doom3-bfg/neo/idlib/math/Polynomial.cpp

282 lines
6.6 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "../precompiled.h"
const float EPSILON = 1e-6f;
/*
=============
idPolynomial::Laguer
=============
*/
int idPolynomial::Laguer( const idComplex* coef, const int degree, idComplex& x ) const
{
const int MT = 10, MAX_ITERATIONS = MT * 8;
static const float frac[] = { 0.0f, 0.5f, 0.25f, 0.75f, 0.13f, 0.38f, 0.62f, 0.88f, 1.0f };
int i, j;
float abx, abp, abm, err;
idComplex dx, cx, b, d, f, g, s, gps, gms, g2;
for( i = 1; i <= MAX_ITERATIONS; i++ )
{
b = coef[degree];
err = b.Abs();
d.Zero();
f.Zero();
abx = x.Abs();
for( j = degree - 1; j >= 0; j-- )
{
f = x * f + d;
d = x * d + b;
b = x * b + coef[j];
err = b.Abs() + abx * err;
}
if( b.Abs() < err * EPSILON )
{
return i;
}
g = d / b;
g2 = g * g;
s = ( ( degree - 1 ) * ( degree * ( g2 - 2.0f * f / b ) - g2 ) ).Sqrt();
gps = g + s;
gms = g - s;
abp = gps.Abs();
abm = gms.Abs();
if( abp < abm )
{
gps = gms;
}
if( Max( abp, abm ) > 0.0f )
{
dx = degree / gps;
}
else
{
dx = idMath::Exp( idMath::Log( 1.0f + abx ) ) * idComplex( idMath::Cos( i ), idMath::Sin( i ) );
}
cx = x - dx;
if( x == cx )
{
return i;
}
if( i % MT == 0 )
{
x = cx;
}
else
{
x -= frac[i / MT] * dx;
}
}
return i;
}
/*
=============
idPolynomial::GetRoots
=============
*/
int idPolynomial::GetRoots( idComplex* roots ) const
{
int i, j;
idComplex x, b, c, *coef;
coef = ( idComplex* ) _alloca16( ( degree + 1 ) * sizeof( idComplex ) );
for( i = 0; i <= degree; i++ )
{
coef[i].Set( coefficient[i], 0.0f );
}
for( i = degree - 1; i >= 0; i-- )
{
x.Zero();
Laguer( coef, i + 1, x );
if( idMath::Fabs( x.i ) < 2.0f * EPSILON * idMath::Fabs( x.r ) )
{
x.i = 0.0f;
}
roots[i] = x;
b = coef[i + 1];
for( j = i; j >= 0; j-- )
{
c = coef[j];
coef[j] = b;
b = x * b + c;
}
}
for( i = 0; i <= degree; i++ )
{
coef[i].Set( coefficient[i], 0.0f );
}
for( i = 0; i < degree; i++ )
{
Laguer( coef, degree, roots[i] );
}
for( i = 1; i < degree; i++ )
{
x = roots[i];
for( j = i - 1; j >= 0; j-- )
{
if( roots[j].r <= x.r )
{
break;
}
roots[j + 1] = roots[j];
}
roots[j + 1] = x;
}
return degree;
}
/*
=============
idPolynomial::GetRoots
=============
*/
int idPolynomial::GetRoots( float* roots ) const
{
int i, num;
idComplex* complexRoots;
switch( degree )
{
case 0:
return 0;
case 1:
return GetRoots1( coefficient[1], coefficient[0], roots );
case 2:
return GetRoots2( coefficient[2], coefficient[1], coefficient[0], roots );
case 3:
return GetRoots3( coefficient[3], coefficient[2], coefficient[1], coefficient[0], roots );
case 4:
return GetRoots4( coefficient[4], coefficient[3], coefficient[2], coefficient[1], coefficient[0], roots );
}
// The Abel-Ruffini theorem states that there is no general solution
// in radicals to polynomial equations of degree five or higher.
// A polynomial equation can be solved by radicals if and only if
// its Galois group is a solvable group.
complexRoots = ( idComplex* ) _alloca16( degree * sizeof( idComplex ) );
GetRoots( complexRoots );
for( num = i = 0; i < degree; i++ )
{
if( complexRoots[i].i == 0.0f )
{
roots[i] = complexRoots[i].r;
num++;
}
}
return num;
}
/*
=============
idPolynomial::ToString
=============
*/
const char* idPolynomial::ToString( int precision ) const
{
return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
}
/*
=============
idPolynomial::Test
=============
*/
void idPolynomial::Test()
{
int i, num;
float roots[4], value;
idComplex complexRoots[4], complexValue;
idPolynomial p;
p = idPolynomial( -5.0f, 4.0f );
num = p.GetRoots( roots );
for( i = 0; i < num; i++ )
{
value = p.GetValue( roots[i] );
assert( idMath::Fabs( value ) < 1e-4f );
}
p = idPolynomial( -5.0f, 4.0f, 3.0f );
num = p.GetRoots( roots );
for( i = 0; i < num; i++ )
{
value = p.GetValue( roots[i] );
assert( idMath::Fabs( value ) < 1e-4f );
}
p = idPolynomial( 1.0f, 4.0f, 3.0f, -2.0f );
num = p.GetRoots( roots );
for( i = 0; i < num; i++ )
{
value = p.GetValue( roots[i] );
assert( idMath::Fabs( value ) < 1e-4f );
}
p = idPolynomial( 5.0f, 4.0f, 3.0f, -2.0f );
num = p.GetRoots( roots );
for( i = 0; i < num; i++ )
{
value = p.GetValue( roots[i] );
assert( idMath::Fabs( value ) < 1e-4f );
}
p = idPolynomial( -5.0f, 4.0f, 3.0f, 2.0f, 1.0f );
num = p.GetRoots( roots );
for( i = 0; i < num; i++ )
{
value = p.GetValue( roots[i] );
assert( idMath::Fabs( value ) < 1e-4f );
}
p = idPolynomial( 1.0f, 4.0f, 3.0f, -2.0f );
num = p.GetRoots( complexRoots );
for( i = 0; i < num; i++ )
{
complexValue = p.GetValue( complexRoots[i] );
assert( idMath::Fabs( complexValue.r ) < 1e-4f && idMath::Fabs( complexValue.i ) < 1e-4f );
}
p = idPolynomial( 5.0f, 4.0f, 3.0f, -2.0f );
num = p.GetRoots( complexRoots );
for( i = 0; i < num; i++ )
{
complexValue = p.GetValue( complexRoots[i] );
assert( idMath::Fabs( complexValue.r ) < 1e-4f && idMath::Fabs( complexValue.i ) < 1e-4f );
}
}