mirror of
https://github.com/id-Software/DOOM-3-BFG.git
synced 2025-01-22 17:31:09 +00:00
fe18a49303
* setting threadname is now done in a seperate function so it's a bit cleaner (it's different for every platform..) * replace/refactor signaling code (based on my SDL threading branch and the old pthread signaling code from RB): - The interface is like on win32 now (Sys_Signal* functions instead of overwriting idSysSignal class) - created a custom signalHandle_t struct for that, which contains all needed information - Mimic Windows functions used in win32 implementation more closely, e.g. signal all waiting threads on manualReset signalRaise, count waiting threads etc. I'm pretty sure the behavior on Win32 and POSIX now is identical (as far as possible).
564 lines
15 KiB
C++
564 lines
15 KiB
C++
/*
|
|
===========================================================================
|
|
|
|
Doom 3 BFG Edition GPL Source Code
|
|
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
|
|
Copyright (C) 2012 Robert Beckebans
|
|
|
|
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
|
|
|
|
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
|
|
|
|
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
|
|
|
|
===========================================================================
|
|
*/
|
|
#ifndef __THREAD_H__
|
|
#define __THREAD_H__
|
|
|
|
/*
|
|
================================================
|
|
idSysMutex provides a C++ wrapper to the low level system mutex functions. A mutex is an
|
|
object that can only be locked by one thread at a time. It's used to prevent two threads
|
|
from accessing the same piece of data simultaneously.
|
|
================================================
|
|
*/
|
|
class idSysMutex
|
|
{
|
|
public:
|
|
idSysMutex()
|
|
{
|
|
Sys_MutexCreate( handle );
|
|
}
|
|
~idSysMutex()
|
|
{
|
|
Sys_MutexDestroy( handle );
|
|
}
|
|
|
|
bool Lock( bool blocking = true )
|
|
{
|
|
return Sys_MutexLock( handle, blocking );
|
|
}
|
|
void Unlock()
|
|
{
|
|
Sys_MutexUnlock( handle );
|
|
}
|
|
|
|
private:
|
|
mutexHandle_t handle;
|
|
|
|
idSysMutex( const idSysMutex& s ) {}
|
|
void operator=( const idSysMutex& s ) {}
|
|
};
|
|
|
|
/*
|
|
================================================
|
|
idScopedCriticalSection is a helper class that automagically locks a mutex when it's created
|
|
and unlocks it when it goes out of scope.
|
|
================================================
|
|
*/
|
|
class idScopedCriticalSection
|
|
{
|
|
public:
|
|
idScopedCriticalSection( idSysMutex& m ) : mutex( &m )
|
|
{
|
|
mutex->Lock();
|
|
}
|
|
~idScopedCriticalSection()
|
|
{
|
|
mutex->Unlock();
|
|
}
|
|
|
|
private:
|
|
idSysMutex* mutex; // NOTE: making this a reference causes a TypeInfo crash
|
|
};
|
|
|
|
/*
|
|
================================================
|
|
idSysSignal is a C++ wrapper for the low level system signal functions. A signal is an object
|
|
that a thread can wait on for it to be raised. It's used to indicate data is available or that
|
|
a thread has reached a specific point.
|
|
================================================
|
|
*/
|
|
class idSysSignal
|
|
{
|
|
public:
|
|
static const int WAIT_INFINITE = -1;
|
|
|
|
idSysSignal( bool manualReset = false )
|
|
{
|
|
Sys_SignalCreate( handle, manualReset );
|
|
}
|
|
~idSysSignal()
|
|
{
|
|
Sys_SignalDestroy( handle );
|
|
}
|
|
|
|
void Raise()
|
|
{
|
|
Sys_SignalRaise( handle );
|
|
}
|
|
void Clear()
|
|
{
|
|
Sys_SignalClear( handle );
|
|
}
|
|
|
|
// Wait returns true if the object is in a signalled state and
|
|
// returns false if the wait timed out. Wait also clears the signalled
|
|
// state when the signalled state is reached within the time out period.
