doom3-bfg/neo/renderer/GLMatrix.cpp
Robert Beckebans 277964f074 Because I can :)
- Implemented soft shadows using PCF hardware shadow mapping

  The implementation uses sampler2DArrayShadow and PCF which usually
  requires Direct3D 10.1 however it is in the OpenGL 3.2 core so it should
  be widely supported.
  All 3 light types are supported which means parallel lights (sun) use
  scene independent cascaded shadow mapping.
  The implementation is very fast with single taps (400 fps average per
  scene on a GTX 660 ti OC) however I defaulted it to 16 taps so the shadows look
  really good which should you give stable 100 fps on todays hardware.

  The shadow filtering algorithm is based on Carmack's research which was
  released in the original Doom 3 GPL release draw_exp.cpp.

- Changed interaction shaders to use Half-Lambert lighting like in HL2 to
  make the game less dark

- Fixed some of the renderer debugging/development tools like r_showTris
2014-05-10 14:40:01 +02:00

576 lines
No EOL
20 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2014 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "precompiled.h"
#include "tr_local.h"
/*
==========================================================================================
OLD MATRIX MATH
==========================================================================================
*/
/*
======================
R_AxisToModelMatrix
======================
*/
void R_AxisToModelMatrix( const idMat3& axis, const idVec3& origin, float modelMatrix[16] )
{
modelMatrix[0 * 4 + 0] = axis[0][0];
modelMatrix[1 * 4 + 0] = axis[1][0];
modelMatrix[2 * 4 + 0] = axis[2][0];
modelMatrix[3 * 4 + 0] = origin[0];
modelMatrix[0 * 4 + 1] = axis[0][1];
modelMatrix[1 * 4 + 1] = axis[1][1];
modelMatrix[2 * 4 + 1] = axis[2][1];
modelMatrix[3 * 4 + 1] = origin[1];
modelMatrix[0 * 4 + 2] = axis[0][2];
modelMatrix[1 * 4 + 2] = axis[1][2];
modelMatrix[2 * 4 + 2] = axis[2][2];
modelMatrix[3 * 4 + 2] = origin[2];
modelMatrix[0 * 4 + 3] = 0.0f;
modelMatrix[1 * 4 + 3] = 0.0f;
modelMatrix[2 * 4 + 3] = 0.0f;
modelMatrix[3 * 4 + 3] = 1.0f;
}
/*
==========================
R_MatrixMultiply
==========================
*/
void R_MatrixMultiply( const float a[16], const float b[16], float out[16] )
{
#if defined(USE_INTRINSICS)
__m128 a0 = _mm_loadu_ps( a + 0 * 4 );
__m128 a1 = _mm_loadu_ps( a + 1 * 4 );
__m128 a2 = _mm_loadu_ps( a + 2 * 4 );
__m128 a3 = _mm_loadu_ps( a + 3 * 4 );
__m128 b0 = _mm_loadu_ps( b + 0 * 4 );
__m128 b1 = _mm_loadu_ps( b + 1 * 4 );
__m128 b2 = _mm_loadu_ps( b + 2 * 4 );
__m128 b3 = _mm_loadu_ps( b + 3 * 4 );
__m128 t0 = _mm_mul_ps( _mm_splat_ps( a0, 0 ), b0 );
__m128 t1 = _mm_mul_ps( _mm_splat_ps( a1, 0 ), b0 );
__m128 t2 = _mm_mul_ps( _mm_splat_ps( a2, 0 ), b0 );
__m128 t3 = _mm_mul_ps( _mm_splat_ps( a3, 0 ), b0 );
t0 = _mm_add_ps( t0, _mm_mul_ps( _mm_splat_ps( a0, 1 ), b1 ) );
