doom3-bfg/neo/renderer/tr_frontend_addmodels.cpp
2012-11-26 12:58:24 -06:00

1081 lines
45 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "../idlib/precompiled.h"
#include "tr_local.h"
#include "Model_local.h"
idCVar r_skipStaticShadows( "r_skipStaticShadows", "0", CVAR_RENDERER | CVAR_BOOL, "skip static shadows" );
idCVar r_skipDynamicShadows( "r_skipDynamicShadows", "0", CVAR_RENDERER | CVAR_BOOL, "skip dynamic shadows" );
idCVar r_useParallelAddModels( "r_useParallelAddModels", "1", CVAR_RENDERER | CVAR_BOOL, "add all models in parallel with jobs" );
idCVar r_useParallelAddShadows( "r_useParallelAddShadows", "1", CVAR_RENDERER | CVAR_INTEGER, "0 = off, 1 = threaded", 0, 1 );
idCVar r_useShadowPreciseInsideTest( "r_useShadowPreciseInsideTest", "1", CVAR_RENDERER | CVAR_BOOL, "use a precise and more expensive test to determine whether the view is inside a shadow volume" );
idCVar r_cullDynamicShadowTriangles( "r_cullDynamicShadowTriangles", "1", CVAR_RENDERER | CVAR_BOOL, "cull occluder triangles that are outside the light frustum so they do not contribute to the dynamic shadow volume" );
idCVar r_cullDynamicLightTriangles( "r_cullDynamicLightTriangles", "1", CVAR_RENDERER | CVAR_BOOL, "cull surface triangles that are outside the light frustum so they do not get rendered for interactions" );
idCVar r_forceShadowCaps( "r_forceShadowCaps", "0", CVAR_RENDERER | CVAR_BOOL, "0 = skip rendering shadow caps if view is outside shadow volume, 1 = always render shadow caps" );
static const float CHECK_BOUNDS_EPSILON = 1.0f;
/*
==================
R_SortViewEntities
==================
*/
viewEntity_t * R_SortViewEntities( viewEntity_t * vEntities ) {
SCOPED_PROFILE_EVENT( "R_SortViewEntities" );
// We want to avoid having a single AddModel for something complex be
// the last thing processed and hurt the parallel occupancy, so
// sort dynamic models first, _area models second, then everything else.
viewEntity_t * dynamics = NULL;
viewEntity_t * areas = NULL;
viewEntity_t * others = NULL;
for ( viewEntity_t * vEntity = vEntities; vEntity != NULL; ) {
viewEntity_t * next = vEntity->next;
const idRenderModel * model = vEntity->entityDef->parms.hModel;
if ( model->IsDynamicModel() != DM_STATIC ) {
vEntity->next = dynamics;
dynamics = vEntity;
} else if ( model->IsStaticWorldModel() ) {
vEntity->next = areas;
areas = vEntity;
} else {
vEntity->next = others;
others = vEntity;
}
vEntity = next;
}
// concatenate the lists
viewEntity_t * all = others;
for ( viewEntity_t * vEntity = areas; vEntity != NULL; ) {
viewEntity_t * next = vEntity->next;
vEntity->next = all;
all = vEntity;
vEntity = next;
}
for ( viewEntity_t * vEntity = dynamics; vEntity != NULL; ) {
viewEntity_t * next = vEntity->next;
vEntity->next = all;
all = vEntity;
vEntity = next;
}
return all;
}
/*
==================
R_ClearEntityDefDynamicModel
If we know the reference bounds stays the same, we
only need to do this on entity update, not the full
R_FreeEntityDefDerivedData
==================
*/
void R_ClearEntityDefDynamicModel( idRenderEntityLocal *def ) {
// free all the interaction surfaces
for ( idInteraction *inter = def->firstInteraction; inter != NULL && !inter->IsEmpty(); inter = inter->entityNext ) {
inter->FreeSurfaces();
}
// clear the dynamic model if present
if ( def->dynamicModel ) {
// this is copied from cachedDynamicModel, so it doesn't need to be freed
def->dynamicModel = NULL;
}
def->dynamicModelFrameCount = 0;
}
/*
==================
R_IssueEntityDefCallback
==================
*/
bool R_IssueEntityDefCallback( idRenderEntityLocal *def ) {
idBounds oldBounds = def->localReferenceBounds;
def->archived = false; // will need to be written to the demo file
bool update;
if ( tr.viewDef != NULL ) {
update = def->parms.callback( &def->parms, &tr.viewDef->renderView );
} else {
update = def->parms.callback( &def->parms, NULL );
}
tr.pc.c_entityDefCallbacks++;
if ( def->parms.hModel == NULL ) {
common->Error( "R_IssueEntityDefCallback: dynamic entity callback didn't set model" );
}
if ( r_checkBounds.GetBool() ) {
if ( oldBounds[0][0] > def->localReferenceBounds[0][0] + CHECK_BOUNDS_EPSILON ||
oldBounds[0][1] > def->localReferenceBounds[0][1] + CHECK_BOUNDS_EPSILON ||
oldBounds[0][2] > def->localReferenceBounds[0][2] + CHECK_BOUNDS_EPSILON ||
oldBounds[1][0] < def->localReferenceBounds[1][0] - CHECK_BOUNDS_EPSILON ||
oldBounds[1][1] < def->localReferenceBounds[1][1] - CHECK_BOUNDS_EPSILON ||
oldBounds[1][2] < def->localReferenceBounds[1][2] - CHECK_BOUNDS_EPSILON ) {
common->Printf( "entity %i callback extended reference bounds\n", def->index );
}
}
return update;
}
/*
===================
R_EntityDefDynamicModel
This is also called by the game code for idRenderWorldLocal::ModelTrace(), and idRenderWorldLocal::Trace() which is bad for performance...
Issues a deferred entity callback if necessary.
If the model isn't dynamic, it returns the original.
Returns the cached dynamic model if present, otherwise creates it.
