doom3-bfg/neo/idlib/containers/BTree.h

695 lines
18 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#ifndef __BTREE_H__
#define __BTREE_H__
/*
===============================================================================
Balanced Search Tree
===============================================================================
*/
//#define BTREE_CHECK
template< class objType, class keyType >
class idBTreeNode
{
public:
keyType key; // key used for sorting
objType* object; // if != NULL pointer to object stored in leaf node
idBTreeNode* parent; // parent node
idBTreeNode* next; // next sibling
idBTreeNode* prev; // prev sibling
int numChildren; // number of children
idBTreeNode* firstChild; // first child
idBTreeNode* lastChild; // last child
};
template< class objType, class keyType, int maxChildrenPerNode >
class idBTree
{
public:
idBTree();
~idBTree();
void Init();
void Shutdown();
idBTreeNode<objType, keyType>* Add( objType* object, keyType key ); // add an object to the tree
void Remove( idBTreeNode<objType, keyType>* node ); // remove an object node from the tree
idBTreeNode<objType, keyType>* NodeFind( keyType key ) const; // find an object using the given key
idBTreeNode<objType, keyType>* NodeFindSmallestLargerEqual( keyType key ) const; // find an object with the smallest key larger equal the given key
idBTreeNode<objType, keyType>* NodeFindLargestSmallerEqual( keyType key ) const; // find an object with the largest key smaller equal the given key
objType* Find( keyType key ) const; // find an object using the given key
objType* FindSmallestLargerEqual( keyType key ) const; // find an object with the smallest key larger equal the given key
objType* FindLargestSmallerEqual( keyType key ) const; // find an object with the largest key smaller equal the given key
idBTreeNode<objType, keyType>* GetRoot() const; // returns the root node of the tree
int GetNodeCount() const; // returns the total number of nodes in the tree
idBTreeNode<objType, keyType>* GetNext( idBTreeNode<objType, keyType>* node ) const; // goes through all nodes of the tree
idBTreeNode<objType, keyType>* GetNextLeaf( idBTreeNode<objType, keyType>* node ) const; // goes through all leaf nodes of the tree
private:
idBTreeNode<objType, keyType>* root;
idBlockAlloc<idBTreeNode<objType, keyType>, 128> nodeAllocator;
idBTreeNode<objType, keyType>* AllocNode();
void FreeNode( idBTreeNode<objType, keyType>* node );
void SplitNode( idBTreeNode<objType, keyType>* node );
idBTreeNode<objType, keyType>* MergeNodes( idBTreeNode<objType, keyType>* node1, idBTreeNode<objType, keyType>* node2 );
void CheckTree_r( idBTreeNode<objType, keyType>* node, int& numNodes ) const;
void CheckTree() const;
};
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTree<objType, keyType, maxChildrenPerNode>::idBTree()
{
assert( maxChildrenPerNode >= 4 );
root = NULL;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTree<objType, keyType, maxChildrenPerNode>::~idBTree()
{
Shutdown();
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE void idBTree<objType, keyType, maxChildrenPerNode>::Init()
{
root = AllocNode();
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE void idBTree<objType, keyType, maxChildrenPerNode>::Shutdown()
{
nodeAllocator.Shutdown();
root = NULL;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTreeNode<objType, keyType>* idBTree<objType, keyType, maxChildrenPerNode>::Add( objType* object, keyType key )
{
idBTreeNode<objType, keyType>* node, *child, *newNode;
if( root == NULL )
{
root = AllocNode();
}
if( root->numChildren >= maxChildrenPerNode )
{
newNode = AllocNode();
newNode->key = root->key;
newNode->firstChild = root;
newNode->lastChild = root;
newNode->numChildren = 1;
root->parent = newNode;
SplitNode( root );
root = newNode;
}
newNode = AllocNode();
newNode->key = key;
newNode->object = object;
for( node = root; node->firstChild != NULL; node = child )
{
if( key > node->key )
{
node->key = key;
}
// find the first child with a key larger equal to the key of the new node
for( child = node->firstChild; child->next; child = child->next )
{
if( key <= child->key )
{
break;
}
}
if( child->object )
{
if( key <= child->key )
{
// insert new node before child
if( child->prev )
{
child->prev->next = newNode;
}
else
{
node->firstChild = newNode;
}
newNode->prev = child->prev;
newNode->next = child;
child->prev = newNode;
}
else
{
// insert new node after child
if( child->next )
{
child->next->prev = newNode;
}
else
{
node->lastChild = newNode;
}
newNode->prev = child;
newNode->next = child->next;
child->next = newNode;
}
newNode->parent = node;
node->numChildren++;
#ifdef BTREE_CHECK
CheckTree();
#endif
return newNode;
}
// make sure the child has room to store another node
if( child->numChildren >= maxChildrenPerNode )
{
SplitNode( child );
if( key <= child->prev->key )
{
child = child->prev;
}
}
}
// we only end up here if the root node is empty
