doom3-bfg/neo/renderer/BinaryImage.cpp
2012-11-26 12:58:24 -06:00

449 lines
14 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "../idlib/precompiled.h"
/*
================================================================================================
idBinaryImage
================================================================================================
*/
#include "tr_local.h"
#include "dxt/DXTCodec.h"
#include "color/ColorSpace.h"
idCVar image_highQualityCompression( "image_highQualityCompression", "0", CVAR_BOOL, "Use high quality (slow) compression" );
/*
========================
idBinaryImage::Load2DFromMemory
========================
*/
void idBinaryImage::Load2DFromMemory( int width, int height, const byte * pic_const, int numLevels, textureFormat_t & textureFormat, textureColor_t & colorFormat, bool gammaMips ) {
fileData.textureType = TT_2D;
fileData.format = textureFormat;
fileData.colorFormat = colorFormat;
fileData.width = width;
fileData.height = height;
fileData.numLevels = numLevels;
byte * pic = (byte *)Mem_Alloc( width * height * 4, TAG_TEMP );
memcpy( pic, pic_const, width * height * 4 );
if ( colorFormat == CFM_YCOCG_DXT5 ) {
// convert the image data to YCoCg and use the YCoCgDXT5 compressor
idColorSpace::ConvertRGBToCoCg_Y( pic, pic, width, height );
} else if ( colorFormat == CFM_NORMAL_DXT5 ) {
// Blah, HQ swizzles automatically, Fast doesn't
if ( !image_highQualityCompression.GetBool() ) {
for ( int i = 0; i < width * height; i++ ) {
pic[i*4+3] = pic[i*4+0];
pic[i*4+0] = 0;
pic[i*4+2] = 0;
}
}
} else if ( colorFormat == CFM_GREEN_ALPHA ) {
for ( int i = 0; i < width * height; i++ ) {
pic[i*4+1] = pic[i*4+3];
pic[i*4+0] = 0;
pic[i*4+2] = 0;
pic[i*4+3] = 0;
}
}
int scaledWidth = width;
int scaledHeight = height;
images.SetNum( numLevels );
for ( int level = 0; level < images.Num(); level++ ) {
idBinaryImageData &img = images[ level ];
// Images that are going to be DXT compressed and aren't multiples of 4 need to be
// padded out before compressing.
byte * dxtPic = pic;
int dxtWidth = 0;
int dxtHeight = 0;
if ( textureFormat == FMT_DXT5 || textureFormat == FMT_DXT1 ) {
if ( ( scaledWidth & 3 ) || ( scaledHeight & 3 ) ) {
dxtWidth = ( scaledWidth + 3 ) & ~3;
dxtHeight = ( scaledHeight + 3 ) & ~3;
dxtPic = (byte *)Mem_ClearedAlloc( dxtWidth*4*dxtHeight, TAG_IMAGE );
for ( int i = 0; i < scaledHeight; i++ ) {
memcpy( dxtPic + i*dxtWidth*4, pic + i*scaledWidth*4, scaledWidth*4 );
}
} else {
dxtPic = pic;
dxtWidth = scaledWidth;
dxtHeight = scaledHeight;
}
}
img.level = level;
img.destZ = 0;
img.width = scaledWidth;
img.height = scaledHeight;
// compress data or convert floats as necessary
if ( textureFormat == FMT_DXT1 ) {
idDxtEncoder dxt;
img.Alloc( dxtWidth * dxtHeight / 2 );
if ( image_highQualityCompression.GetBool() ) {