|
|
bool Wait( int timeout = WAIT_INFINITE )
|
|
{
|
|
return Sys_SignalWait( handle, timeout );
|
|
}
|
|
|
|
private:
|
|
signalHandle_t handle;
|
|
|
|
idSysSignal( const idSysSignal& s ) {}
|
|
void operator=( const idSysSignal& s ) {}
|
|
};
|
|
|
|
/*
|
|
================================================
|
|
idSysInterlockedInteger is a C++ wrapper for the low level system interlocked integer
|
|
routines to atomically increment or decrement an integer.
|
|
================================================
|
|
*/
|
|
class idSysInterlockedInteger
|
|
{
|
|
public:
|
|
idSysInterlockedInteger() : value( 0 ) {}
|
|
|
|
// atomically increments the integer and returns the new value
|
|
int Increment()
|
|
{
|
|
return Sys_InterlockedIncrement( value );
|
|
}
|
|
|
|
// atomically decrements the integer and returns the new value
|
|
int Decrement()
|
|
{
|
|
return Sys_InterlockedDecrement( value );
|
|
}
|
|
|
|
// atomically adds a value to the integer and returns the new value
|
|
int Add( int v )
|
|
{
|
|
return Sys_InterlockedAdd( value, ( interlockedInt_t ) v );
|
|
}
|
|
|
|
// atomically subtracts a value from the integer and returns the new value
|
|
int Sub( int v )
|
|
{
|
|
return Sys_InterlockedSub( value, ( interlockedInt_t ) v );
|
|
}
|
|
|
|
// returns the current value of the integer
|
|
int GetValue() const
|
|
{
|
|
return value;
|
|
}
|
|
|
|
// sets a new value, Note: this operation is not atomic
|
|
void SetValue( int v )
|
|
{
|
|
value = ( interlockedInt_t )v;
|
|
}
|
|
|
|
private:
|
|
interlockedInt_t value;
|
|
};
|
|
|
|
/*
|
|
================================================
|
|
idSysInterlockedPointer is a C++ wrapper around the low level system interlocked pointer
|
|
routine to atomically set a pointer while retrieving the previous value of the pointer.
|
|
================================================
|
|
*/
|
|
template< typename T >
|
|
class idSysInterlockedPointer
|
|
{
|
|
public:
|
|
idSysInterlockedPointer() : ptr( NULL ) {}
|
|
|
|
// atomically sets the pointer and returns the previous pointer value
|
|
T* Set( T* newPtr )
|
|
{
|
|
return ( T* ) Sys_InterlockedExchangePointer( ( void*& ) ptr, newPtr );
|
|
}
|
|
|
|
// atomically sets the pointer to 'newPtr' only if the previous pointer is equal to 'comparePtr'
|
|
// ptr = ( ptr == comparePtr ) ? newPtr : ptr
|
|
T* CompareExchange( T* comparePtr, T* newPtr )
|
|
{
|
|
return ( T* ) Sys_InterlockedCompareExchangePointer( ( void*& ) ptr, comparePtr, newPtr );
|
|
}
|
|
|
|
// returns the current value of the pointer
|
|
T* Get() const
|
|
{
|
|
return ptr;
|
|
}
|
|
|
|
private:
|
|
T* ptr;
|
|
};
|
|
|
|
/*
|
|
================================================
|
|
idSysThread is an abstract base class, to be extended by classes implementing the
|
|
idSysThread::Run() method.
|
|
|
|
class idMyThread : public idSysThread {
|
|
public:
|
|
virtual int Run() {
|
|
// run thread code here
|
|
return 0;
|
|
}
|
|
// specify thread data here
|
|
};
|
|
|
|
idMyThread thread;
|
|
thread.Start( "myThread" );
|
|
|
|
A worker thread is a thread that waits in place (without consuming CPU)
|
|
until work is available. A worker thread is implemented as normal, except that, instead of
|
|
calling the Start() method, the StartWorker() method is called to start the thread.