newNode->parent = root;
root->key = key;
root->firstChild = newNode;
root->lastChild = newNode;
root->numChildren++;
#ifdef BTREE_CHECK
CheckTree();
#endif
return newNode;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE void idBTree<objType, keyType, maxChildrenPerNode>::Remove( idBTreeNode<objType, keyType>* node )
{
idBTreeNode<objType, keyType>* parent;
assert( node->object != NULL );
// unlink the node from it's parent
if( node->prev )
{
node->prev->next = node->next;
}
else
{
node->parent->firstChild = node->next;
}
if( node->next )
{
node->next->prev = node->prev;
}
else
{
node->parent->lastChild = node->prev;
}
node->parent->numChildren--;
// make sure there are no parent nodes with a single child
for( parent = node->parent; parent != root && parent->numChildren <= 1; parent = parent->parent )
{
if( parent->next )
{
parent = MergeNodes( parent, parent->next );
}
else if( parent->prev )
{
parent = MergeNodes( parent->prev, parent );
}
// a parent may not use a key higher than the key of it's last child
if( parent->key > parent->lastChild->key )
{
parent->key = parent->lastChild->key;
}
if( parent->numChildren > maxChildrenPerNode )
{
SplitNode( parent );
break;
}
}
for( ; parent != NULL && parent->lastChild != NULL; parent = parent->parent )
{
// a parent may not use a key higher than the key of it's last child
if( parent->key > parent->lastChild->key )
{
parent->key = parent->lastChild->key;
}
}
// free the node
FreeNode( node );
// remove the root node if it has a single internal node as child
if( root->numChildren == 1 && root->firstChild->object == NULL )
{
idBTreeNode<objType, keyType>* oldRoot = root;
root->firstChild->parent = NULL;
root = root->firstChild;
FreeNode( oldRoot );
}
#ifdef BTREE_CHECK
CheckTree();
#endif
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTreeNode<objType, keyType>* idBTree<objType, keyType, maxChildrenPerNode>::NodeFind( keyType key ) const
{
idBTreeNode<objType, keyType>* node;
for( node = root->firstChild; node != NULL; node = node->firstChild )
{
while( node->next )
{
if( node->key >= key )
{
break;
}
node = node->next;
}
if( node->object )
{
if( node->key == key )
{
return node;
}
else
{
return NULL;
}
}
}
return NULL;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTreeNode<objType, keyType>* idBTree<objType, keyType, maxChildrenPerNode>::NodeFindSmallestLargerEqual( keyType key ) const
{
idBTreeNode<objType, keyType>* node;
if( root == NULL )
{
return NULL;
}
for( node = root->firstChild; node != NULL; node = node->firstChild )
{
while( node->next )
{
if( node->key >= key )
{
break;
}
node = node->next;
}
if( node->object )
{
if( node->key >= key )
{
return node;
}
else
{
return NULL;
}
}
}
return NULL;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTreeNode<objType, keyType>* idBTree<objType, keyType, maxChildrenPerNode>::NodeFindLargestSmallerEqual( keyType key ) const
{
idBTreeNode<objType, keyType>* node;
if( root == NULL )
{
return NULL;
}
idBTreeNode<objType, keyType>* smaller = NULL;
for( node = root->firstChild; node != NULL; node = node->firstChild )
{
while( node->next )
{
if( node->key >= key )
{
break;
}
smaller = node;
node = node->next;
}
if( node->object )
{
if( node->key <= key )
{
return node;
}
else if( smaller == NULL )
{
return NULL;
}
else
{
node = smaller;
if( node->object )
{
return node;
}
}
}
}
return NULL;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE objType* idBTree<objType, keyType, maxChildrenPerNode>::Find( keyType key ) const
{
idBTreeNode<objType, keyType>* node = NodeFind( key );
if( node == NULL )
{
return NULL;
}
else
{
return node->object;
}
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE objType* idBTree<objType, keyType, maxChildrenPerNode>::FindSmallestLargerEqual( keyType key ) const
{
idBTreeNode<objType, keyType>* node = NodeFindSmallestLargerEqual( key );
if( node == NULL )
{
return NULL;
}
else
{
return node->object;
}
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE objType* idBTree<objType, keyType, maxChildrenPerNode>::FindLargestSmallerEqual( keyType key ) const
{
idBTreeNode<objType, keyType>* node = NodeFindLargestSmallerEqual( key );
if( node == NULL )
{
return NULL;
}
else
{
return node->object;
}
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTreeNode<objType, keyType>* idBTree<objType, keyType, maxChildrenPerNode>::GetRoot() const
{
return root;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE int idBTree<objType, keyType, maxChildrenPerNode>::GetNodeCount() const
{
return nodeAllocator.GetAllocCount();
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTreeNode<objType, keyType>* idBTree<objType, keyType, maxChildrenPerNode>::GetNext( idBTreeNode<objType, keyType>* node ) const
{
if( node->firstChild )
{
return node->firstChild;
}
else
{
while( node && node->next == NULL )
{
node = node->parent;
}
return node;
}