t1 = _mm_add_ps( t1, _mm_mul_ps( _mm_splat_ps( a1, 1 ), b1 ) );
t2 = _mm_add_ps( t2, _mm_mul_ps( _mm_splat_ps( a2, 1 ), b1 ) );
t3 = _mm_add_ps( t3, _mm_mul_ps( _mm_splat_ps( a3, 1 ), b1 ) );
t0 = _mm_add_ps( t0, _mm_mul_ps( _mm_splat_ps( a0, 2 ), b2 ) );
t1 = _mm_add_ps( t1, _mm_mul_ps( _mm_splat_ps( a1, 2 ), b2 ) );
t2 = _mm_add_ps( t2, _mm_mul_ps( _mm_splat_ps( a2, 2 ), b2 ) );
t3 = _mm_add_ps( t3, _mm_mul_ps( _mm_splat_ps( a3, 2 ), b2 ) );
t0 = _mm_add_ps( t0, _mm_mul_ps( _mm_splat_ps( a0, 3 ), b3 ) );
t1 = _mm_add_ps( t1, _mm_mul_ps( _mm_splat_ps( a1, 3 ), b3 ) );
t2 = _mm_add_ps( t2, _mm_mul_ps( _mm_splat_ps( a2, 3 ), b3 ) );
t3 = _mm_add_ps( t3, _mm_mul_ps( _mm_splat_ps( a3, 3 ), b3 ) );
_mm_storeu_ps( out + 0 * 4, t0 );
_mm_storeu_ps( out + 1 * 4, t1 );
_mm_storeu_ps( out + 2 * 4, t2 );
_mm_storeu_ps( out + 3 * 4, t3 );
#else
/*
for ( int i = 0; i < 4; i++ ) {
for ( int j = 0; j < 4; j++ ) {
out[ i * 4 + j ] =
a[ i * 4 + 0 ] * b[ 0 * 4 + j ] +
a[ i * 4 + 1 ] * b[ 1 * 4 + j ] +
a[ i * 4 + 2 ] * b[ 2 * 4 + j ] +
a[ i * 4 + 3 ] * b[ 3 * 4 + j ];
}
}
*/
out[0 * 4 + 0] = a[0 * 4 + 0] * b[0 * 4 + 0] + a[0 * 4 + 1] * b[1 * 4 + 0] + a[0 * 4 + 2] * b[2 * 4 + 0] + a[0 * 4 + 3] * b[3 * 4 + 0];
out[0 * 4 + 1] = a[0 * 4 + 0] * b[0 * 4 + 1] + a[0 * 4 + 1] * b[1 * 4 + 1] + a[0 * 4 + 2] * b[2 * 4 + 1] + a[0 * 4 + 3] * b[3 * 4 + 1];
out[0 * 4 + 2] = a[0 * 4 + 0] * b[0 * 4 + 2] + a[0 * 4 + 1] * b[1 * 4 + 2] + a[0 * 4 + 2] * b[2 * 4 + 2] + a[0 * 4 + 3] * b[3 * 4 + 2];
out[0 * 4 + 3] = a[0 * 4 + 0] * b[0 * 4 + 3] + a[0 * 4 + 1] * b[1 * 4 + 3] + a[0 * 4 + 2] * b[2 * 4 + 3] + a[0 * 4 + 3] * b[3 * 4 + 3];
out[1 * 4 + 0] = a[1 * 4 + 0] * b[0 * 4 + 0] + a[1 * 4 + 1] * b[1 * 4 + 0] + a[1 * 4 + 2] * b[2 * 4 + 0] + a[1 * 4 + 3] * b[3 * 4 + 0];
out[1 * 4 + 1] = a[1 * 4 + 0] * b[0 * 4 + 1] + a[1 * 4 + 1] * b[1 * 4 + 1] + a[1 * 4 + 2] * b[2 * 4 + 1] + a[1 * 4 + 3] * b[3 * 4 + 1];
out[1 * 4 + 2] = a[1 * 4 + 0] * b[0 * 4 + 2] + a[1 * 4 + 1] * b[1 * 4 + 2] + a[1 * 4 + 2] * b[2 * 4 + 2] + a[1 * 4 + 3] * b[3 * 4 + 2];
out[1 * 4 + 3] = a[1 * 4 + 0] * b[0 * 4 + 3] + a[1 * 4 + 1] * b[1 * 4 + 3] + a[1 * 4 + 2] * b[2 * 4 + 3] + a[1 * 4 + 3] * b[3 * 4 + 3];
out[2 * 4 + 0] = a[2 * 4 + 0] * b[0 * 4 + 0] + a[2 * 4 + 1] * b[1 * 4 + 0] + a[2 * 4 + 2] * b[2 * 4 + 0] + a[2 * 4 + 3] * b[3 * 4 + 0];
out[2 * 4 + 1] = a[2 * 4 + 0] * b[0 * 4 + 1] + a[2 * 4 + 1] * b[1 * 4 + 1] + a[2 * 4 + 2] * b[2 * 4 + 1] + a[2 * 4 + 3] * b[3 * 4 + 1];
out[2 * 4 + 2] = a[2 * 4 + 0] * b[0 * 4 + 2] + a[2 * 4 + 1] * b[1 * 4 + 2] + a[2 * 4 + 2] * b[2 * 4 + 2] + a[2 * 4 + 3] * b[3 * 4 + 2];
