doom3-bfg/neo/idlib/math/Plane.h

462 lines
11 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#ifndef __MATH_PLANE_H__
#define __MATH_PLANE_H__
/*
===============================================================================
3D plane with equation: a * x + b * y + c * z + d = 0
===============================================================================
*/
class idVec3;
class idMat3;
#define ON_EPSILON 0.1f
#define DEGENERATE_DIST_EPSILON 1e-4f
#define SIDE_FRONT 0
#define SIDE_BACK 1
#define SIDE_ON 2
#define SIDE_CROSS 3
// plane sides
#define PLANESIDE_FRONT 0
#define PLANESIDE_BACK 1
#define PLANESIDE_ON 2
#define PLANESIDE_CROSS 3
// plane types
#define PLANETYPE_X 0
#define PLANETYPE_Y 1
#define PLANETYPE_Z 2
#define PLANETYPE_NEGX 3
#define PLANETYPE_NEGY 4
#define PLANETYPE_NEGZ 5
#define PLANETYPE_TRUEAXIAL 6 // all types < 6 are true axial planes
#define PLANETYPE_ZEROX 6
#define PLANETYPE_ZEROY 7
#define PLANETYPE_ZEROZ 8
#define PLANETYPE_NONAXIAL 9
class idPlane
{
public:
idPlane();
explicit idPlane( float a, float b, float c, float d );
explicit idPlane( const idVec3& normal, const float dist );
explicit idPlane( const idVec3& v0, const idVec3& v1, const idVec3& v2, bool fixDegenerate = false );
float operator[]( int index ) const;
float& operator[]( int index );
idPlane operator-() const; // flips plane
idPlane& operator=( const idVec3& v ); // sets normal and sets idPlane::d to zero
idPlane operator+( const idPlane& p ) const; // add plane equations
idPlane operator-( const idPlane& p ) const; // subtract plane equations
idPlane operator*( const float s ) const; // scale plane
idPlane& operator*=( const idMat3& m ); // Normal() *= m
bool Compare( const idPlane& p ) const; // exact compare, no epsilon
bool Compare( const idPlane& p, const float epsilon ) const; // compare with epsilon
bool Compare( const idPlane& p, const float normalEps, const float distEps ) const; // compare with epsilon
bool operator==( const idPlane& p ) const; // exact compare, no epsilon
bool operator!=( const idPlane& p ) const; // exact compare, no epsilon
void Zero(); // zero plane
void SetNormal( const idVec3& normal ); // sets the normal
const idVec3& Normal() const; // reference to const normal
idVec3& Normal(); // reference to normal
float Normalize( bool fixDegenerate = true ); // only normalizes the plane normal, does not adjust d
bool FixDegenerateNormal(); // fix degenerate normal
bool FixDegeneracies( float distEpsilon ); // fix degenerate normal and dist
float Dist() const; // returns: -d
void SetDist( const float dist ); // sets: d = -dist
int Type() const; // returns plane type
bool FromPoints( const idVec3& p1, const idVec3& p2, const idVec3& p3, bool fixDegenerate = true );
bool FromVecs( const idVec3& dir1, const idVec3& dir2, const idVec3& p, bool fixDegenerate = true );
void FitThroughPoint( const idVec3& p ); // assumes normal is valid
bool HeightFit( const idVec3* points, const int numPoints );
idPlane Translate( const idVec3& translation ) const;
idPlane& TranslateSelf( const idVec3& translation );
idPlane Rotate( const idVec3& origin, const idMat3& axis ) const;
idPlane& RotateSelf( const idVec3& origin, const idMat3& axis );