===================
*/
idRenderModel *R_EntityDefDynamicModel( idRenderEntityLocal *def ) {
if ( def->dynamicModelFrameCount == tr.frameCount ) {
return def->dynamicModel;
}
// allow deferred entities to construct themselves
bool callbackUpdate;
if ( def->parms.callback != NULL ) {
SCOPED_PROFILE_EVENT( "R_IssueEntityDefCallback" );
callbackUpdate = R_IssueEntityDefCallback( def );
} else {
callbackUpdate = false;
}
idRenderModel *model = def->parms.hModel;
if ( model == NULL ) {
common->Error( "R_EntityDefDynamicModel: NULL model" );
return NULL;
}
if ( model->IsDynamicModel() == DM_STATIC ) {
def->dynamicModel = NULL;
def->dynamicModelFrameCount = 0;
return model;
}
// continously animating models (particle systems, etc) will have their snapshot updated every single view
if ( callbackUpdate || ( model->IsDynamicModel() == DM_CONTINUOUS && def->dynamicModelFrameCount != tr.frameCount ) ) {
R_ClearEntityDefDynamicModel( def );
}
// if we don't have a snapshot of the dynamic model, generate it now
if ( def->dynamicModel == NULL ) {
SCOPED_PROFILE_EVENT( "InstantiateDynamicModel" );
// instantiate the snapshot of the dynamic model, possibly reusing memory from the cached snapshot
def->cachedDynamicModel = model->InstantiateDynamicModel( &def->parms, tr.viewDef, def->cachedDynamicModel );
if ( def->cachedDynamicModel != NULL && r_checkBounds.GetBool() ) {
idBounds b = def->cachedDynamicModel->Bounds();
if ( b[0][0] < def->localReferenceBounds[0][0] - CHECK_BOUNDS_EPSILON ||
b[0][1] < def->localReferenceBounds[0][1] - CHECK_BOUNDS_EPSILON ||
b[0][2] < def->localReferenceBounds[0][2] - CHECK_BOUNDS_EPSILON ||
b[1][0] > def->localReferenceBounds[1][0] + CHECK_BOUNDS_EPSILON ||
b[1][1] > def->localReferenceBounds[1][1] + CHECK_BOUNDS_EPSILON ||
b[1][2] > def->localReferenceBounds[1][2] + CHECK_BOUNDS_EPSILON ) {
common->Printf( "entity %i dynamic model exceeded reference bounds\n", def->index );
}
}
def->dynamicModel = def->cachedDynamicModel;
def->dynamicModelFrameCount = tr.frameCount;
}
// set model depth hack value
if ( def->dynamicModel != NULL && model->DepthHack() != 0.0f && tr.viewDef != NULL ) {
idPlane eye, clip;
idVec3 ndc;
R_TransformModelToClip( def->parms.origin, tr.viewDef->worldSpace.modelViewMatrix, tr.viewDef->projectionMatrix, eye, clip );
R_TransformClipToDevice( clip, ndc );
def->parms.modelDepthHack = model->DepthHack() * ( 1.0f - ndc.z );
} else {
def->parms.modelDepthHack = 0.0f;
}
return def->dynamicModel;
}
/*
===================
R_SetupDrawSurfShader
===================
*/
void R_SetupDrawSurfShader( drawSurf_t * drawSurf, const idMaterial * shader, const renderEntity_t * renderEntity ) {
drawSurf->material = shader;
drawSurf->sort = shader->GetSort();
// process the shader expressions for conditionals / color / texcoords
const float *constRegs = shader->ConstantRegisters();
if ( likely( constRegs != NULL ) ) {
// shader only uses constant values
drawSurf->shaderRegisters = constRegs;
} else {
// by default evaluate with the entityDef's shader parms
const float * shaderParms = renderEntity->shaderParms;
// a reference shader will take the calculated stage color value from another shader
// and use that for the parm0-parm3 of the current shader, which allows a stage of
// a light model and light flares to pick up different flashing tables from
// different light shaders
float generatedShaderParms[MAX_ENTITY_SHADER_PARMS];
if ( unlikely( renderEntity->referenceShader != NULL ) ) {
// evaluate the reference shader to find our shader parms
float refRegs[MAX_EXPRESSION_REGISTERS];
renderEntity->referenceShader->EvaluateRegisters( refRegs, renderEntity->shaderParms,
tr.viewDef->renderView.shaderParms,
tr.viewDef->renderView.time[renderEntity->timeGroup] * 0.001f, renderEntity->referenceSound );
const shaderStage_t * pStage = renderEntity->referenceShader->GetStage( 0 );
memcpy( generatedShaderParms, renderEntity->shaderParms, sizeof( generatedShaderParms ) );
generatedShaderParms[0] = refRegs[ pStage->color.registers[0] ];
generatedShaderParms[1] = refRegs[ pStage->color.registers[1] ];
generatedShaderParms[2] = refRegs[ pStage->color.registers[2] ];
shaderParms = generatedShaderParms;
}
// allocte frame memory for the shader register values
float * regs = (float *)R_FrameAlloc( shader->GetNumRegisters() * sizeof( float ), FRAME_ALLOC_SHADER_REGISTER );
drawSurf->shaderRegisters = regs;
// process the shader expressions for conditionals / color / texcoords
shader->EvaluateRegisters( regs, shaderParms, tr.viewDef->renderView.shaderParms,
tr.viewDef->renderView.time[renderEntity->timeGroup] * 0.001f, renderEntity->referenceSound );
}
}
/*
===================
R_SetupDrawSurfJoints
===================
*/
void R_SetupDrawSurfJoints( drawSurf_t * drawSurf, const srfTriangles_t * tri, const idMaterial * shader ) {
if ( tri->staticModelWithJoints == NULL || !r_useGPUSkinning.GetBool() ) {
drawSurf->jointCache = 0;
return;
}
idRenderModelStatic * model = tri->staticModelWithJoints;
assert( model->jointsInverted != NULL );
if ( !vertexCache.CacheIsCurrent( model->jointsInvertedBuffer ) ) {
const int alignment = glConfig.uniformBufferOffsetAlignment;
model->jointsInvertedBuffer = vertexCache.AllocJoint( model->jointsInverted, ALIGN( model->numInvertedJoints * sizeof( idJointMat ), alignment ) );
}
drawSurf->jointCache = model->jointsInvertedBuffer;
}
/*
===================
R_AddSingleModel
May be run in parallel.