out[2 * 4 + 3] = a[2 * 4 + 0] * b[0 * 4 + 3] + a[2 * 4 + 1] * b[1 * 4 + 3] + a[2 * 4 + 2] * b[2 * 4 + 3] + a[2 * 4 + 3] * b[3 * 4 + 3];
out[3 * 4 + 0] = a[3 * 4 + 0] * b[0 * 4 + 0] + a[3 * 4 + 1] * b[1 * 4 + 0] + a[3 * 4 + 2] * b[2 * 4 + 0] + a[3 * 4 + 3] * b[3 * 4 + 0];
out[3 * 4 + 1] = a[3 * 4 + 0] * b[0 * 4 + 1] + a[3 * 4 + 1] * b[1 * 4 + 1] + a[3 * 4 + 2] * b[2 * 4 + 1] + a[3 * 4 + 3] * b[3 * 4 + 1];
out[3 * 4 + 2] = a[3 * 4 + 0] * b[0 * 4 + 2] + a[3 * 4 + 1] * b[1 * 4 + 2] + a[3 * 4 + 2] * b[2 * 4 + 2] + a[3 * 4 + 3] * b[3 * 4 + 2];
out[3 * 4 + 3] = a[3 * 4 + 0] * b[0 * 4 + 3] + a[3 * 4 + 1] * b[1 * 4 + 3] + a[3 * 4 + 2] * b[2 * 4 + 3] + a[3 * 4 + 3] * b[3 * 4 + 3];
#endif
}
/*
======================
R_MatrixTranspose
======================
*/
void R_MatrixTranspose( const float in[16], float out[16] )
{
for( int i = 0; i < 4; i++ )
{
for( int j = 0; j < 4; j++ )
{
out[i * 4 + j] = in[j * 4 + i];
}
}
}
/*
==========================
R_TransformModelToClip
==========================
*/
void R_TransformModelToClip( const idVec3& src, const float* modelMatrix, const float* projectionMatrix, idPlane& eye, idPlane& dst )
{
for( int i = 0; i < 4; i++ )
{
eye[i] = modelMatrix[i + 0 * 4] * src[0] +
modelMatrix[i + 1 * 4] * src[1] +
modelMatrix[i + 2 * 4] * src[2] +
modelMatrix[i + 3 * 4];
}
for( int i = 0; i < 4; i++ )
{
dst[i] = projectionMatrix[i + 0 * 4] * eye[0] +
projectionMatrix[i + 1 * 4] * eye[1] +
projectionMatrix[i + 2 * 4] * eye[2] +
projectionMatrix[i + 3 * 4] * eye[3];
}
}
/*
==========================
R_TransformClipToDevice
Clip to normalized device coordinates
==========================
*/
void R_TransformClipToDevice( const idPlane& clip, idVec3& ndc )
{
const float invW = 1.0f / clip[3];
ndc[0] = clip[0] * invW;
ndc[1] = clip[1] * invW;
ndc[2] = clip[2] * invW; // NOTE: in D3D this is in the range [0,1]
}
/*
==========================
R_GlobalToNormalizedDeviceCoordinates
-1 to 1 range in x, y, and z
==========================
*/
void R_GlobalToNormalizedDeviceCoordinates( const idVec3& global, idVec3& ndc )
{
idPlane view;
idPlane clip;
// _D3XP use tr.primaryView when there is no tr.viewDef
const viewDef_t* viewDef = ( tr.viewDef != NULL ) ? tr.viewDef : tr.primaryView;
for( int i = 0; i < 4; i ++ )
{
view[i] = viewDef->worldSpace.modelViewMatrix[i + 0 * 4] * global[0] +
viewDef->worldSpace.modelViewMatrix[i + 1 * 4] * global[1] +
viewDef->worldSpace.modelViewMatrix[i + 2 * 4] * global[2] +
viewDef->worldSpace.modelViewMatrix[i + 3 * 4];
}
for( int i = 0; i < 4; i ++ )
{
clip[i] = viewDef->projectionMatrix[i + 0 * 4] * view[0] +
viewDef->projectionMatrix[i + 1 * 4] * view[1] +
viewDef->projectionMatrix[i + 2 * 4] * view[2] +
