fogPlanes[2][3] = FOG_SCALE * vLight->fogPlane[3] + FOG_ENTER;
// S-1
fogPlanes[3][0] = 0.0f;
fogPlanes[3][1] = 0.0f;
fogPlanes[3][2] = 0.0f;
fogPlanes[3][3] = FOG_SCALE * s + FOG_ENTER;
// draw it
GL_State( GLS_DEPTHMASK | GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL );
RB_T_BasicFog( drawSurfs, fogPlanes, NULL );
RB_T_BasicFog( drawSurfs2, fogPlanes, NULL );
// the light frustum bounding planes aren't in the depth buffer, so use depthfunc_less instead
// of depthfunc_equal
GL_State( GLS_DEPTHMASK | GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_LESS );
GL_Cull( CT_BACK_SIDED );
backEnd.zeroOneCubeSurface.space = &backEnd.viewDef->worldSpace;
backEnd.zeroOneCubeSurface.scissorRect = backEnd.viewDef->scissor;
RB_T_BasicFog( &backEnd.zeroOneCubeSurface, fogPlanes, &vLight->inverseBaseLightProject );
GL_Cull( CT_FRONT_SIDED );
GL_SelectTexture( 1 );
globalImages->BindNull();
GL_SelectTexture( 0 );
renderProgManager.Unbind();
renderLog.CloseBlock();
}
/*
==================
RB_FogAllLights
==================
*/
static void RB_FogAllLights()
{
if( r_skipFogLights.GetBool() || r_showOverDraw.GetInteger() != 0
|| backEnd.viewDef->isXraySubview /* don't fog in xray mode*/ )
{
return;
}
renderLog.OpenMainBlock( MRB_FOG_ALL_LIGHTS );
renderLog.OpenBlock( "RB_FogAllLights" );
// force fog plane to recalculate
backEnd.currentSpace = NULL;
for( viewLight_t* vLight = backEnd.viewDef->viewLights; vLight != NULL; vLight = vLight->next )
{
if( vLight->lightShader->IsFogLight() )
{
RB_FogPass( vLight->globalInteractions, vLight->localInteractions, vLight );
}
else if( vLight->lightShader->IsBlendLight() )
{
RB_BlendLight( vLight->globalInteractions, vLight->localInteractions, vLight );
}
}
renderLog.CloseBlock();
renderLog.CloseMainBlock();
}
/*
=========================================================================================================
BACKEND COMMANDS
=========================================================================================================
*/
/*
==================
RB_DrawViewInternal
==================
*/
void RB_DrawViewInternal( const viewDef_t* viewDef, const int stereoEye )
{
renderLog.OpenBlock( "RB_DrawViewInternal" );
//-------------------------------------------------
// guis can wind up referencing purged images that need to be loaded.
// this used to be in the gui emit code, but now that it can be running
// in a separate thread, it must not try to load images, so do it here.
//-------------------------------------------------
drawSurf_t** drawSurfs = ( drawSurf_t** )&viewDef->drawSurfs[0];
const int numDrawSurfs = viewDef->numDrawSurfs;
for( int i = 0; i < numDrawSurfs; i++ )
{
const drawSurf_t* ds = viewDef->drawSurfs[ i ];
if( ds->material != NULL )
{
const_cast<idMaterial*>( ds->material )->EnsureNotPurged();
}
}
//-------------------------------------------------
// RB_BeginDrawingView
//
// Any mirrored or portaled views have already been drawn, so prepare
// to actually render the visible surfaces for this view
//
// clear the z buffer, set the projection matrix, etc
//-------------------------------------------------
// set the window clipping
GL_Viewport( viewDef->viewport.x1,
viewDef->viewport.y1,
viewDef->viewport.x2 + 1 - viewDef->viewport.x1,
viewDef->viewport.y2 + 1 - viewDef->viewport.y1 );
// the scissor may be smaller than the viewport for subviews
GL_Scissor( backEnd.viewDef->viewport.x1 + viewDef->scissor.x1,
backEnd.viewDef->viewport.y1 + viewDef->scissor.y1,
viewDef->scissor.x2 + 1 - viewDef->scissor.x1,
viewDef->scissor.y2 + 1 - viewDef->scissor.y1 );
backEnd.currentScissor = viewDef->scissor;
backEnd.glState.faceCulling = -1; // force face culling to set next time
// ensures that depth writes are enabled for the depth clear
GL_State( GLS_DEFAULT );
// Clear the depth buffer and clear the stencil to 128 for stencil shadows as well as gui masking
GL_Clear( false, true, true, STENCIL_SHADOW_TEST_VALUE, 0.0f, 0.0f, 0.0f, 0.0f );
// normal face culling
GL_Cull( CT_FRONT_SIDED );
#ifdef USE_CORE_PROFILE
// bind one global Vertex Array Object (VAO)
qglBindVertexArray( glConfig.global_vao );
#endif
//------------------------------------
// sets variables that can be used by all programs
//------------------------------------
{
//
// set eye position in global space
//
float parm[4];
parm[0] = backEnd.viewDef->renderView.vieworg[0];
parm[1] = backEnd.viewDef->renderView.vieworg[1];
parm[2] = backEnd.viewDef->renderView.vieworg[2];
parm[3] = 1.0f;
SetVertexParm( RENDERPARM_GLOBALEYEPOS, parm ); // rpGlobalEyePos
// sets overbright to make world brighter
// This value is baked into the specularScale and diffuseScale values so
// the interaction programs don't need to perform the extra multiply,
// but any other renderprogs that want to obey the brightness value
// can reference this.