Here is where dynamic models actually get instantiated, and necessary
interaction surfaces get created. This is all done on a sort-by-model
basis to keep source data in cache (most likely L2) as any interactions
and shadows are generated, since dynamic models will typically be lit by
two or more lights.
===================
*/
void R_AddSingleModel( viewEntity_t * vEntity ) {
// we will add all interaction surfs here, to be chained to the lights in later serial code
vEntity->drawSurfs = NULL;
vEntity->staticShadowVolumes = NULL;
vEntity->dynamicShadowVolumes = NULL;
// globals we really should pass in...
const viewDef_t * viewDef = tr.viewDef;
idRenderEntityLocal * entityDef = vEntity->entityDef;
const renderEntity_t * renderEntity = &entityDef->parms;
const idRenderWorldLocal * world = entityDef->world;
if ( viewDef->isXraySubview && entityDef->parms.xrayIndex == 1 ) {
return;
} else if ( !viewDef->isXraySubview && entityDef->parms.xrayIndex == 2 ) {
return;
}
SCOPED_PROFILE_EVENT( renderEntity->hModel == NULL ? "Unknown Model" : renderEntity->hModel->Name() );
// calculate the znear for testing whether or not the view is inside a shadow projection
const float znear = ( viewDef->renderView.cramZNear ) ? ( r_znear.GetFloat() * 0.25f ) : r_znear.GetFloat();
// if the entity wasn't seen through a portal chain, it was added just for light shadows
const bool modelIsVisible = !vEntity->scissorRect.IsEmpty();
const bool addInteractions = modelIsVisible && ( !viewDef->isXraySubview || entityDef->parms.xrayIndex == 2 );
const int entityIndex = entityDef->index;
//---------------------------
// Find which of the visible lights contact this entity
//
// If the entity doesn't accept light or cast shadows from any surface,
// this can be skipped.
//
// OPTIMIZE: world areas can assume all referenced lights are used
//---------------------------
int numContactedLights = 0;
static const int MAX_CONTACTED_LIGHTS = 128;
viewLight_t * contactedLights[MAX_CONTACTED_LIGHTS];
idInteraction * staticInteractions[MAX_CONTACTED_LIGHTS];
if ( renderEntity->hModel == NULL ||
renderEntity->hModel->ModelHasInteractingSurfaces() ||
renderEntity->hModel->ModelHasShadowCastingSurfaces() ) {
SCOPED_PROFILE_EVENT( "Find lights" );
for ( viewLight_t * vLight = viewDef->viewLights; vLight != NULL; vLight = vLight->next ) {
if ( vLight->scissorRect.IsEmpty() ) {
continue;
}
if ( vLight->entityInteractionState != NULL ) {
// new code path, everything was done in AddLight
if ( vLight->entityInteractionState[entityIndex] == viewLight_t::INTERACTION_YES ) {
contactedLights[numContactedLights] = vLight;
staticInteractions[numContactedLights] = world->interactionTable[vLight->lightDef->index * world->interactionTableWidth + entityIndex];
if ( ++numContactedLights == MAX_CONTACTED_LIGHTS ) {
break;
}
}
continue;
}
const idRenderLightLocal * lightDef = vLight->lightDef;
if ( !lightDef->globalLightBounds.IntersectsBounds( entityDef->globalReferenceBounds ) ) {
continue;
}
if ( R_CullModelBoundsToLight( lightDef, entityDef->localReferenceBounds, entityDef->modelRenderMatrix ) ) {
continue;
}
if ( !modelIsVisible ) {
// some lights have their center of projection outside the world
if ( lightDef->areaNum != -1 ) {
// if no part of the model is in an area that is connected to
// the light center (it is behind a solid, closed door), we can ignore it
bool areasConnected = false;
for ( areaReference_t *ref = entityDef->entityRefs; ref != NULL; ref = ref->ownerNext ) {
if ( world->AreasAreConnected( lightDef->areaNum, ref->area->areaNum, PS_BLOCK_VIEW ) ) {
areasConnected = true;
break;
}
}
if ( areasConnected == false ) {
// can't possibly be seen or shadowed
continue;
}
}
// check more precisely for shadow visibility
idBounds shadowBounds;
R_ShadowBounds( entityDef->globalReferenceBounds, lightDef->globalLightBounds, lightDef->globalLightOrigin, shadowBounds );
// this doesn't say that the shadow can't effect anything, only that it can't
// effect anything in the view
if ( idRenderMatrix::CullBoundsToMVP( viewDef->worldSpace.mvp, shadowBounds ) ) {
continue;
}
}
contactedLights[numContactedLights] = vLight;
staticInteractions[numContactedLights] = world->interactionTable[vLight->lightDef->index * world->interactionTableWidth + entityIndex];
if ( ++numContactedLights == MAX_CONTACTED_LIGHTS ) {
break;
}
}
}
// if we aren't visible and none of the shadows stretch into the view,
// we don't need to do anything else
if ( !modelIsVisible && numContactedLights == 0 ) {
return;
}
//---------------------------
// create a dynamic model if the geometry isn't static
//---------------------------
idRenderModel * model = R_EntityDefDynamicModel( entityDef );
if ( model == NULL || model->NumSurfaces() <= 0 ) {
return;
}
// add the lightweight blood decal surfaces if the model is directly visible
if ( modelIsVisible ) {
assert( !vEntity->scissorRect.IsEmpty() );
if ( entityDef->decals != NULL && !r_skipDecals.GetBool() ) {
entityDef->decals->CreateDeferredDecals( model );
unsigned int numDrawSurfs = entityDef->decals->GetNumDecalDrawSurfs();
for ( unsigned int i = 0; i < numDrawSurfs; i++ ) {
drawSurf_t * decalDrawSurf = entityDef->decals->CreateDecalDrawSurf( vEntity, i );
if ( decalDrawSurf != NULL ) {
decalDrawSurf->linkChain = NULL;
decalDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = decalDrawSurf;
}
}
}
if ( entityDef->overlays != NULL && !r_skipOverlays.GetBool() ) {
entityDef->overlays->CreateDeferredOverlays( model );
unsigned int numDrawSurfs = entityDef->overlays->GetNumOverlayDrawSurfs();
for ( unsigned int i = 0; i < numDrawSurfs; i++ ) {
drawSurf_t * overlayDrawSurf = entityDef->overlays->CreateOverlayDrawSurf( vEntity, model, i );
if ( overlayDrawSurf != NULL ) {