viewDef->projectionMatrix[i + 3 * 4] * view[3];
}
const float invW = 1.0f / clip[3];
ndc[0] = clip[0] * invW;
ndc[1] = clip[1] * invW;
ndc[2] = clip[2] * invW; // NOTE: in D3D this is in the range [0,1]
}
/*
======================
R_LocalPointToGlobal
NOTE: assumes no skewing or scaling transforms
======================
*/
void R_LocalPointToGlobal( const float modelMatrix[16], const idVec3& in, idVec3& out )
{
out[0] = in[0] * modelMatrix[0 * 4 + 0] + in[1] * modelMatrix[1 * 4 + 0] + in[2] * modelMatrix[2 * 4 + 0] + modelMatrix[3 * 4 + 0];
out[1] = in[0] * modelMatrix[0 * 4 + 1] + in[1] * modelMatrix[1 * 4 + 1] + in[2] * modelMatrix[2 * 4 + 1] + modelMatrix[3 * 4 + 1];
out[2] = in[0] * modelMatrix[0 * 4 + 2] + in[1] * modelMatrix[1 * 4 + 2] + in[2] * modelMatrix[2 * 4 + 2] + modelMatrix[3 * 4 + 2];
}
/*
======================
R_GlobalPointToLocal
NOTE: assumes no skewing or scaling transforms
======================
*/
void R_GlobalPointToLocal( const float modelMatrix[16], const idVec3& in, idVec3& out )
{
idVec3 temp;
temp[0] = in[0] - modelMatrix[3 * 4 + 0];
temp[1] = in[1] - modelMatrix[3 * 4 + 1];
temp[2] = in[2] - modelMatrix[3 * 4 + 2];
out[0] = temp[0] * modelMatrix[0 * 4 + 0] + temp[1] * modelMatrix[0 * 4 + 1] + temp[2] * modelMatrix[0 * 4 + 2];
out[1] = temp[0] * modelMatrix[1 * 4 + 0] + temp[1] * modelMatrix[1 * 4 + 1] + temp[2] * modelMatrix[1 * 4 + 2];
out[2] = temp[0] * modelMatrix[2 * 4 + 0] + temp[1] * modelMatrix[2 * 4 + 1] + temp[2] * modelMatrix[2 * 4 + 2];
}
/*
======================
R_LocalVectorToGlobal
NOTE: assumes no skewing or scaling transforms
======================
*/
void R_LocalVectorToGlobal( const float modelMatrix[16], const idVec3& in, idVec3& out )
{
out[0] = in[0] * modelMatrix[0 * 4 + 0] + in[1] * modelMatrix[1 * 4 + 0] + in[2] * modelMatrix[2 * 4 + 0];
out[1] = in[0] * modelMatrix[0 * 4 + 1] + in[1] * modelMatrix[1 * 4 + 1] + in[2] * modelMatrix[2 * 4 + 1];
out[2] = in[0] * modelMatrix[0 * 4 + 2] + in[1] * modelMatrix[1 * 4 + 2] + in[2] * modelMatrix[2 * 4 + 2];
}
/*
======================
R_GlobalVectorToLocal
NOTE: assumes no skewing or scaling transforms
======================
*/
void R_GlobalVectorToLocal( const float modelMatrix[16], const idVec3& in, idVec3& out )
{
out[0] = in[0] * modelMatrix[0 * 4 + 0] + in[1] * modelMatrix[0 * 4 + 1] + in[2] * modelMatrix[0 * 4 + 2];
out[1] = in[0] * modelMatrix[1 * 4 + 0] + in[1] * modelMatrix[1 * 4 + 1] + in[2] * modelMatrix[1 * 4 + 2];
out[2] = in[0] * modelMatrix[2 * 4 + 0] + in[1] * modelMatrix[2 * 4 + 1] + in[2] * modelMatrix[2 * 4 + 2];
}
/*
======================
R_GlobalPlaneToLocal
NOTE: assumes no skewing or scaling transforms
======================
*/