dxt.CompressImageDXT1HQ( dxtPic, img.data, dxtWidth, dxtHeight );
} else {
dxt.CompressImageDXT1Fast( dxtPic, img.data, dxtWidth, dxtHeight );
}
} else if ( textureFormat == FMT_DXT5 ) {
idDxtEncoder dxt;
img.Alloc( dxtWidth * dxtHeight );
if ( colorFormat == CFM_NORMAL_DXT5 ) {
if ( image_highQualityCompression.GetBool() ) {
dxt.CompressNormalMapDXT5HQ( dxtPic, img.data, dxtWidth, dxtHeight );
} else {
dxt.CompressNormalMapDXT5Fast( dxtPic, img.data, dxtWidth, dxtHeight );
}
} else if ( colorFormat == CFM_YCOCG_DXT5 ) {
if ( image_highQualityCompression.GetBool() ) {
dxt.CompressYCoCgDXT5HQ( dxtPic, img.data, dxtWidth, dxtHeight );
} else {
dxt.CompressYCoCgDXT5Fast( dxtPic, img.data, dxtWidth, dxtHeight );
}
} else {
fileData.colorFormat = colorFormat = CFM_DEFAULT;
if ( image_highQualityCompression.GetBool() ) {
dxt.CompressImageDXT5HQ( dxtPic, img.data, dxtWidth, dxtHeight );
} else {
dxt.CompressImageDXT5Fast( dxtPic, img.data, dxtWidth, dxtHeight );
}
}
} else if ( textureFormat == FMT_LUM8 || textureFormat == FMT_INT8 ) {
// LUM8 and INT8 just read the red channel
img.Alloc( scaledWidth * scaledHeight );
for ( int i = 0; i < img.dataSize; i++ ) {
img.data[ i ] = pic[ i * 4 ];
}
} else if ( textureFormat == FMT_ALPHA ) {
// ALPHA reads the alpha channel
img.Alloc( scaledWidth * scaledHeight );
for ( int i = 0; i < img.dataSize; i++ ) {
img.data[ i ] = pic[ i * 4 + 3 ];
}
} else if ( textureFormat == FMT_L8A8 ) {
// L8A8 reads the alpha and red channels
img.Alloc( scaledWidth * scaledHeight * 2 );
for ( int i = 0; i < img.dataSize / 2; i++ ) {
img.data[ i * 2 + 0 ] = pic[ i * 4 + 0 ];
img.data[ i * 2 + 1 ] = pic[ i * 4 + 3 ];
}
} else if ( textureFormat == FMT_RGB565 ) {
img.Alloc( scaledWidth * scaledHeight * 2 );
for ( int i = 0; i < img.dataSize / 2; i++ ) {
unsigned short color = ( ( pic[ i * 4 + 0 ] >> 3 ) << 11 ) | ( ( pic[ i * 4 + 1 ] >> 2 ) << 5 ) | ( pic[ i * 4 + 2 ] >> 3 );
img.data[ i * 2 + 0 ] = ( color >> 8 ) & 0xFF;
img.data[ i * 2 + 1 ] = color & 0xFF;
}
} else {
fileData.format = textureFormat = FMT_RGBA8;
img.Alloc( scaledWidth * scaledHeight * 4 );
for ( int i = 0; i < img.dataSize; i++ ) {
img.data[ i ] = pic[ i ];
}
}
// if we had to pad to quads, free the padded version
if ( pic != dxtPic ) {
Mem_Free( dxtPic );
dxtPic = NULL;
}
// downsample for the next level
byte * shrunk = NULL;
if ( gammaMips ) {
shrunk = R_MipMapWithGamma( pic, scaledWidth, scaledHeight );
} else {
shrunk = R_MipMap( pic, scaledWidth, scaledHeight );
}
Mem_Free( pic );
pic = shrunk;
scaledWidth = Max( 1, scaledWidth >> 1 );
scaledHeight = Max( 1, scaledHeight >> 1 );
}
Mem_Free( pic );
}
/*
========================
PadImageTo4x4
DXT Compression requres a complete 4x4 block, even if the GPU will only be sampling
a subset of it, so pad to 4x4 with replicated texels to maximize compression.