overlayDrawSurf->linkChain = NULL;
overlayDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = overlayDrawSurf;
}
}
}
}
//---------------------------
// copy matrix related stuff for back-end use
// and setup a render matrix for faster culling
//---------------------------
vEntity->modelDepthHack = renderEntity->modelDepthHack;
vEntity->weaponDepthHack = renderEntity->weaponDepthHack;
vEntity->skipMotionBlur = renderEntity->skipMotionBlur;
memcpy( vEntity->modelMatrix, entityDef->modelMatrix, sizeof( vEntity->modelMatrix ) );
R_MatrixMultiply( entityDef->modelMatrix, viewDef->worldSpace.modelViewMatrix, vEntity->modelViewMatrix );
idRenderMatrix viewMat;
idRenderMatrix::Transpose( *(idRenderMatrix *)vEntity->modelViewMatrix, viewMat );
idRenderMatrix::Multiply( viewDef->projectionRenderMatrix, viewMat, vEntity->mvp );
if ( renderEntity->weaponDepthHack ) {
idRenderMatrix::ApplyDepthHack( vEntity->mvp );
}
if ( renderEntity->modelDepthHack != 0.0f ) {
idRenderMatrix::ApplyModelDepthHack( vEntity->mvp, renderEntity->modelDepthHack );
}
// local light and view origins are used to determine if the view is definitely outside
// an extruded shadow volume, which means we can skip drawing the end caps
idVec3 localViewOrigin;
R_GlobalPointToLocal( vEntity->modelMatrix, viewDef->renderView.vieworg, localViewOrigin );
//---------------------------
// add all the model surfaces
//---------------------------
for ( int surfaceNum = 0; surfaceNum < model->NumSurfaces(); surfaceNum++ ) {
const modelSurface_t *surf = model->Surface( surfaceNum );
// for debugging, only show a single surface at a time
if ( r_singleSurface.GetInteger() >= 0 && surfaceNum != r_singleSurface.GetInteger() ) {
continue;
}
srfTriangles_t * tri = surf->geometry;
if ( tri == NULL ) {
continue;
}
if ( tri->numIndexes == NULL ) {
continue; // happens for particles
}
const idMaterial * shader = surf->shader;
if ( shader == NULL ) {
continue;
}
if ( !shader->IsDrawn() ) {
continue; // collision hulls, etc
}
// RemapShaderBySkin
if ( entityDef->parms.customShader != NULL ) {
// this is sort of a hack, but causes deformed surfaces to map to empty surfaces,
// so the item highlight overlay doesn't highlight the autosprite surface
if ( shader->Deform() ) {
continue;
}
shader = entityDef->parms.customShader;
} else if ( entityDef->parms.customSkin ) {
shader = entityDef->parms.customSkin->RemapShaderBySkin( shader );
if ( shader == NULL ) {
continue;
}
if ( !shader->IsDrawn() ) {
continue;
}
}
// optionally override with the renderView->globalMaterial
if ( tr.primaryRenderView.globalMaterial != NULL ) {
shader = tr.primaryRenderView.globalMaterial;
}
SCOPED_PROFILE_EVENT( shader->GetName() );
// debugging tool to make sure we have the correct pre-calculated bounds
if ( r_checkBounds.GetBool() ) {
for ( int j = 0; j < tri->numVerts; j++ ) {
int k;
for ( k = 0; k < 3; k++ ) {
if ( tri->verts[j].xyz[k] > tri->bounds[1][k] + CHECK_BOUNDS_EPSILON
|| tri->verts[j].xyz[k] < tri->bounds[0][k] - CHECK_BOUNDS_EPSILON ) {
common->Printf( "bad tri->bounds on %s:%s\n", entityDef->parms.hModel->Name(), shader->GetName() );
break;
}
if ( tri->verts[j].xyz[k] > entityDef->localReferenceBounds[1][k] + CHECK_BOUNDS_EPSILON
|| tri->verts[j].xyz[k] < entityDef->localReferenceBounds[0][k] - CHECK_BOUNDS_EPSILON ) {
common->Printf( "bad referenceBounds on %s:%s\n", entityDef->parms.hModel->Name(), shader->GetName() );
break;
}
}
if ( k != 3 ) {
break;
}
}
}
// view frustum culling for the precise surface bounds, which is tighter
// than the entire entity reference bounds
// If the entire model wasn't visible, there is no need to check the
// individual surfaces.
const bool surfaceDirectlyVisible = modelIsVisible && !idRenderMatrix::CullBoundsToMVP( vEntity->mvp, tri->bounds );
const bool gpuSkinned = ( tri->staticModelWithJoints != NULL && r_useGPUSkinning.GetBool() );
//--------------------------
// base drawing surface
//--------------------------
drawSurf_t * baseDrawSurf = NULL;
if ( surfaceDirectlyVisible ) {
// make sure we have an ambient cache and all necessary normals / tangents
if ( !vertexCache.CacheIsCurrent( tri->indexCache ) ) {
tri->indexCache = vertexCache.AllocIndex( tri->indexes, ALIGN( tri->numIndexes * sizeof( triIndex_t ), INDEX_CACHE_ALIGN ) );
}
if ( !vertexCache.CacheIsCurrent( tri->ambientCache ) ) {
// we are going to use it for drawing, so make sure we have the tangents and normals
if ( shader->ReceivesLighting() && !tri->tangentsCalculated ) {
assert( tri->staticModelWithJoints == NULL );
R_DeriveTangents( tri );
assert( false ); // this should no longer be hit
}
tri->ambientCache = vertexCache.AllocVertex( tri->verts, ALIGN( tri->numVerts * sizeof( idDrawVert ), VERTEX_CACHE_ALIGN ) );
}
// add the surface for drawing
// we can re-use some of the values for light interaction surfaces
baseDrawSurf = (drawSurf_t *)R_FrameAlloc( sizeof( *baseDrawSurf ), FRAME_ALLOC_DRAW_SURFACE );
baseDrawSurf->frontEndGeo = tri;
baseDrawSurf->space = vEntity;
baseDrawSurf->scissorRect = vEntity->scissorRect;
baseDrawSurf->extraGLState = 0;
baseDrawSurf->renderZFail = 0;
R_SetupDrawSurfShader( baseDrawSurf, shader, renderEntity );
// Check for deformations (eyeballs, flares, etc)
const deform_t shaderDeform = shader->Deform();
if ( shaderDeform != DFRM_NONE ) {
drawSurf_t * deformDrawSurf = R_DeformDrawSurf( baseDrawSurf );
if ( deformDrawSurf != NULL ) {
// any deforms may have created multiple draw surfaces
for ( drawSurf_t * surf = deformDrawSurf, * next = NULL; surf != NULL; surf = next ) {
next = surf->nextOnLight;
surf->linkChain = NULL;
surf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = surf;
}
}
}
// Most deform source surfaces do not need to be rendered.
