doom3-bfg/neo/renderer/jpeg-6/jcsample.cpp
2012-11-26 12:58:24 -06:00

523 lines
20 KiB
C++

/*
* jcsample.c
*
* Copyright (C) 1991-1994, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains downsampling routines.
*
* Downsampling input data is counted in "row groups". A row group
* is defined to be max_v_samp_factor pixel rows of each component,
* from which the downsampler produces v_samp_factor sample rows.
* A single row group is processed in each call to the downsampler module.
*
* The downsampler is responsible for edge-expansion of its output data
* to fill an integral number of DCT blocks horizontally. The source buffer
* may be modified if it is helpful for this purpose (the source buffer is
* allocated wide enough to correspond to the desired output width).
* The caller (the prep controller) is responsible for vertical padding.
*
* The downsampler may request "context rows" by setting need_context_rows
* during startup. In this case, the input arrays will contain at least
* one row group's worth of pixels above and below the passed-in data;
* the caller will create dummy rows at image top and bottom by replicating
* the first or last real pixel row.
*
* An excellent reference for image resampling is
* Digital Image Warping, George Wolberg, 1990.
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
*
* The downsampling algorithm used here is a simple average of the source
* pixels covered by the output pixel. The hi-falutin sampling literature
* refers to this as a "box filter". In general the characteristics of a box
* filter are not very good, but for the specific cases we normally use (1:1
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
* nearly so bad. If you intend to use other sampling ratios, you'd be well
* advised to improve this code.
*
* A simple input-smoothing capability is provided. This is mainly intended
* for cleaning up color-dithered GIF input files (if you find it inadequate,
* we suggest using an external filtering program such as pnmconvol). When
* enabled, each input pixel P is replaced by a weighted sum of itself and its
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
* where SF = (smoothing_factor / 1024).
* Currently, smoothing is only supported for 2h2v sampling factors.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Pointer to routine to downsample a single component */
typedef JMETHOD ( void, downsample1_ptr,
( j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data ) );
/* Private subobject */
typedef struct {
struct jpeg_downsampler pub;/* public fields */
/* Downsampling method pointers, one per component */
downsample1_ptr methods[MAX_COMPONENTS];
} my_downsampler;
typedef my_downsampler * my_downsample_ptr;
/*
* Initialize for a downsampling pass.
*/
METHODDEF void
start_pass_downsample( j_compress_ptr cinfo ) {
/* no work for now */
}
/*
* Expand a component horizontally from width input_cols to width output_cols,
* by duplicating the rightmost samples.
*/
LOCAL void
expand_right_edge( JSAMPARRAY image_data, int num_rows,
JDIMENSION input_cols, JDIMENSION output_cols ) {
register JSAMPROW ptr;
register JSAMPLE pixval;
register int count;
int row;
int numcols = (int) ( output_cols - input_cols );
if ( numcols > 0 ) {
for ( row = 0; row < num_rows; row++ ) {
ptr = image_data[row] + input_cols;
pixval = ptr[-1];/* don't need GETJSAMPLE() here */
for ( count = numcols; count > 0; count-- ) {
*ptr++ = pixval;
}
}
}
}
/*
* Do downsampling for a whole row group (all components).
*
* In this version we simply downsample each component independently.
*/
METHODDEF void
sep_downsample( j_compress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index ) {
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
int ci;
jpeg_component_info * compptr;
JSAMPARRAY in_ptr, out_ptr;
for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++ ) {
in_ptr = input_buf[ci] + in_row_index;
out_ptr = output_buf[ci] + ( out_row_group_index * compptr->v_samp_factor );
( *downsample->methods[ci] )( cinfo, compptr, in_ptr, out_ptr );
}
}
/*
* Downsample pixel values of a single component.
* One row group is processed per call.
* This version handles arbitrary integral sampling ratios, without smoothing.
* Note that this version is not actually used for customary sampling ratios.