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTreeNode<objType, keyType>* idBTree<objType, keyType, maxChildrenPerNode>::GetNextLeaf( idBTreeNode<objType, keyType>* node ) const
{
if( node->firstChild )
{
while( node->firstChild )
{
node = node->firstChild;
}
return node;
}
else
{
while( node && node->next == NULL )
{
node = node->parent;
}
if( node )
{
node = node->next;
while( node->firstChild )
{
node = node->firstChild;
}
return node;
}
else
{
return NULL;
}
}
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTreeNode<objType, keyType>* idBTree<objType, keyType, maxChildrenPerNode>::AllocNode()
{
idBTreeNode<objType, keyType>* node = nodeAllocator.Alloc();
node->key = 0;
node->parent = NULL;
node->next = NULL;
node->prev = NULL;
node->numChildren = 0;
node->firstChild = NULL;
node->lastChild = NULL;
node->object = NULL;
return node;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE void idBTree<objType, keyType, maxChildrenPerNode>::FreeNode( idBTreeNode<objType, keyType>* node )
{
nodeAllocator.Free( node );
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE void idBTree<objType, keyType, maxChildrenPerNode>::SplitNode( idBTreeNode<objType, keyType>* node )
{
int i;
idBTreeNode<objType, keyType>* child, *newNode;
// allocate a new node
newNode = AllocNode();
newNode->parent = node->parent;
// divide the children over the two nodes
child = node->firstChild;
child->parent = newNode;
for( i = 3; i < node->numChildren; i += 2 )
{
child = child->next;
child->parent = newNode;
}
newNode->key = child->key;
newNode->numChildren = node->numChildren / 2;
newNode->firstChild = node->firstChild;
newNode->lastChild = child;
node->numChildren -= newNode->numChildren;
node->firstChild = child->next;
child->next->prev = NULL;
child->next = NULL;
// add the new child to the parent before the split node
assert( node->parent->numChildren < maxChildrenPerNode );
if( node->prev )
{
node->prev->next = newNode;
}
else
{
node->parent->firstChild = newNode;
}
newNode->prev = node->prev;
newNode->next = node;
node->prev = newNode;
node->parent->numChildren++;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE idBTreeNode<objType, keyType>* idBTree<objType, keyType, maxChildrenPerNode>::MergeNodes( idBTreeNode<objType, keyType>* node1, idBTreeNode<objType, keyType>* node2 )
{
idBTreeNode<objType, keyType>* child;
assert( node1->parent == node2->parent );
assert( node1->next == node2 && node2->prev == node1 );
assert( node1->object == NULL && node2->object == NULL );
assert( node1->numChildren >= 1 && node2->numChildren >= 1 );
for( child = node1->firstChild; child->next; child = child->next )
{
child->parent = node2;
}
child->parent = node2;
child->next = node2->firstChild;
node2->firstChild->prev = child;
node2->firstChild = node1->firstChild;
node2->numChildren += node1->numChildren;
// unlink the first node from the parent
if( node1->prev )
{
node1->prev->next = node2;
}
else
{
node1->parent->firstChild = node2;
}
node2->prev = node1->prev;
node2->parent->numChildren--;
FreeNode( node1 );
return node2;
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE void idBTree<objType, keyType, maxChildrenPerNode>::CheckTree_r( idBTreeNode<objType, keyType>* node, int& numNodes ) const
{
int numChildren;
idBTreeNode<objType, keyType>* child;
numNodes++;
// the root node may have zero children and leaf nodes always have zero children, all other nodes should have at least 2 and at most maxChildrenPerNode children
assert( ( node == root ) || ( node->object != NULL && node->numChildren == 0 ) || ( node->numChildren >= 2 && node->numChildren <= maxChildrenPerNode ) );
// the key of a node may never be larger than the key of it's last child
assert( ( node->lastChild == NULL ) || ( node->key <= node->lastChild->key ) );
numChildren = 0;
for( child = node->firstChild; child; child = child->next )
{
numChildren++;
// make sure the children are properly linked
if( child->prev == NULL )
{
assert( node->firstChild == child );
}
else
{
assert( child->prev->next == child );
}
if( child->next == NULL )
{
assert( node->lastChild == child );
}
else
{
assert( child->next->prev == child );
}
// recurse down the tree
CheckTree_r( child, numNodes );
}
// the number of children should equal the number of linked children
assert( numChildren == node->numChildren );
}
template< class objType, class keyType, int maxChildrenPerNode >
ID_INLINE void idBTree<objType, keyType, maxChildrenPerNode>::CheckTree() const
{
int numNodes = 0;
idBTreeNode<objType, keyType>* node, *lastNode;
CheckTree_r( root, numNodes );
// the number of nodes in the tree should equal the number of allocated nodes
assert( numNodes == nodeAllocator.GetAllocCount() );
// all the leaf nodes should be ordered
lastNode = GetNextLeaf( GetRoot() );
if( lastNode )
{
for( node = GetNextLeaf( lastNode ); node; lastNode = node, node = GetNextLeaf( node ) )
{
assert( lastNode->key <= node->key );
}
}
}
#endif /* !__BTREE_H__ */