float Distance( const idVec3& v ) const;
int Side( const idVec3& v, const float epsilon = 0.0f ) const;
bool LineIntersection( const idVec3& start, const idVec3& end ) const;
// intersection point is start + dir * scale
bool RayIntersection( const idVec3& start, const idVec3& dir, float& scale ) const;
bool PlaneIntersection( const idPlane& plane, idVec3& start, idVec3& dir ) const;
int GetDimension() const;
const idVec4& ToVec4() const;
idVec4& ToVec4();
const float* ToFloatPtr() const;
float* ToFloatPtr();
const char* ToString( int precision = 2 ) const;
private:
float a;
float b;
float c;
float d;
};
extern idPlane plane_origin;
#define plane_zero plane_origin
ID_INLINE idPlane::idPlane()
{
}
ID_INLINE idPlane::idPlane( float a, float b, float c, float d )
{
this->a = a;
this->b = b;
this->c = c;
this->d = d;
}
ID_INLINE idPlane::idPlane( const idVec3& normal, const float dist )
{
this->a = normal.x;
this->b = normal.y;
this->c = normal.z;
this->d = -dist;
}
ID_INLINE idPlane::idPlane( const idVec3& v0, const idVec3& v1, const idVec3& v2, bool fixDegenerate )
{
FromPoints( v0, v1, v2, fixDegenerate );
}
ID_INLINE float idPlane::operator[]( int index ) const
{
return ( &a )[ index ];
}
ID_INLINE float& idPlane::operator[]( int index )
{
return ( &a )[ index ];
}
ID_INLINE idPlane idPlane::operator-() const
{
return idPlane( -a, -b, -c, -d );
}
ID_INLINE idPlane& idPlane::operator=( const idVec3& v )
{
a = v.x;
b = v.y;
c = v.z;
d = 0;
return *this;
}
ID_INLINE idPlane idPlane::operator+( const idPlane& p ) const
{
return idPlane( a + p.a, b + p.b, c + p.c, d + p.d );
}
ID_INLINE idPlane idPlane::operator-( const idPlane& p ) const
{
return idPlane( a - p.a, b - p.b, c - p.c, d - p.d );
}
ID_INLINE idPlane idPlane::operator*( const float s ) const
{
return idPlane( a * s, b * s, c * s, d * s );
}
ID_INLINE idPlane& idPlane::operator*=( const idMat3& m )
{
Normal() *= m;
return *this;
}
ID_INLINE bool idPlane::Compare( const idPlane& p ) const
{
return ( a == p.a && b == p.b && c == p.c && d == p.d );
}
ID_INLINE bool idPlane::Compare( const idPlane& p, const float epsilon ) const
{
if( idMath::Fabs( a - p.a ) > epsilon )
{
return false;
}
if( idMath::Fabs( b - p.b ) > epsilon )
{
return false;
}
if( idMath::Fabs( c - p.c ) > epsilon )
{
return false;
}
if( idMath::Fabs( d - p.d ) > epsilon )
{
return false;
}
return true;
}
ID_INLINE bool idPlane::Compare( const idPlane& p, const float normalEps, const float distEps ) const
{
if( idMath::Fabs( d - p.d ) > distEps )
{
return false;
}
if( !Normal().Compare( p.Normal(), normalEps ) )
{
return false;
}
return true;
}
ID_INLINE bool idPlane::operator==( const idPlane& p ) const
{
return Compare( p );
}
ID_INLINE bool idPlane::operator!=( const idPlane& p ) const
{
return !Compare( p );
}
ID_INLINE void idPlane::Zero()
{
a = b = c = d = 0.0f;
}
ID_INLINE void idPlane::SetNormal( const idVec3& normal )
{
a = normal.x;
b = normal.y;
c = normal.z;
}
ID_INLINE const idVec3& idPlane::Normal() const
{
return *reinterpret_cast<const idVec3*>( &a );
}
ID_INLINE idVec3& idPlane::Normal()
{
return *reinterpret_cast<idVec3*>( &a );
}
ID_INLINE float idPlane::Normalize( bool fixDegenerate )
{