float overbright = r_lightScale.GetFloat() * 0.5f;
parm[0] = overbright;
parm[1] = overbright;
parm[2] = overbright;
parm[3] = overbright;
SetFragmentParm( RENDERPARM_OVERBRIGHT, parm );
// Set Projection Matrix
float projMatrixTranspose[16];
R_MatrixTranspose( backEnd.viewDef->projectionMatrix, projMatrixTranspose );
SetVertexParms( RENDERPARM_PROJMATRIX_X, projMatrixTranspose, 4 );
}
//-------------------------------------------------
// fill the depth buffer and clear color buffer to black except on subviews
//-------------------------------------------------
RB_FillDepthBufferFast( drawSurfs, numDrawSurfs );
//-------------------------------------------------
// main light renderer
//-------------------------------------------------
RB_DrawInteractions();
//-------------------------------------------------
// now draw any non-light dependent shading passes
//-------------------------------------------------
int processed = 0;
if( !r_skipShaderPasses.GetBool() )
{
renderLog.OpenMainBlock( MRB_DRAW_SHADER_PASSES );
float guiScreenOffset;
if( viewDef->viewEntitys != NULL )
{
// guiScreenOffset will be 0 in non-gui views
guiScreenOffset = 0.0f;
}
else
{
guiScreenOffset = stereoEye * viewDef->renderView.stereoScreenSeparation;
}
processed = RB_DrawShaderPasses( drawSurfs, numDrawSurfs, guiScreenOffset, stereoEye );
renderLog.CloseMainBlock();
}
//-------------------------------------------------
// fog and blend lights, drawn after emissive surfaces
// so they are properly dimmed down
//-------------------------------------------------
RB_FogAllLights();
//-------------------------------------------------
// capture the depth for the motion blur before rendering any post process surfaces that may contribute to the depth
//-------------------------------------------------
if( r_motionBlur.GetInteger() > 0 )
{
const idScreenRect& viewport = backEnd.viewDef->viewport;
globalImages->currentDepthImage->CopyDepthbuffer( viewport.x1, viewport.y1, viewport.GetWidth(), viewport.GetHeight() );
}
//-------------------------------------------------
// now draw any screen warping post-process effects using _currentRender
//-------------------------------------------------
if( processed < numDrawSurfs && !r_skipPostProcess.GetBool() )
{
int x = backEnd.viewDef->viewport.x1;
int y = backEnd.viewDef->viewport.y1;
int w = backEnd.viewDef->viewport.x2 - backEnd.viewDef->viewport.x1 + 1;
int h = backEnd.viewDef->viewport.y2 - backEnd.viewDef->viewport.y1 + 1;
RENDERLOG_PRINTF( "Resolve to %i x %i buffer\n", w, h );
GL_SelectTexture( 0 );
// resolve the screen
globalImages->currentRenderImage->CopyFramebuffer( x, y, w, h );
backEnd.currentRenderCopied = true;
// RENDERPARM_SCREENCORRECTIONFACTOR amd RENDERPARM_WINDOWCOORD overlap
// diffuseScale and specularScale
// screen power of two correction factor (no longer relevant now)
float screenCorrectionParm[4];
screenCorrectionParm[0] = 1.0f;
screenCorrectionParm[1] = 1.0f;
screenCorrectionParm[2] = 0.0f;
screenCorrectionParm[3] = 1.0f;
SetFragmentParm( RENDERPARM_SCREENCORRECTIONFACTOR, screenCorrectionParm ); // rpScreenCorrectionFactor
// window coord to 0.0 to 1.0 conversion
float windowCoordParm[4];
windowCoordParm[0] = 1.0f / w;
windowCoordParm[1] = 1.0f / h;
windowCoordParm[2] = 0.0f;
windowCoordParm[3] = 1.0f;
SetFragmentParm( RENDERPARM_WINDOWCOORD, windowCoordParm ); // rpWindowCoord
// render the remaining surfaces