|
|
Note that the Sys_CreateThread function does not support the concept of worker threads.
|
|
|
|
class idMyWorkerThread : public idSysThread {
|
|
public:
|
|
virtual int Run() {
|
|
// run thread code here
|
|
return 0;
|
|
}
|
|
// specify thread data here
|
|
};
|
|
|
|
idMyWorkerThread thread;
|
|
thread.StartThread( "myWorkerThread" );
|
|
|
|
// main thread loop
|
|
for ( ; ; ) {
|
|
// setup work for the thread here (by modifying class data on the thread)
|
|
thread.SignalWork(); // kick in the worker thread
|
|
// run other code in the main thread here (in parallel with the worker thread)
|
|
thread.WaitForThread(); // wait for the worker thread to finish
|
|
// use results from worker thread here
|
|
}
|
|
|
|
In the above example, the thread does not continuously run in parallel with the main Thread,
|
|
but only for a certain period of time in a very controlled manner. Work is set up for the
|
|
Thread and then the thread is signalled to process that work while the main thread continues.
|
|
After doing other work, the main thread can wait for the worker thread to finish, if it has not
|
|
finished already. When the worker thread is done, the main thread can safely use the results
|
|
from the worker thread.
|
|
|
|
Note that worker threads are useful on all platforms but they do not map to the SPUs on the PS3.
|
|
================================================
|
|
*/
|
|
class idSysThread
|
|
{
|
|
public:
|
|
idSysThread();
|
|
virtual ~idSysThread();
|
|
|
|
const char* GetName() const
|
|
{
|
|
return name.c_str();
|
|
}
|
|
uintptr_t GetThreadHandle() const
|
|
{
|
|
return threadHandle;
|
|
}
|
|
bool IsRunning() const
|
|
{
|
|
return isRunning;
|
|
}
|
|
bool IsTerminating() const
|
|
{
|
|
return isTerminating;
|
|
}
|
|
|
|
//------------------------
|
|
// Thread Start/Stop/Wait
|
|
//------------------------
|
|
|
|
bool StartThread( const char* name, core_t core,
|
|
xthreadPriority priority = THREAD_NORMAL,
|
|
int stackSize = DEFAULT_THREAD_STACK_SIZE );
|
|
|
|
bool StartWorkerThread( const char* name, core_t core,
|
|
xthreadPriority priority = THREAD_NORMAL,
|
|
int stackSize = DEFAULT_THREAD_STACK_SIZE );
|
|
|
|
void StopThread( bool wait = true );
|
|
|
|
// This can be called from multiple other threads. However, in the case
|
|
// of a worker thread, the work being "done" has little meaning if other
|
|
// threads are continuously signalling more work.
|
|
void WaitForThread();
|
|
|
|
//------------------------
|
|
// Worker Thread
|
|
//------------------------
|
|
|
|
// Signals the thread to notify work is available.
|
|
// This can be called from multiple other threads.
|
|
void SignalWork();
|
|
|
|
// Returns true if the work is done without waiting.
|
|
// This can be called from multiple other threads. However, the work
|
|
// being "done" has little meaning if other threads are continuously
|
|
// signalling more work.
|
|
bool IsWorkDone();
|
|
|
|
protected:
|
|
// The routine that performs the work.
|
|
virtual int Run();
|
|
|
|
private:
|
|
idStr name;
|
|
uintptr_t threadHandle;
|
|
bool isWorker;
|
|
bool isRunning;
|
|
volatile bool isTerminating;
|
|
volatile bool moreWorkToDo;
|
|
idSysSignal signalWorkerDone;
|
|
idSysSignal signalMoreWorkToDo;
|
|
idSysMutex signalMutex;
|
|
|
|
static int ThreadProc( idSysThread* thread );
|
|
|
|
idSysThread( const idSysThread& s ) {}
|
|
void operator=( const idSysThread& s ) {}
|
|
};
|
|
|
|
/*
|
|
================================================
|
|
idSysWorkerThreadGroup implements a group of worker threads that
|
|
typically crunch through a collection of similar tasks.