// However, particles are rendered in conjunction with the source surface.
if ( shaderDeform == DFRM_NONE || shaderDeform == DFRM_PARTICLE || shaderDeform == DFRM_PARTICLE2 ) {
// copy verts and indexes to this frame's hardware memory if they aren't already there
if ( !vertexCache.CacheIsCurrent( tri->ambientCache ) ) {
tri->ambientCache = vertexCache.AllocVertex( tri->verts, ALIGN( tri->numVerts * sizeof( tri->verts[0] ), VERTEX_CACHE_ALIGN ) );
}
if ( !vertexCache.CacheIsCurrent( tri->indexCache ) ) {
tri->indexCache = vertexCache.AllocIndex( tri->indexes, ALIGN( tri->numIndexes * sizeof( tri->indexes[0] ), INDEX_CACHE_ALIGN ) );
}
R_SetupDrawSurfJoints( baseDrawSurf, tri, shader );
baseDrawSurf->numIndexes = tri->numIndexes;
baseDrawSurf->ambientCache = tri->ambientCache;
baseDrawSurf->indexCache = tri->indexCache;
baseDrawSurf->shadowCache = 0;
baseDrawSurf->linkChain = NULL; // link to the view
baseDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = baseDrawSurf;
}
}
//----------------------------------------
// add all light interactions
//----------------------------------------
for ( int contactedLight = 0; contactedLight < numContactedLights; contactedLight++ ) {
viewLight_t * vLight = contactedLights[contactedLight];
const idRenderLightLocal * lightDef = vLight->lightDef;
const idInteraction * interaction = staticInteractions[contactedLight];
// check for a static interaction
surfaceInteraction_t *surfInter = NULL;
if ( interaction > INTERACTION_EMPTY && interaction->staticInteraction ) {
// we have a static interaction that was calculated accurately
assert( model->NumSurfaces() == interaction->numSurfaces );
surfInter = &interaction->surfaces[surfaceNum];
} else {
// try to do a more precise cull of this model surface to the light
if ( R_CullModelBoundsToLight( lightDef, tri->bounds, entityDef->modelRenderMatrix ) ) {
continue;
}
}
// "invisible ink" lights and shaders (imp spawn drawing on walls, etc)
if ( shader->Spectrum() != lightDef->lightShader->Spectrum() ) {
continue;
}
// Calculate the local light origin to determine if the view is inside the shadow
// projection and to calculate the triangle facing for dynamic shadow volumes.
idVec3 localLightOrigin;
R_GlobalPointToLocal( vEntity->modelMatrix, lightDef->globalLightOrigin, localLightOrigin );
//--------------------------
// surface light interactions
//--------------------------
dynamicShadowVolumeParms_t * dynamicShadowParms = NULL;
if ( addInteractions && surfaceDirectlyVisible && shader->ReceivesLighting() ) {
// static interactions can commonly find that no triangles from a surface
// contact the light, even when the total model does
if ( surfInter == NULL || surfInter->lightTrisIndexCache > 0 ) {
// create a drawSurf for this interaction
drawSurf_t * lightDrawSurf = (drawSurf_t *)R_FrameAlloc( sizeof( *lightDrawSurf ), FRAME_ALLOC_DRAW_SURFACE );
if ( surfInter != NULL ) {
// optimized static interaction
lightDrawSurf->numIndexes = surfInter->numLightTrisIndexes;
lightDrawSurf->indexCache = surfInter->lightTrisIndexCache;
} else {
// throw the entire source surface at it without any per-triangle culling
lightDrawSurf->numIndexes = tri->numIndexes;
lightDrawSurf->indexCache = tri->indexCache;
// optionally cull the triangles to the light volume
if ( r_cullDynamicLightTriangles.GetBool() ) {
vertCacheHandle_t lightIndexCache = vertexCache.AllocIndex( NULL, ALIGN( lightDrawSurf->numIndexes * sizeof( triIndex_t ), INDEX_CACHE_ALIGN ) );
if ( vertexCache.CacheIsCurrent( lightIndexCache ) ) {
lightDrawSurf->indexCache = lightIndexCache;
dynamicShadowParms = (dynamicShadowVolumeParms_t *)R_FrameAlloc( sizeof( dynamicShadowParms[0] ), FRAME_ALLOC_SHADOW_VOLUME_PARMS );
dynamicShadowParms->verts = tri->verts;
dynamicShadowParms->numVerts = tri->numVerts;
dynamicShadowParms->indexes = tri->indexes;
dynamicShadowParms->numIndexes = tri->numIndexes;
dynamicShadowParms->silEdges = tri->silEdges;
dynamicShadowParms->numSilEdges = tri->numSilEdges;
dynamicShadowParms->joints = gpuSkinned ? tri->staticModelWithJoints->jointsInverted : NULL;
dynamicShadowParms->numJoints = gpuSkinned ? tri->staticModelWithJoints->numInvertedJoints : 0;
dynamicShadowParms->triangleBounds = tri->bounds;
dynamicShadowParms->triangleMVP = vEntity->mvp;
dynamicShadowParms->localLightOrigin = localLightOrigin;
dynamicShadowParms->localViewOrigin = localViewOrigin;
idRenderMatrix::Multiply( vLight->lightDef->baseLightProject, entityDef->modelRenderMatrix, dynamicShadowParms->localLightProject );
dynamicShadowParms->zNear = znear;
dynamicShadowParms->lightZMin = vLight->scissorRect.zmin;
dynamicShadowParms->lightZMax = vLight->scissorRect.zmax;
dynamicShadowParms->cullShadowTrianglesToLight = false;
dynamicShadowParms->forceShadowCaps = false;
dynamicShadowParms->useShadowPreciseInsideTest = false;
dynamicShadowParms->useShadowDepthBounds = false;
dynamicShadowParms->tempFacing = NULL;
dynamicShadowParms->tempCulled = NULL;
dynamicShadowParms->tempVerts = NULL;
dynamicShadowParms->indexBuffer = NULL;
dynamicShadowParms->shadowIndices = NULL;
dynamicShadowParms->maxShadowIndices = 0;
dynamicShadowParms->numShadowIndices = NULL;
dynamicShadowParms->lightIndices = (triIndex_t *)vertexCache.MappedIndexBuffer( lightIndexCache );