*/
METHODDEF void
int_downsample( j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data ) {
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
JDIMENSION outcol, outcol_h;/* outcol_h == outcol*h_expand */
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
JSAMPROW inptr, outptr;
INT32 outvalue;
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
numpix = h_expand * v_expand;
numpix2 = numpix / 2;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge( input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * h_expand );
inrow = 0;
for ( outrow = 0; outrow < compptr->v_samp_factor; outrow++ ) {
outptr = output_data[outrow];
for ( outcol = 0, outcol_h = 0; outcol < output_cols;
outcol++, outcol_h += h_expand ) {
outvalue = 0;
for ( v = 0; v < v_expand; v++ ) {
inptr = input_data[inrow + v] + outcol_h;
for ( h = 0; h < h_expand; h++ ) {
outvalue += (INT32) GETJSAMPLE( *inptr++ );
}
}
*outptr++ = (JSAMPLE) ( ( outvalue + numpix2 ) / numpix );
}
inrow += v_expand;
}
}
/*
* Downsample pixel values of a single component.
* This version handles the special case of a full-size component,
* without smoothing.
*/
METHODDEF void
fullsize_downsample( j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data ) {
/* Copy the data */
jcopy_sample_rows( input_data, 0, output_data, 0,
cinfo->max_v_samp_factor, cinfo->image_width );
/* Edge-expand */
expand_right_edge( output_data, cinfo->max_v_samp_factor,
cinfo->image_width, compptr->width_in_blocks * DCTSIZE );
}
/*
* Downsample pixel values of a single component.
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
* without smoothing.
*
* A note about the "bias" calculations: when rounding fractional values to
* integer, we do not want to always round 0.5 up to the next integer.
* If we did that, we'd introduce a noticeable bias towards larger values.
* Instead, this code is arranged so that 0.5 will be rounded up or down at
* alternate pixel locations (a simple ordered dither pattern).
*/
METHODDEF void
h2v1_downsample( j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data ) {
int outrow;
JDIMENSION outcol;
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
register JSAMPROW inptr, outptr;
register int bias;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge( input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * 2 );
for ( outrow = 0; outrow < compptr->v_samp_factor; outrow++ ) {
outptr = output_data[outrow];
inptr = input_data[outrow];
bias = 0; /* bias = 0,1,0,1,... for successive samples */
for ( outcol = 0; outcol < output_cols; outcol++ ) {
*outptr++ = (JSAMPLE) ( ( GETJSAMPLE( *inptr ) + GETJSAMPLE( inptr[1] )
+ bias ) >> 1 );
bias ^= 1; /* 0=>1, 1=>0 */
inptr += 2;
}
}
}
/*
* Downsample pixel values of a single component.
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
* without smoothing.
*/
METHODDEF void
h2v2_downsample( j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data ) {
int inrow, outrow;
JDIMENSION outcol;
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
register JSAMPROW inptr0, inptr1, outptr;
register int bias;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge( input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * 2 );
inrow = 0;
for ( outrow = 0; outrow < compptr->v_samp_factor; outrow++ ) {
outptr = output_data[outrow];
inptr0 = input_data[inrow];
inptr1 = input_data[inrow + 1];
bias = 1; /* bias = 1,2,1,2,... for successive samples */
for ( outcol = 0; outcol < output_cols; outcol++ ) {
*outptr++ = (JSAMPLE) ( ( GETJSAMPLE( *inptr0 ) + GETJSAMPLE( inptr0[1] ) +
GETJSAMPLE( *inptr1 ) + GETJSAMPLE( inptr1[1] )
+ bias ) >> 2 );
bias ^= 3; /* 1=>2, 2=>1 */
inptr0 += 2;
inptr1 += 2;
}
inrow += 2;
}
}
#ifdef INPUT_SMOOTHING_SUPPORTED
/*
* Downsample pixel values of a single component.
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
* with smoothing. One row of context is required.
*/
METHODDEF void
h2v2_smooth_downsample( j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data ) {
int inrow, outrow;
JDIMENSION colctr;
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
INT32 membersum, neighsum, memberscale, neighscale;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge( input_data - 1, cinfo->max_v_samp_factor + 2,
cinfo->image_width, output_cols * 2 );
/* We don't bother to form the individual "smoothed" input pixel values;
* we can directly compute the output which is the average of the four
* smoothed values. Each of the four member pixels contributes a fraction
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
* output. The four corner-adjacent neighbor pixels contribute a fraction
* SF to just one smoothed pixel, or SF/4 to the final output; while the
* eight edge-adjacent neighbors contribute SF to each of two smoothed
* pixels, or SF/2 overall. In order to use integer arithmetic, these
* factors are scaled by 2^16 = 65536.
* Also recall that SF = smoothing_factor / 1024.