|
|
|
|
class idMyWorkerThread : public idSysThread {
|
|
public:
|
|
virtual int Run() {
|
|
// run thread code here
|
|
return 0;
|
|
}
|
|
// specify thread data here
|
|
};
|
|
|
|
idSysWorkerThreadGroup<idMyWorkerThread> workers( "myWorkers", 4 );
|
|
for ( ; ; ) {
|
|
for ( int i = 0; i < workers.GetNumThreads(); i++ ) {
|
|
// workers.GetThread( i )-> // setup work for this thread
|
|
}
|
|
workers.SignalWorkAndWait();
|
|
// use results from the worker threads here
|
|
}
|
|
|
|
The concept of worker thread Groups is probably most useful for tools and compilers.
|
|
For instance, the AAS Compiler is using a worker thread group. Although worker threads
|
|
will work well on the PC, Mac and the 360, they do not directly map to the PS3,
|
|
in that the worker threads won't automatically run on the SPUs.
|
|
================================================
|
|
*/
|
|
template<class threadType>
|
|
class idSysWorkerThreadGroup
|
|
{
|
|
public:
|
|
idSysWorkerThreadGroup( const char* name, int numThreads,
|
|
xthreadPriority priority = THREAD_NORMAL,
|
|
int stackSize = DEFAULT_THREAD_STACK_SIZE );
|
|
|
|
virtual ~idSysWorkerThreadGroup();
|
|
|
|
int GetNumThreads() const
|
|
{
|
|
return threadList.Num();
|
|
}
|
|
threadType& GetThread( int i )
|
|
{
|
|
return *threadList[i];
|
|
}
|
|
|
|
void SignalWorkAndWait();
|
|
|
|
private:
|
|
idList<threadType*, TAG_THREAD> threadList;
|
|
bool runOneThreadInline; // use the signalling thread as one of the threads
|
|
bool singleThreaded; // set to true for debugging
|
|
};
|
|
|
|
/*
|
|
========================
|
|
idSysWorkerThreadGroup<threadType>::idSysWorkerThreadGroup
|
|
========================
|
|
*/
|
|
template<class threadType>
|
|
ID_INLINE idSysWorkerThreadGroup<threadType>::idSysWorkerThreadGroup( const char* name,
|
|
int numThreads, xthreadPriority priority, int stackSize )
|
|
{
|
|
runOneThreadInline = ( numThreads < 0 );
|
|
singleThreaded = false;
|
|
numThreads = abs( numThreads );
|
|
for( int i = 0; i < numThreads; i++ )
|
|
{
|
|
threadType* thread = new( TAG_THREAD ) threadType;
|
|
thread->StartWorkerThread( va( "%s_worker%i", name, i ), ( core_t ) i, priority, stackSize );
|
|
threadList.Append( thread );
|
|
}
|
|
}
|
|
|
|
/*
|
|
========================
|
|
idSysWorkerThreadGroup<threadType>::~idSysWorkerThreadGroup
|
|
========================
|
|
*/
|
|
template<class threadType>
|
|
ID_INLINE idSysWorkerThreadGroup<threadType>::~idSysWorkerThreadGroup()
|
|
{
|
|
threadList.DeleteContents();
|
|
}
|
|
|
|
/*
|
|
========================
|
|
idSysWorkerThreadGroup<threadType>::SignalWorkAndWait
|
|
========================
|
|
*/
|
|
template<class threadType>
|
|
ID_INLINE void idSysWorkerThreadGroup<threadType>::SignalWorkAndWait()
|
|
{
|
|
if( singleThreaded )
|
|
{
|
|
for( int i = 0; i < threadList.Num(); i++ )
|
|
{
|
|
threadList[ i ]->Run();
|
|
}
|
|
return;
|
|
}
|
|
for( int i = 0; i < threadList.Num() - runOneThreadInline; i++ )
|
|
{
|
|
threadList[ i ]->SignalWork();
|
|
}
|
|
if( runOneThreadInline )
|
|
{
|
|
threadList[ threadList.Num() - 1 ]->Run();
|
|
}
|
|
for( int i = 0; i < threadList.Num() - runOneThreadInline; i++ )
|
|
{
|
|
threadList[ i ]->WaitForThread();
|
|
}
|
|
}
|
|
|
|
/*
|
|
================================================
|
|
idSysThreadSynchronizer, allows a group of threads to
|
|
synchronize with each other half-way through execution.