========================
*/
static void PadImageTo4x4( const byte *src, int width, int height, byte dest[64] ) {
// we probably will need to support this for non-square images, but I'll address
// that when needed
assert( width <= 4 && height <= 4 );
assert( width > 0 && height > 0 );
for ( int y = 0 ; y < 4 ; y++ ) {
int sy = y % height;
for ( int x = 0 ; x < 4 ; x++ ) {
int sx = x % width;
for ( int c = 0 ; c < 4 ; c++ ) {
dest[(y*4+x)*4+c] = src[(sy*width+sx)*4+c];
}
}
}
}
/*
========================
idBinaryImage::LoadCubeFromMemory
========================
*/
void idBinaryImage::LoadCubeFromMemory( int width, const byte * pics[6], int numLevels, textureFormat_t & textureFormat, bool gammaMips ) {
fileData.textureType = TT_CUBIC;
fileData.format = textureFormat;
fileData.colorFormat = CFM_DEFAULT;
fileData.height = fileData.width = width;
fileData.numLevels = numLevels;
images.SetNum( fileData.numLevels * 6 );
for ( int side = 0; side < 6; side++ ) {
const byte *orig = pics[side];
const byte *pic = orig;
int scaledWidth = fileData.width;
for ( int level = 0; level < fileData.numLevels; level++ ) {
// compress data or convert floats as necessary
idBinaryImageData &img = images[ level * 6 + side ];
// handle padding blocks less than 4x4 for the DXT compressors
ALIGN16( byte padBlock[64] );
int padSize;
const byte *padSrc;
if ( scaledWidth < 4 && ( textureFormat == FMT_DXT1 || textureFormat == FMT_DXT5 ) ) {
PadImageTo4x4( pic, scaledWidth, scaledWidth, padBlock );
padSize = 4;
padSrc = padBlock;
} else {
padSize = scaledWidth;
padSrc = pic;
}
img.level = level;
img.destZ = side;
img.width = padSize;
img.height = padSize;
if ( textureFormat == FMT_DXT1 ) {
img.Alloc( padSize * padSize / 2 );
idDxtEncoder dxt;
dxt.CompressImageDXT1Fast( padSrc, img.data, padSize, padSize );
} else if ( textureFormat == FMT_DXT5 ) {
img.Alloc( padSize * padSize );
idDxtEncoder dxt;
dxt.CompressImageDXT5Fast( padSrc, img.data, padSize, padSize );
} else {
fileData.format = textureFormat = FMT_RGBA8;
img.Alloc( padSize * padSize * 4 );
memcpy( img.data, pic, img.dataSize );
}
// downsample for the next level
byte * shrunk = NULL;
if ( gammaMips ) {
shrunk = R_MipMapWithGamma( pic, scaledWidth, scaledWidth );
} else {
shrunk = R_MipMap( pic, scaledWidth, scaledWidth );
}
if ( pic != orig ) {
Mem_Free( (void *)pic );
pic = NULL;
}
pic = shrunk;
scaledWidth = Max( 1, scaledWidth >> 1 );
}
if ( pic != orig ) {
// free the down sampled version
Mem_Free( (void *)pic );
pic = NULL;
}
}
}
/*
========================
idBinaryImage::WriteGeneratedFile
========================
*/
ID_TIME_T idBinaryImage::WriteGeneratedFile( ID_TIME_T sourceFileTime ) {
idStr binaryFileName;
MakeGeneratedFileName( binaryFileName );
idFileLocal file( fileSystem->OpenFileWrite( binaryFileName, "fs_basepath" ) );
if ( file == NULL ) {
idLib::Warning( "idBinaryImage: Could not open file '%s'", binaryFileName.c_str() );
return FILE_NOT_FOUND_TIMESTAMP;
}
idLib::Printf( "Writing %s\n", binaryFileName.c_str() );
fileData.headerMagic = BIMAGE_MAGIC;
fileData.sourceFileTime = sourceFileTime;
file->WriteBig( fileData.sourceFileTime );
file->WriteBig( fileData.headerMagic );
file->WriteBig( fileData.textureType );
file->WriteBig( fileData.format );
file->WriteBig( fileData.colorFormat );
file->WriteBig( fileData.width );
file->WriteBig( fileData.height );
file->WriteBig( fileData.numLevels );
for ( int i = 0; i < images.Num(); i++ ) {
idBinaryImageData &img = images[ i ];
file->WriteBig( img.level );
file->WriteBig( img.destZ );
file->WriteBig( img.width );
file->WriteBig( img.height );
file->WriteBig( img.dataSize );
file->Write( img.data, img.dataSize );
}
return file->Timestamp();
}
/*
==========================
idBinaryImage::LoadFromGeneratedFile
Load the preprocessed image from the generated folder.