float length = reinterpret_cast<idVec3*>( &a )->Normalize();
if( fixDegenerate )
{
FixDegenerateNormal();
}
return length;
}
ID_INLINE bool idPlane::FixDegenerateNormal()
{
return Normal().FixDegenerateNormal();
}
ID_INLINE bool idPlane::FixDegeneracies( float distEpsilon )
{
bool fixedNormal = FixDegenerateNormal();
// only fix dist if the normal was degenerate
if( fixedNormal )
{
if( idMath::Fabs( d - idMath::Rint( d ) ) < distEpsilon )
{
d = idMath::Rint( d );
}
}
return fixedNormal;
}
ID_INLINE float idPlane::Dist() const
{
return -d;
}
ID_INLINE void idPlane::SetDist( const float dist )
{
d = -dist;
}
ID_INLINE bool idPlane::FromPoints( const idVec3& p1, const idVec3& p2, const idVec3& p3, bool fixDegenerate )
{
Normal() = ( p1 - p2 ).Cross( p3 - p2 );
if( Normalize( fixDegenerate ) == 0.0f )
{
return false;
}
d = -( Normal() * p2 );
return true;
}
ID_INLINE bool idPlane::FromVecs( const idVec3& dir1, const idVec3& dir2, const idVec3& p, bool fixDegenerate )
{
Normal() = dir1.Cross( dir2 );
if( Normalize( fixDegenerate ) == 0.0f )
{
return false;
}
d = -( Normal() * p );
return true;
}
ID_INLINE void idPlane::FitThroughPoint( const idVec3& p )
{
d = -( Normal() * p );
}
ID_INLINE idPlane idPlane::Translate( const idVec3& translation ) const
{
return idPlane( a, b, c, d - translation * Normal() );
}
ID_INLINE idPlane& idPlane::TranslateSelf( const idVec3& translation )
{
d -= translation * Normal();
return *this;
}
ID_INLINE idPlane idPlane::Rotate( const idVec3& origin, const idMat3& axis ) const
{
idPlane p;
p.Normal() = Normal() * axis;
p.d = d + origin * Normal() - origin * p.Normal();
return p;
}
ID_INLINE idPlane& idPlane::RotateSelf( const idVec3& origin, const idMat3& axis )
{
d += origin * Normal();
Normal() *= axis;
d -= origin * Normal();
return *this;
}
ID_INLINE float idPlane::Distance( const idVec3& v ) const
{
return a * v.x + b * v.y + c * v.z + d;
}
ID_INLINE int idPlane::Side( const idVec3& v, const float epsilon ) const
{
float dist = Distance( v );
if( dist > epsilon )
{
return PLANESIDE_FRONT;
}
else if( dist < -epsilon )
{
return PLANESIDE_BACK;
}
else
{
return PLANESIDE_ON;
}
}
ID_INLINE bool idPlane::LineIntersection( const idVec3& start, const idVec3& end ) const
{
float d1, d2, fraction;
d1 = Normal() * start + d;
d2 = Normal() * end + d;
if( d1 == d2 )
{
return false;
}
if( d1 > 0.0f && d2 > 0.0f )
{
return false;
}
if( d1 < 0.0f && d2 < 0.0f )
{
return false;
}
fraction = ( d1 / ( d1 - d2 ) );
return ( fraction >= 0.0f && fraction <= 1.0f );
}
ID_INLINE bool idPlane::RayIntersection( const idVec3& start, const idVec3& dir, float& scale ) const
{
float d1, d2;
d1 = Normal() * start + d;
d2 = Normal() * dir;
if( d2 == 0.0f )
{
return false;
}
scale = -( d1 / d2 );
return true;
}
ID_INLINE int idPlane::GetDimension() const
{
return 4;
}
ID_INLINE const idVec4& idPlane::ToVec4() const
{
return *reinterpret_cast<const idVec4*>( &a );
}
ID_INLINE idVec4& idPlane::ToVec4()
{
return *reinterpret_cast<idVec4*>( &a );
}
ID_INLINE const float* idPlane::ToFloatPtr() const
{
return reinterpret_cast<const float*>( &a );
}
ID_INLINE float* idPlane::ToFloatPtr()
{
return reinterpret_cast<float*>( &a );
}
#endif /* !__MATH_PLANE_H__ */