|
|
|
|
idSysThreadSynchronizer sync;
|
|
|
|
class idMyWorkerThread : public idSysThread {
|
|
public:
|
|
virtual int Run() {
|
|
// perform first part of the work here
|
|
sync.Synchronize( threadNum ); // synchronize all threads
|
|
// perform second part of the work here
|
|
return 0;
|
|
}
|
|
// specify thread data here
|
|
unsigned int threadNum;
|
|
};
|
|
|
|
idSysWorkerThreadGroup<idMyWorkerThread> workers( "myWorkers", 4 );
|
|
for ( int i = 0; i < workers.GetNumThreads(); i++ ) {
|
|
workers.GetThread( i )->threadNum = i;
|
|
}
|
|
|
|
for ( ; ; ) {
|
|
for ( int i = 0; i < workers.GetNumThreads(); i++ ) {
|
|
// workers.GetThread( i )-> // setup work for this thread
|
|
}
|
|
workers.SignalWorkAndWait();
|
|
// use results from the worker threads here
|
|
}
|
|
|
|
================================================
|
|
*/
|
|
class idSysThreadSynchronizer
|
|
{
|
|
public:
|
|
static const int WAIT_INFINITE = -1;
|
|
|
|
ID_INLINE void SetNumThreads( unsigned int num );
|
|
ID_INLINE void Signal( unsigned int threadNum );
|
|
ID_INLINE bool Synchronize( unsigned int threadNum, int timeout = WAIT_INFINITE );
|
|
|
|
private:
|
|
idList< idSysSignal*, TAG_THREAD > signals;
|
|
idSysInterlockedInteger busyCount;
|
|
};
|
|
|
|
/*
|
|
========================
|
|
idSysThreadSynchronizer::SetNumThreads
|
|
========================
|
|
*/
|
|
ID_INLINE void idSysThreadSynchronizer::SetNumThreads( unsigned int num )
|
|
{
|
|
assert( busyCount.GetValue() == signals.Num() );
|
|
if( ( int )num != signals.Num() )
|
|
{
|
|
signals.DeleteContents();
|
|
signals.SetNum( ( int )num );
|
|
for( unsigned int i = 0; i < num; i++ )
|
|
{
|
|
signals[i] = new( TAG_THREAD ) idSysSignal();
|
|
}
|
|
busyCount.SetValue( num );
|
|
SYS_MEMORYBARRIER;
|
|
}
|
|
}
|
|
|
|
/*
|
|
========================
|
|
idSysThreadSynchronizer::Signal
|
|
========================
|
|
*/
|
|
ID_INLINE void idSysThreadSynchronizer::Signal( unsigned int threadNum )
|
|
{
|
|
if( busyCount.Decrement() == 0 )
|
|
{
|
|
busyCount.SetValue( ( unsigned int ) signals.Num() );
|
|
SYS_MEMORYBARRIER;
|
|
for( int i = 0; i < signals.Num(); i++ )
|
|
{
|
|
signals[i]->Raise();
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
========================
|
|
idSysThreadSynchronizer::Synchronize
|
|
========================
|
|
*/
|
|
ID_INLINE bool idSysThreadSynchronizer::Synchronize( unsigned int threadNum, int timeout )
|
|
{
|
|
return signals[threadNum]->Wait( timeout );
|
|
}
|
|
|
|
#endif // !__THREAD_H__
|