renderLog.OpenMainBlock( MRB_DRAW_SHADER_PASSES_POST );
RB_DrawShaderPasses( drawSurfs + processed, numDrawSurfs - processed, 0.0f /* definitely not a gui */, stereoEye );
renderLog.CloseMainBlock();
}
//-------------------------------------------------
// render debug tools
//-------------------------------------------------
RB_RenderDebugTools( drawSurfs, numDrawSurfs );
renderLog.CloseBlock();
}
/*
==================
RB_MotionBlur
Experimental feature
==================
*/
void RB_MotionBlur()
{
if( !backEnd.viewDef->viewEntitys )
{
// 3D views only
return;
}
if( r_motionBlur.GetInteger() <= 0 )
{
return;
}
if( backEnd.viewDef->isSubview )
{
return;
}
GL_CheckErrors();
// clear the alpha buffer and draw only the hands + weapon into it so
// we can avoid blurring them
qglClearColor( 0, 0, 0, 1 );
GL_State( GLS_COLORMASK | GLS_DEPTHMASK );
qglClear( GL_COLOR_BUFFER_BIT );
GL_Color( 0, 0, 0, 0 );
GL_SelectTexture( 0 );
globalImages->blackImage->Bind();
backEnd.currentSpace = NULL;
drawSurf_t** drawSurfs = ( drawSurf_t** )&backEnd.viewDef->drawSurfs[0];
for( int surfNum = 0; surfNum < backEnd.viewDef->numDrawSurfs; surfNum++ )
{
const drawSurf_t* surf = drawSurfs[ surfNum ];
if( !surf->space->weaponDepthHack && !surf->space->skipMotionBlur && !surf->material->HasSubview() )
{
// Apply motion blur to this object
continue;
}
const idMaterial* shader = surf->material;
if( shader->Coverage() == MC_TRANSLUCENT )
{
// muzzle flash, etc
continue;
}
// set mvp matrix
if( surf->space != backEnd.currentSpace )
{
RB_SetMVP( surf->space->mvp );
backEnd.currentSpace = surf->space;
}
// this could just be a color, but we don't have a skinned color-only prog
if( surf->jointCache )
{
renderProgManager.BindShader_TextureVertexColorSkinned();
}
else
{
renderProgManager.BindShader_TextureVertexColor();
}
// draw it solid
RB_DrawElementsWithCounters( surf );
}
GL_State( GLS_DEPTHFUNC_ALWAYS );
// copy off the color buffer and the depth buffer for the motion blur prog
// we use the viewport dimensions for copying the buffers in case resolution scaling is enabled.
const idScreenRect& viewport = backEnd.viewDef->viewport;
globalImages->currentRenderImage->CopyFramebuffer( viewport.x1, viewport.y1, viewport.GetWidth(), viewport.GetHeight() );
// in stereo rendering, each eye needs to get a separate previous frame mvp
int mvpIndex = ( backEnd.viewDef->renderView.viewEyeBuffer == 1 ) ? 1 : 0;
// derive the matrix to go from current pixels to previous frame pixels
idRenderMatrix inverseMVP;
idRenderMatrix::Inverse( backEnd.viewDef->worldSpace.mvp, inverseMVP );
idRenderMatrix motionMatrix;
idRenderMatrix::Multiply( backEnd.prevMVP[mvpIndex], inverseMVP, motionMatrix );
backEnd.prevMVP[mvpIndex] = backEnd.viewDef->worldSpace.mvp;
RB_SetMVP( motionMatrix );
GL_State( GLS_DEPTHFUNC_ALWAYS );
GL_Cull( CT_TWO_SIDED );
renderProgManager.BindShader_MotionBlur();
// let the fragment program know how many samples we are going to use
idVec4 samples( ( float )( 1 << r_motionBlur.GetInteger() ) );
SetFragmentParm( RENDERPARM_OVERBRIGHT, samples.ToFloatPtr() );
GL_SelectTexture( 0 );
globalImages->currentRenderImage->Bind();
GL_SelectTexture( 1 );
globalImages->currentDepthImage->Bind();
RB_DrawElementsWithCounters( &backEnd.unitSquareSurface );
GL_CheckErrors();
}
/*
==================
RB_DrawView
StereoEye will always be 0 in mono modes, or -1 / 1 in stereo modes.