void R_GlobalPlaneToLocal( const float modelMatrix[16], const idPlane& in, idPlane& out )
{
out[0] = in[0] * modelMatrix[0 * 4 + 0] + in[1] * modelMatrix[0 * 4 + 1] + in[2] * modelMatrix[0 * 4 + 2];
out[1] = in[0] * modelMatrix[1 * 4 + 0] + in[1] * modelMatrix[1 * 4 + 1] + in[2] * modelMatrix[1 * 4 + 2];
out[2] = in[0] * modelMatrix[2 * 4 + 0] + in[1] * modelMatrix[2 * 4 + 1] + in[2] * modelMatrix[2 * 4 + 2];
out[3] = in[0] * modelMatrix[3 * 4 + 0] + in[1] * modelMatrix[3 * 4 + 1] + in[2] * modelMatrix[3 * 4 + 2] + in[3];
}
/*
======================
R_LocalPlaneToGlobal
NOTE: assumes no skewing or scaling transforms
======================
*/
void R_LocalPlaneToGlobal( const float modelMatrix[16], const idPlane& in, idPlane& out )
{
out[0] = in[0] * modelMatrix[0 * 4 + 0] + in[1] * modelMatrix[1 * 4 + 0] + in[2] * modelMatrix[2 * 4 + 0];
out[1] = in[0] * modelMatrix[0 * 4 + 1] + in[1] * modelMatrix[1 * 4 + 1] + in[2] * modelMatrix[2 * 4 + 1];
out[2] = in[0] * modelMatrix[0 * 4 + 2] + in[1] * modelMatrix[1 * 4 + 2] + in[2] * modelMatrix[2 * 4 + 2];
out[3] = in[3] - modelMatrix[3 * 4 + 0] * out[0] - modelMatrix[3 * 4 + 1] * out[1] - modelMatrix[3 * 4 + 2] * out[2];
}
/*
==========================================================================================
WORLD/VIEW/PROJECTION MATRIX SETUP
==========================================================================================
*/
/*
======================
R_SetupViewMatrix
Sets up the world to view matrix for a given viewParm
======================
*/
void R_SetupViewMatrix( viewDef_t* viewDef )
{
static float s_flipMatrix[16] =
{
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
0, 0, -1, 0,
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 1
};
viewEntity_t* world = &viewDef->worldSpace;
memset( world, 0, sizeof( *world ) );
// the model matrix is an identity
world->modelMatrix[0 * 4 + 0] = 1.0f;
world->modelMatrix[1 * 4 + 1] = 1.0f;
world->modelMatrix[2 * 4 + 2] = 1.0f;
// transform by the camera placement
const idVec3& origin = viewDef->renderView.vieworg;
const idMat3& axis = viewDef->renderView.viewaxis;
float viewerMatrix[16];
viewerMatrix[0 * 4 + 0] = axis[0][0];
viewerMatrix[1 * 4 + 0] = axis[0][1];
viewerMatrix[2 * 4 + 0] = axis[0][2];
viewerMatrix[3 * 4 + 0] = - origin[0] * axis[0][0] - origin[1] * axis[0][1] - origin[2] * axis[0][2];
viewerMatrix[0 * 4 + 1] = axis[1][0];
viewerMatrix[1 * 4 + 1] = axis[1][1];
viewerMatrix[2 * 4 + 1] = axis[1][2];
viewerMatrix[3 * 4 + 1] = - origin[0] * axis[1][0] - origin[1] * axis[1][1] - origin[2] * axis[1][2];
viewerMatrix[0 * 4 + 2] = axis[2][0];
viewerMatrix[1 * 4 + 2] = axis[2][1];
viewerMatrix[2 * 4 + 2] = axis[2][2];
viewerMatrix[3 * 4 + 2] = - origin[0] * axis[2][0] - origin[1] * axis[2][1] - origin[2] * axis[2][2];