dynamicShadowParms->maxLightIndices = lightDrawSurf->numIndexes;
dynamicShadowParms->numLightIndices = &lightDrawSurf->numIndexes;
dynamicShadowParms->renderZFail = NULL;
dynamicShadowParms->shadowZMin = NULL;
dynamicShadowParms->shadowZMax = NULL;
dynamicShadowParms->shadowVolumeState = & lightDrawSurf->shadowVolumeState;
lightDrawSurf->shadowVolumeState = SHADOWVOLUME_UNFINISHED;
dynamicShadowParms->next = vEntity->dynamicShadowVolumes;
vEntity->dynamicShadowVolumes = dynamicShadowParms;
}
}
}
lightDrawSurf->ambientCache = tri->ambientCache;
lightDrawSurf->shadowCache = 0;
lightDrawSurf->frontEndGeo = tri;
lightDrawSurf->space = vEntity;
lightDrawSurf->material = shader;
lightDrawSurf->extraGLState = 0;
lightDrawSurf->scissorRect = vLight->scissorRect; // interactionScissor;
lightDrawSurf->sort = 0.0f;
lightDrawSurf->renderZFail = 0;
lightDrawSurf->shaderRegisters = baseDrawSurf->shaderRegisters;
R_SetupDrawSurfJoints( lightDrawSurf, tri, shader );
// Determine which linked list to add the light surface to.
// There will only be localSurfaces if the light casts shadows and
// there are surfaces with NOSELFSHADOW.
if ( shader->Coverage() == MC_TRANSLUCENT ) {
lightDrawSurf->linkChain = &vLight->translucentInteractions;
} else if ( !lightDef->parms.noShadows && shader->TestMaterialFlag( MF_NOSELFSHADOW ) ) {
lightDrawSurf->linkChain = &vLight->localInteractions;
} else {
lightDrawSurf->linkChain = &vLight->globalInteractions;
}
lightDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = lightDrawSurf;
}
}
//--------------------------
// surface shadows
//--------------------------
if ( !shader->SurfaceCastsShadow() ) {
continue;
}
if ( !lightDef->LightCastsShadows() ) {
continue;
}
if ( tri->silEdges == NULL ) {
continue; // can happen for beam models (shouldn't use a shadow casting material, though...)
}
// if the static shadow does not have any shadows
if ( surfInter != NULL && surfInter->numShadowIndexes == 0 ) {
continue;
}
// some entities, like view weapons, don't cast any shadows
if ( entityDef->parms.noShadow ) {
continue;
}
// No shadow if it's suppressed for this light.
if ( entityDef->parms.suppressShadowInLightID && entityDef->parms.suppressShadowInLightID == lightDef->parms.lightId ) {
continue;
}
if ( lightDef->parms.prelightModel && lightDef->lightHasMoved == false &&
entityDef->parms.hModel->IsStaticWorldModel() && !r_skipPrelightShadows.GetBool() ) {
// static light / world model shadow interacitons
// are always captured in the prelight shadow volume
continue;
}
// If the shadow is drawn (or translucent), but the model isn't, we must include the shadow caps
// because we may be able to see into the shadow volume even though the view is outside it.
// This happens for the player world weapon and possibly some animations in multiplayer.
const bool forceShadowCaps = !addInteractions || r_forceShadowCaps.GetBool();
drawSurf_t * shadowDrawSurf = (drawSurf_t *)R_FrameAlloc( sizeof( *shadowDrawSurf ), FRAME_ALLOC_DRAW_SURFACE );
if ( surfInter != NULL ) {
shadowDrawSurf->numIndexes = 0;
shadowDrawSurf->indexCache = surfInter->shadowIndexCache;
shadowDrawSurf->shadowCache = tri->shadowCache;
shadowDrawSurf->scissorRect = vLight->scissorRect; // default to the light scissor and light depth bounds
shadowDrawSurf->shadowVolumeState = SHADOWVOLUME_DONE; // assume the shadow volume is done in case r_skipStaticShadows is set
if ( !r_skipStaticShadows.GetBool() ) {
staticShadowVolumeParms_t * staticShadowParms = (staticShadowVolumeParms_t *)R_FrameAlloc( sizeof( staticShadowParms[0] ), FRAME_ALLOC_SHADOW_VOLUME_PARMS );
staticShadowParms->verts = tri->staticShadowVertexes;
staticShadowParms->numVerts = tri->numVerts * 2;
staticShadowParms->indexes = surfInter->shadowIndexes;
staticShadowParms->numIndexes = surfInter->numShadowIndexes;
staticShadowParms->numShadowIndicesWithCaps = surfInter->numShadowIndexes;
staticShadowParms->numShadowIndicesNoCaps = surfInter->numShadowIndexesNoCaps;
staticShadowParms->triangleBounds = tri->bounds;
staticShadowParms->triangleMVP = vEntity->mvp;
staticShadowParms->localLightOrigin = localLightOrigin;
staticShadowParms->localViewOrigin = localViewOrigin;
staticShadowParms->zNear = znear;
staticShadowParms->lightZMin = vLight->scissorRect.zmin;
staticShadowParms->lightZMax = vLight->scissorRect.zmax;
staticShadowParms->forceShadowCaps = forceShadowCaps;
staticShadowParms->useShadowPreciseInsideTest = r_useShadowPreciseInsideTest.GetBool();
staticShadowParms->useShadowDepthBounds = r_useShadowDepthBounds.GetBool();
staticShadowParms->numShadowIndices = & shadowDrawSurf->numIndexes;
staticShadowParms->renderZFail = & shadowDrawSurf->renderZFail;
staticShadowParms->shadowZMin = & shadowDrawSurf->scissorRect.zmin;
staticShadowParms->shadowZMax = & shadowDrawSurf->scissorRect.zmax;
staticShadowParms->shadowVolumeState = & shadowDrawSurf->shadowVolumeState;
shadowDrawSurf->shadowVolumeState = SHADOWVOLUME_UNFINISHED;
staticShadowParms->next = vEntity->staticShadowVolumes;
vEntity->staticShadowVolumes = staticShadowParms;
}
} else {
// When CPU skinning the dynamic shadow verts of a dynamic model may not have been copied to buffer memory yet.