If the view is a GUI view that is repeated for both eyes, the viewDef.stereoEye value
is 0, so the stereoEye parameter is not always the same as that.
==================
*/
void RB_DrawView( const void* data, const int stereoEye )
{
const drawSurfsCommand_t* cmd = ( const drawSurfsCommand_t* )data;
backEnd.viewDef = cmd->viewDef;
// we will need to do a new copyTexSubImage of the screen
// when a SS_POST_PROCESS material is used
backEnd.currentRenderCopied = false;
// if there aren't any drawsurfs, do nothing
if( !backEnd.viewDef->numDrawSurfs )
{
return;
}
// skip render bypasses everything that has models, assuming
// them to be 3D views, but leaves 2D rendering visible
if( r_skipRender.GetBool() && backEnd.viewDef->viewEntitys )
{
return;
}
// skip render context sets the wgl context to NULL,
// which should factor out the API cost, under the assumption
// that all gl calls just return if the context isn't valid
// RB: not really needed
//if( r_skipRenderContext.GetBool() && backEnd.viewDef->viewEntitys )
//{
// GLimp_DeactivateContext();
//}
// RB end
backEnd.pc.c_surfaces += backEnd.viewDef->numDrawSurfs;
RB_ShowOverdraw();
// render the scene
RB_DrawViewInternal( cmd->viewDef, stereoEye );
RB_MotionBlur();
// restore the context for 2D drawing if we were stubbing it out
// RB: not really needed
//if( r_skipRenderContext.GetBool() && backEnd.viewDef->viewEntitys )
//{
// GLimp_ActivateContext();
// GL_SetDefaultState();
//}
// RB end
// optionally draw a box colored based on the eye number
if( r_drawEyeColor.GetBool() )
{
const idScreenRect& r = backEnd.viewDef->viewport;
GL_Scissor( ( r.x1 + r.x2 ) / 2, ( r.y1 + r.y2 ) / 2, 32, 32 );
switch( stereoEye )
{
case -1:
GL_Clear( true, false, false, 0, 1.0f, 0.0f, 0.0f, 1.0f );
break;
case 1:
GL_Clear( true, false, false, 0, 0.0f, 1.0f, 0.0f, 1.0f );
break;
default:
GL_Clear( true, false, false, 0, 0.5f, 0.5f, 0.5f, 1.0f );
break;
}
}
}
/*
==================
RB_CopyRender
Copy part of the current framebuffer to an image
==================
*/
void RB_CopyRender( const void* data )
{
const copyRenderCommand_t* cmd = ( const copyRenderCommand_t* )data;
if( r_skipCopyTexture.GetBool() )
{
return;
}
RENDERLOG_PRINTF( "***************** RB_CopyRender *****************\n" );
if( cmd->image )
{
cmd->image->CopyFramebuffer( cmd->x, cmd->y, cmd->imageWidth, cmd->imageHeight );
}
if( cmd->clearColorAfterCopy )
{
GL_Clear( true, false, false, STENCIL_SHADOW_TEST_VALUE, 0, 0, 0, 0 );
}
}
/*
==================
RB_PostProcess
==================
*/
extern idCVar rs_enable;
void RB_PostProcess( const void* data )
{
// only do the post process step if resolution scaling is enabled. Prevents the unnecessary copying of the framebuffer and
// corresponding full screen quad pass.
if( rs_enable.GetInteger() == 0 )
{
return;
}
// resolve the scaled rendering to a temporary texture
postProcessCommand_t* cmd = ( postProcessCommand_t* )data;
const idScreenRect& viewport = cmd->viewDef->viewport;
globalImages->currentRenderImage->CopyFramebuffer( viewport.x1, viewport.y1, viewport.GetWidth(), viewport.GetHeight() );
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO | GLS_DEPTHMASK | GLS_DEPTHFUNC_ALWAYS );
GL_Cull( CT_TWO_SIDED );
int screenWidth = renderSystem->GetWidth();
int screenHeight = renderSystem->GetHeight();
// set the window clipping
GL_Viewport( 0, 0, screenWidth, screenHeight );
GL_Scissor( 0, 0, screenWidth, screenHeight );
GL_SelectTexture( 0 );
globalImages->currentRenderImage->Bind();
renderProgManager.BindShader_PostProcess();
// Draw
RB_DrawElementsWithCounters( &backEnd.unitSquareSurface );
renderLog.CloseBlock();
}