==========================
*/
ID_TIME_T idBinaryImage::LoadFromGeneratedFile( ID_TIME_T sourceFileTime ) {
idStr binaryFileName;
MakeGeneratedFileName( binaryFileName );
idFileLocal bFile = fileSystem->OpenFileRead( binaryFileName );
if ( bFile == NULL ) {
return FILE_NOT_FOUND_TIMESTAMP;
}
if ( LoadFromGeneratedFile( bFile, sourceFileTime ) ) {
return bFile->Timestamp();
}
return FILE_NOT_FOUND_TIMESTAMP;
}
/*
==========================
idBinaryImage::LoadFromGeneratedFile
Load the preprocessed image from the generated folder.
==========================
*/
bool idBinaryImage::LoadFromGeneratedFile( idFile * bFile, ID_TIME_T sourceFileTime ) {
if ( bFile->Read( &fileData, sizeof( fileData ) ) <= 0 ) {
return false;
}
idSwapClass<bimageFile_t> swap;
swap.Big( fileData.sourceFileTime );
swap.Big( fileData.headerMagic );
swap.Big( fileData.textureType );
swap.Big( fileData.format );
swap.Big( fileData.colorFormat );
swap.Big( fileData.width );
swap.Big( fileData.height );
swap.Big( fileData.numLevels );
if ( BIMAGE_MAGIC != fileData.headerMagic ) {
return false;
}
if ( fileData.sourceFileTime != sourceFileTime && !fileSystem->InProductionMode() ) {
return false;
}
int numImages = fileData.numLevels;
if ( fileData.textureType == TT_CUBIC ) {
numImages *= 6;
}
images.SetNum( numImages );
for ( int i = 0; i < numImages; i++ ) {
idBinaryImageData &img = images[ i ];
if ( bFile->Read( &img, sizeof( bimageImage_t ) ) <= 0 ) {
return false;
}
idSwapClass<bimageImage_t> swap;
swap.Big( img.level );
swap.Big( img.destZ );
swap.Big( img.width );
swap.Big( img.height );
swap.Big( img.dataSize );
assert( img.level >= 0 && img.level < fileData.numLevels );
assert( img.destZ == 0 || fileData.textureType == TT_CUBIC );
assert( img.dataSize > 0 );
// DXT images need to be padded to 4x4 block sizes, but the original image
// sizes are still retained, so the stored data size may be larger than
// just the multiplication of dimensions
assert( img.dataSize >= img.width * img.height * BitsForFormat( (textureFormat_t)fileData.format ) / 8 );
img.Alloc( img.dataSize );
if ( img.data == NULL ) {
return false;
}
if ( bFile->Read( img.data, img.dataSize ) <= 0 ) {
return false;
}
}
return true;
}
/*
==========================
idBinaryImage::MakeGeneratedFileName
==========================
*/
void idBinaryImage::MakeGeneratedFileName( idStr & gfn ) {
GetGeneratedFileName( gfn, GetName() );
}
/*
==========================
idBinaryImage::GetGeneratedFileName
==========================
*/
void idBinaryImage::GetGeneratedFileName( idStr & gfn, const char *name ) {
gfn.Format( "generated/images/%s.bimage", name );
gfn.Replace( "(", "/" );
gfn.Replace( ",", "/" );
gfn.Replace( ")", "" );
gfn.Replace( " ", "" );
}