*/
memberscale = 16384 - cinfo->smoothing_factor * 80;/* scaled (1-5*SF)/4 */
neighscale = cinfo->smoothing_factor * 16;/* scaled SF/4 */
inrow = 0;
for ( outrow = 0; outrow < compptr->v_samp_factor; outrow++ ) {
outptr = output_data[outrow];
inptr0 = input_data[inrow];
inptr1 = input_data[inrow + 1];
above_ptr = input_data[inrow - 1];
below_ptr = input_data[inrow + 2];
/* Special case for first column: pretend column -1 is same as column 0 */
membersum = GETJSAMPLE( *inptr0 ) + GETJSAMPLE( inptr0[1] ) +
GETJSAMPLE( *inptr1 ) + GETJSAMPLE( inptr1[1] );
neighsum = GETJSAMPLE( *above_ptr ) + GETJSAMPLE( above_ptr[1] ) +
GETJSAMPLE( *below_ptr ) + GETJSAMPLE( below_ptr[1] ) +
GETJSAMPLE( *inptr0 ) + GETJSAMPLE( inptr0[2] ) +
GETJSAMPLE( *inptr1 ) + GETJSAMPLE( inptr1[2] );
neighsum += neighsum;
neighsum += GETJSAMPLE( *above_ptr ) + GETJSAMPLE( above_ptr[2] ) +
GETJSAMPLE( *below_ptr ) + GETJSAMPLE( below_ptr[2] );
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ( ( membersum + 32768 ) >> 16 );
inptr0 += 2;
inptr1 += 2;
above_ptr += 2;
below_ptr += 2;
for ( colctr = output_cols - 2; colctr > 0; colctr-- ) {
/* sum of pixels directly mapped to this output element */
membersum = GETJSAMPLE( *inptr0 ) + GETJSAMPLE( inptr0[1] ) +
GETJSAMPLE( *inptr1 ) + GETJSAMPLE( inptr1[1] );
/* sum of edge-neighbor pixels */
neighsum = GETJSAMPLE( *above_ptr ) + GETJSAMPLE( above_ptr[1] ) +
GETJSAMPLE( *below_ptr ) + GETJSAMPLE( below_ptr[1] ) +
GETJSAMPLE( inptr0[-1] ) + GETJSAMPLE( inptr0[2] ) +
GETJSAMPLE( inptr1[-1] ) + GETJSAMPLE( inptr1[2] );
/* The edge-neighbors count twice as much as corner-neighbors */
neighsum += neighsum;
/* Add in the corner-neighbors */
neighsum += GETJSAMPLE( above_ptr[-1] ) + GETJSAMPLE( above_ptr[2] ) +
GETJSAMPLE( below_ptr[-1] ) + GETJSAMPLE( below_ptr[2] );
/* form final output scaled up by 2^16 */
membersum = membersum * memberscale + neighsum * neighscale;
/* round, descale and output it */
*outptr++ = (JSAMPLE) ( ( membersum + 32768 ) >> 16 );
inptr0 += 2;
inptr1 += 2;
above_ptr += 2;
below_ptr += 2;
}
/* Special case for last column */
membersum = GETJSAMPLE( *inptr0 ) + GETJSAMPLE( inptr0[1] ) +
GETJSAMPLE( *inptr1 ) + GETJSAMPLE( inptr1[1] );
neighsum = GETJSAMPLE( *above_ptr ) + GETJSAMPLE( above_ptr[1] ) +
GETJSAMPLE( *below_ptr ) + GETJSAMPLE( below_ptr[1] ) +
GETJSAMPLE( inptr0[-1] ) + GETJSAMPLE( inptr0[1] ) +
GETJSAMPLE( inptr1[-1] ) + GETJSAMPLE( inptr1[1] );
neighsum += neighsum;
neighsum += GETJSAMPLE( above_ptr[-1] ) + GETJSAMPLE( above_ptr[1] ) +
GETJSAMPLE( below_ptr[-1] ) + GETJSAMPLE( below_ptr[1] );
membersum = membersum * memberscale + neighsum * neighscale;
*outptr = (JSAMPLE) ( ( membersum + 32768 ) >> 16 );
inrow += 2;
}
}
/*
* Downsample pixel values of a single component.
* This version handles the special case of a full-size component,
* with smoothing. One row of context is required.