if ( !vertexCache.CacheIsCurrent( tri->shadowCache ) ) {
assert( !gpuSkinned ); // the shadow cache should be static when using GPU skinning
// Extracts just the xyz values from a set of full size drawverts, and
// duplicates them with w set to 0 and 1 for the vertex program to project.
// This is constant for any number of lights, the vertex program takes care
// of projecting the verts to infinity for a particular light.
tri->shadowCache = vertexCache.AllocVertex( NULL, ALIGN( tri->numVerts * 2 * sizeof( idShadowVert ), VERTEX_CACHE_ALIGN ) );
idShadowVert * shadowVerts = (idShadowVert *)vertexCache.MappedVertexBuffer( tri->shadowCache );
idShadowVert::CreateShadowCache( shadowVerts, tri->verts, tri->numVerts );
}
const int maxShadowVolumeIndexes = tri->numSilEdges * 6 + tri->numIndexes * 2;
shadowDrawSurf->numIndexes = 0;
shadowDrawSurf->indexCache = vertexCache.AllocIndex( NULL, ALIGN( maxShadowVolumeIndexes * sizeof( triIndex_t ), INDEX_CACHE_ALIGN ) );
shadowDrawSurf->shadowCache = tri->shadowCache;
shadowDrawSurf->scissorRect = vLight->scissorRect; // default to the light scissor and light depth bounds
shadowDrawSurf->shadowVolumeState = SHADOWVOLUME_DONE; // assume the shadow volume is done in case the index cache allocation failed
// if the index cache was successfully allocated then setup the parms to create a shadow volume in parallel
if ( vertexCache.CacheIsCurrent( shadowDrawSurf->indexCache ) && !r_skipDynamicShadows.GetBool() ) {
// if the parms were not already allocated for culling interaction triangles to the light frustum
if ( dynamicShadowParms == NULL ) {
dynamicShadowParms = (dynamicShadowVolumeParms_t *)R_FrameAlloc( sizeof( dynamicShadowParms[0] ), FRAME_ALLOC_SHADOW_VOLUME_PARMS );
} else {
// the shadow volume will be rendered first so when the interaction surface is drawn the triangles have been culled for sure
*dynamicShadowParms->shadowVolumeState = SHADOWVOLUME_DONE;
}
dynamicShadowParms->verts = tri->verts;
dynamicShadowParms->numVerts = tri->numVerts;
dynamicShadowParms->indexes = tri->indexes;
dynamicShadowParms->numIndexes = tri->numIndexes;
dynamicShadowParms->silEdges = tri->silEdges;
dynamicShadowParms->numSilEdges = tri->numSilEdges;
dynamicShadowParms->joints = gpuSkinned ? tri->staticModelWithJoints->jointsInverted : NULL;
dynamicShadowParms->numJoints = gpuSkinned ? tri->staticModelWithJoints->numInvertedJoints : 0;
dynamicShadowParms->triangleBounds = tri->bounds;
dynamicShadowParms->triangleMVP = vEntity->mvp;
dynamicShadowParms->localLightOrigin = localLightOrigin;
dynamicShadowParms->localViewOrigin = localViewOrigin;
idRenderMatrix::Multiply( vLight->lightDef->baseLightProject, entityDef->modelRenderMatrix, dynamicShadowParms->localLightProject );
dynamicShadowParms->zNear = znear;
dynamicShadowParms->lightZMin = vLight->scissorRect.zmin;
dynamicShadowParms->lightZMax = vLight->scissorRect.zmax;
dynamicShadowParms->cullShadowTrianglesToLight = r_cullDynamicShadowTriangles.GetBool();
dynamicShadowParms->forceShadowCaps = forceShadowCaps;
dynamicShadowParms->useShadowPreciseInsideTest = r_useShadowPreciseInsideTest.GetBool();
dynamicShadowParms->useShadowDepthBounds = r_useShadowDepthBounds.GetBool();
dynamicShadowParms->tempFacing = NULL;
dynamicShadowParms->tempCulled = NULL;
dynamicShadowParms->tempVerts = NULL;
dynamicShadowParms->indexBuffer = NULL;
dynamicShadowParms->shadowIndices = (triIndex_t *)vertexCache.MappedIndexBuffer( shadowDrawSurf->indexCache );
dynamicShadowParms->maxShadowIndices = maxShadowVolumeIndexes;
dynamicShadowParms->numShadowIndices = & shadowDrawSurf->numIndexes;
// dynamicShadowParms->lightIndices may have already been set for the interaction surface
// dynamicShadowParms->maxLightIndices may have already been set for the interaction surface
// dynamicShadowParms->numLightIndices may have already been set for the interaction surface
dynamicShadowParms->renderZFail = & shadowDrawSurf->renderZFail;
dynamicShadowParms->shadowZMin = & shadowDrawSurf->scissorRect.zmin;
dynamicShadowParms->shadowZMax = & shadowDrawSurf->scissorRect.zmax;
dynamicShadowParms->shadowVolumeState = & shadowDrawSurf->shadowVolumeState;
shadowDrawSurf->shadowVolumeState = SHADOWVOLUME_UNFINISHED;
// if the parms we not already linked for culling interaction triangles to the light frustum
if ( dynamicShadowParms->lightIndices == NULL ) {
dynamicShadowParms->next = vEntity->dynamicShadowVolumes;
vEntity->dynamicShadowVolumes = dynamicShadowParms;
}
tr.pc.c_createShadowVolumes++;
}
}
assert( vertexCache.CacheIsCurrent( shadowDrawSurf->shadowCache ) );
assert( vertexCache.CacheIsCurrent( shadowDrawSurf->indexCache ) );
shadowDrawSurf->ambientCache = 0;