viewerMatrix[0 * 4 + 3] = 0.0f;
viewerMatrix[1 * 4 + 3] = 0.0f;
viewerMatrix[2 * 4 + 3] = 0.0f;
viewerMatrix[3 * 4 + 3] = 1.0f;
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
R_MatrixMultiply( viewerMatrix, s_flipMatrix, world->modelViewMatrix );
}
/*
======================
R_SetupProjectionMatrix
This uses the "infinite far z" trick
======================
*/
idCVar r_centerX( "r_centerX", "0", CVAR_FLOAT, "projection matrix center adjust" );
idCVar r_centerY( "r_centerY", "0", CVAR_FLOAT, "projection matrix center adjust" );
void R_SetupProjectionMatrix( viewDef_t* viewDef )
{
// random jittering is usefull when multiple
// frames are going to be blended together
// for motion blurred anti-aliasing
float jitterx, jittery;
if( r_jitter.GetBool() )
{
static idRandom random;
jitterx = random.RandomFloat();
jittery = random.RandomFloat();
}
else
{
jitterx = 0.0f;
jittery = 0.0f;
}
//
// set up projection matrix
//
const float zNear = ( viewDef->renderView.cramZNear ) ? ( r_znear.GetFloat() * 0.25f ) : r_znear.GetFloat();
float ymax = zNear * tan( viewDef->renderView.fov_y * idMath::PI / 360.0f );
float ymin = -ymax;
float xmax = zNear * tan( viewDef->renderView.fov_x * idMath::PI / 360.0f );
float xmin = -xmax;
const float width = xmax - xmin;
const float height = ymax - ymin;
const int viewWidth = viewDef->viewport.x2 - viewDef->viewport.x1 + 1;
const int viewHeight = viewDef->viewport.y2 - viewDef->viewport.y1 + 1;
jitterx = jitterx * width / viewWidth;
jitterx += r_centerX.GetFloat();
jitterx += viewDef->renderView.stereoScreenSeparation;
xmin += jitterx * width;
xmax += jitterx * width;
jittery = jittery * height / viewHeight;
jittery += r_centerY.GetFloat();
ymin += jittery * height;
ymax += jittery * height;
viewDef->projectionMatrix[0 * 4 + 0] = 2.0f * zNear / width;
viewDef->projectionMatrix[1 * 4 + 0] = 0.0f;
viewDef->projectionMatrix[2 * 4 + 0] = ( xmax + xmin ) / width; // normally 0
viewDef->projectionMatrix[3 * 4 + 0] = 0.0f;
viewDef->projectionMatrix[0 * 4 + 1] = 0.0f;
viewDef->projectionMatrix[1 * 4 + 1] = 2.0f * zNear / height;
viewDef->projectionMatrix[2 * 4 + 1] = ( ymax + ymin ) / height; // normally 0
viewDef->projectionMatrix[3 * 4 + 1] = 0.0f;
// this is the far-plane-at-infinity formulation, and
// crunches the Z range slightly so w=0 vertexes do not
// rasterize right at the wraparound point
viewDef->projectionMatrix[0 * 4 + 2] = 0.0f;
viewDef->projectionMatrix[1 * 4 + 2] = 0.0f;
viewDef->projectionMatrix[2 * 4 + 2] = -0.999f; // adjust value to prevent imprecision issues
viewDef->projectionMatrix[3 * 4 + 2] = -2.0f * zNear;
viewDef->projectionMatrix[0 * 4 + 3] = 0.0f;
viewDef->projectionMatrix[1 * 4 + 3] = 0.0f;