*/
METHODDEF void
fullsize_smooth_downsample( j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data ) {
int outrow;
JDIMENSION colctr;
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
INT32 membersum, neighsum, memberscale, neighscale;
int colsum, lastcolsum, nextcolsum;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge( input_data - 1, cinfo->max_v_samp_factor + 2,
cinfo->image_width, output_cols );
/* Each of the eight neighbor pixels contributes a fraction SF to the
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
* Also recall that SF = smoothing_factor / 1024.
*/
memberscale = 65536L - cinfo->smoothing_factor * 512L;/* scaled 1-8*SF */
neighscale = cinfo->smoothing_factor * 64;/* scaled SF */
for ( outrow = 0; outrow < compptr->v_samp_factor; outrow++ ) {
outptr = output_data[outrow];
inptr = input_data[outrow];
above_ptr = input_data[outrow - 1];
below_ptr = input_data[outrow + 1];
/* Special case for first column */
colsum = GETJSAMPLE( *above_ptr++ ) + GETJSAMPLE( *below_ptr++ ) +
GETJSAMPLE( *inptr );
membersum = GETJSAMPLE( *inptr++ );
nextcolsum = GETJSAMPLE( *above_ptr ) + GETJSAMPLE( *below_ptr ) +
GETJSAMPLE( *inptr );
neighsum = colsum + ( colsum - membersum ) + nextcolsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ( ( membersum + 32768 ) >> 16 );
lastcolsum = colsum;
colsum = nextcolsum;
for ( colctr = output_cols - 2; colctr > 0; colctr-- ) {
membersum = GETJSAMPLE( *inptr++ );
above_ptr++;
below_ptr++;
nextcolsum = GETJSAMPLE( *above_ptr ) + GETJSAMPLE( *below_ptr ) +
GETJSAMPLE( *inptr );
neighsum = lastcolsum + ( colsum - membersum ) + nextcolsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ( ( membersum + 32768 ) >> 16 );
lastcolsum = colsum;
colsum = nextcolsum;
}
/* Special case for last column */
membersum = GETJSAMPLE( *inptr );
neighsum = lastcolsum + ( colsum - membersum ) + colsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr = (JSAMPLE) ( ( membersum + 32768 ) >> 16 );
}
}
#endif /* INPUT_SMOOTHING_SUPPORTED */
/*
* Module initialization routine for downsampling.
* Note that we must select a routine for each component.
*/
GLOBAL void
jinit_downsampler( j_compress_ptr cinfo ) {
my_downsample_ptr downsample;
int ci;
jpeg_component_info * compptr;
boolean smoothok = TRUE;
downsample = (my_downsample_ptr)
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF( my_downsampler ) );
cinfo->downsample = (struct jpeg_downsampler *) downsample;
downsample->pub.start_pass = start_pass_downsample;
downsample->pub.downsample = sep_downsample;
downsample->pub.need_context_rows = FALSE;
if ( cinfo->CCIR601_sampling ) {
ERREXIT( cinfo, JERR_CCIR601_NOTIMPL );
}
/* Verify we can handle the sampling factors, and set up method pointers */
for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++ ) {
if ( ( compptr->h_samp_factor == cinfo->max_h_samp_factor ) &&
( compptr->v_samp_factor == cinfo->max_v_samp_factor ) ) {
#ifdef INPUT_SMOOTHING_SUPPORTED
if ( cinfo->smoothing_factor ) {
downsample->methods[ci] = fullsize_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
} else
#endif
downsample->methods[ci] = fullsize_downsample;
} else if ( compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
compptr->v_samp_factor == cinfo->max_v_samp_factor ) {
smoothok = FALSE;
downsample->methods[ci] = h2v1_downsample;
} else if ( compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor ) {
#ifdef INPUT_SMOOTHING_SUPPORTED
if ( cinfo->smoothing_factor ) {
downsample->methods[ci] = h2v2_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
} else
#endif
downsample->methods[ci] = h2v2_downsample;
} else if ( ( cinfo->max_h_samp_factor % compptr->h_samp_factor ) == 0 &&
( cinfo->max_v_samp_factor % compptr->v_samp_factor ) == 0 ) {
smoothok = FALSE;
downsample->methods[ci] = int_downsample;
} else {
ERREXIT( cinfo, JERR_FRACT_SAMPLE_NOTIMPL );
}
}
#ifdef INPUT_SMOOTHING_SUPPORTED
if ( ( cinfo->smoothing_factor ) && ( !smoothok ) ) {
TRACEMS( cinfo, 0, JTRC_SMOOTH_NOTIMPL );
}
#endif
}