shadowDrawSurf->frontEndGeo = NULL;
shadowDrawSurf->space = vEntity;
shadowDrawSurf->material = NULL;
shadowDrawSurf->extraGLState = 0;
shadowDrawSurf->sort = 0.0f;
shadowDrawSurf->shaderRegisters = NULL;
R_SetupDrawSurfJoints( shadowDrawSurf, tri, NULL );
// determine which linked list to add the shadow surface to
shadowDrawSurf->linkChain = shader->TestMaterialFlag( MF_NOSELFSHADOW ) ? &vLight->localShadows : &vLight->globalShadows;
shadowDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = shadowDrawSurf;
}
}
}
REGISTER_PARALLEL_JOB( R_AddSingleModel, "R_AddSingleModel" );
/*
=================
R_LinkDrawSurfToView
Als called directly by GuiModel
=================
*/
void R_LinkDrawSurfToView( drawSurf_t * drawSurf, viewDef_t * viewDef ) {
// if it doesn't fit, resize the list
if ( viewDef->numDrawSurfs == viewDef->maxDrawSurfs ) {
drawSurf_t **old = viewDef->drawSurfs;
int count;
if ( viewDef->maxDrawSurfs == 0 ) {
viewDef->maxDrawSurfs = INITIAL_DRAWSURFS;
count = 0;
} else {
count = viewDef->maxDrawSurfs * sizeof( viewDef->drawSurfs[0] );
viewDef->maxDrawSurfs *= 2;
}
viewDef->drawSurfs = (drawSurf_t **)R_FrameAlloc( viewDef->maxDrawSurfs * sizeof( viewDef->drawSurfs[0] ), FRAME_ALLOC_DRAW_SURFACE_POINTER );
memcpy( viewDef->drawSurfs, old, count );
}
viewDef->drawSurfs[viewDef->numDrawSurfs] = drawSurf;
viewDef->numDrawSurfs++;
}
/*
===================
R_AddModels
The end result of running this is the addition of drawSurf_t to the
tr.viewDef->drawSurfs[] array and light link chains, along with
frameData and vertexCache allocations to support the drawSurfs.
===================
*/
void R_AddModels() {
SCOPED_PROFILE_EVENT( "R_AddModels" );
tr.viewDef->viewEntitys = R_SortViewEntities( tr.viewDef->viewEntitys );
//-------------------------------------------------
// Go through each view entity that is either visible to the view, or to
// any light that intersects the view (for shadows).
//-------------------------------------------------
if ( r_useParallelAddModels.GetBool() ) {
for ( viewEntity_t * vEntity = tr.viewDef->viewEntitys; vEntity != NULL; vEntity = vEntity->next ) {
tr.frontEndJobList->AddJob( (jobRun_t)R_AddSingleModel, vEntity );
}
tr.frontEndJobList->Submit();
tr.frontEndJobList->Wait();
} else {
for ( viewEntity_t * vEntity = tr.viewDef->viewEntitys; vEntity != NULL; vEntity = vEntity->next ) {
R_AddSingleModel( vEntity );
}
}
//-------------------------------------------------
// Kick off jobs to setup static and dynamic shadow volumes.
//-------------------------------------------------
if ( r_useParallelAddShadows.GetInteger() == 1 ) {
for ( viewEntity_t * vEntity = tr.viewDef->viewEntitys; vEntity != NULL; vEntity = vEntity->next ) {
for ( staticShadowVolumeParms_t * shadowParms = vEntity->staticShadowVolumes; shadowParms != NULL; shadowParms = shadowParms->next ) {
tr.frontEndJobList->AddJob( (jobRun_t)StaticShadowVolumeJob, shadowParms );
}
for ( dynamicShadowVolumeParms_t * shadowParms = vEntity->dynamicShadowVolumes; shadowParms != NULL; shadowParms = shadowParms->next ) {
tr.frontEndJobList->AddJob( (jobRun_t)DynamicShadowVolumeJob, shadowParms );
}
vEntity->staticShadowVolumes = NULL;
vEntity->dynamicShadowVolumes = NULL;
}
tr.frontEndJobList->Submit();
// wait here otherwise the shadow volume index buffer may be unmapped before all shadow volumes have been constructed
tr.frontEndJobList->Wait();
} else {
int start = Sys_Microseconds();
for ( viewEntity_t * vEntity = tr.viewDef->viewEntitys; vEntity != NULL; vEntity = vEntity->next ) {
for ( staticShadowVolumeParms_t * shadowParms = vEntity->staticShadowVolumes; shadowParms != NULL; shadowParms = shadowParms->next ) {
StaticShadowVolumeJob( shadowParms );
}
for ( dynamicShadowVolumeParms_t * shadowParms = vEntity->dynamicShadowVolumes; shadowParms != NULL; shadowParms = shadowParms->next ) {
DynamicShadowVolumeJob( shadowParms );
}
vEntity->staticShadowVolumes = NULL;
vEntity->dynamicShadowVolumes = NULL;
}
int end = Sys_Microseconds();
backEnd.pc.shadowMicroSec += end - start;
}
//-------------------------------------------------
// Move the draw surfs to the view.
//-------------------------------------------------
tr.viewDef->numDrawSurfs = 0; // clear the ambient surface list
tr.viewDef->maxDrawSurfs = 0; // will be set to INITIAL_DRAWSURFS on R_LinkDrawSurfToView
for ( viewEntity_t * vEntity = tr.viewDef->viewEntitys; vEntity != NULL; vEntity = vEntity->next ) {
for ( drawSurf_t * ds = vEntity->drawSurfs; ds != NULL; ) {
drawSurf_t * next = ds->nextOnLight;
if ( ds->linkChain == NULL ) {
R_LinkDrawSurfToView( ds, tr.viewDef );
} else {
ds->nextOnLight = *ds->linkChain;
*ds->linkChain = ds;
}
ds = next;
}
vEntity->drawSurfs = NULL;
}
}