viewDef->projectionMatrix[2 * 4 + 3] = -1.0f;
viewDef->projectionMatrix[3 * 4 + 3] = 0.0f;
if( viewDef->renderView.flipProjection )
{
viewDef->projectionMatrix[1 * 4 + 1] = -viewDef->projectionMatrix[1 * 4 + 1];
viewDef->projectionMatrix[1 * 4 + 3] = -viewDef->projectionMatrix[1 * 4 + 3];
}
}
// RB: standard OpenGL projection matrix
void R_SetupProjectionMatrix2( const viewDef_t* viewDef, const float zNear, const float zFar, float projectionMatrix[16] )
{
float ymax = zNear * tan( viewDef->renderView.fov_y * idMath::PI / 360.0f );
float ymin = -ymax;
float xmax = zNear * tan( viewDef->renderView.fov_x * idMath::PI / 360.0f );
float xmin = -xmax;
const float width = xmax - xmin;
const float height = ymax - ymin;
const int viewWidth = viewDef->viewport.x2 - viewDef->viewport.x1 + 1;
const int viewHeight = viewDef->viewport.y2 - viewDef->viewport.y1 + 1;
float jitterx, jittery;
jitterx = 0.0f;
jittery = 0.0f;
jitterx = jitterx * width / viewWidth;
jitterx += r_centerX.GetFloat();
jitterx += viewDef->renderView.stereoScreenSeparation;
xmin += jitterx * width;
xmax += jitterx * width;
jittery = jittery * height / viewHeight;
jittery += r_centerY.GetFloat();
ymin += jittery * height;
ymax += jittery * height;
float depth = zFar - zNear;
projectionMatrix[0 * 4 + 0] = 2.0f * zNear / width;
projectionMatrix[1 * 4 + 0] = 0.0f;
projectionMatrix[2 * 4 + 0] = ( xmax + xmin ) / width; // normally 0
projectionMatrix[3 * 4 + 0] = 0.0f;
projectionMatrix[0 * 4 + 1] = 0.0f;
projectionMatrix[1 * 4 + 1] = 2.0f * zNear / height;
projectionMatrix[2 * 4 + 1] = ( ymax + ymin ) / height; // normally 0
projectionMatrix[3 * 4 + 1] = 0.0f;
projectionMatrix[0 * 4 + 2] = 0.0f;
projectionMatrix[1 * 4 + 2] = 0.0f;
projectionMatrix[2 * 4 + 2] = -( zFar + zNear ) / depth; // -0.999f; // adjust value to prevent imprecision issues
projectionMatrix[3 * 4 + 2] = -2 * zFar * zNear / depth; // -2.0f * zNear;
projectionMatrix[0 * 4 + 3] = 0.0f;
projectionMatrix[1 * 4 + 3] = 0.0f;
projectionMatrix[2 * 4 + 3] = -1.0f;
projectionMatrix[3 * 4 + 3] = 0.0f;
if( viewDef->renderView.flipProjection )
{
projectionMatrix[1 * 4 + 1] = -viewDef->projectionMatrix[1 * 4 + 1];
projectionMatrix[1 * 4 + 3] = -viewDef->projectionMatrix[1 * 4 + 3];
}
}
void R_MatrixFullInverse( const float a[16], float r[16] )
{
idMat4 am;
for( int i = 0 ; i < 4 ; i++ )
{
for( int j = 0 ; j < 4 ; j++ )
{
am[i][j] = a[j * 4 + i];
}
}
// idVec4 test( 100, 100, 100, 1 );
// idVec4 transformed, inverted;
// transformed = test * am;
if( !am.InverseSelf() )
{
common->Error( "Invert failed" );
}
// inverted = transformed * am;
for( int i = 0 ; i < 4 ; i++ )
{
for( int j = 0 ; j < 4 ; j++ )
{
r[j * 4 + i] = am[i][j];
}
}
}
// RB end