doom3-bfg/neo/libs/jpeg-6/jdhuff.cpp
2012-11-27 21:26:06 +01:00

587 lines
20 KiB
C++

/*
* jdhuff.c
*
* Copyright (C) 1991-1995, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains Huffman entropy decoding routines.
*
* Much of the complexity here has to do with supporting input suspension.
* If the data source module demands suspension, we want to be able to back
* up to the start of the current MCU. To do this, we copy state variables
* into local working storage, and update them back to the permanent
* storage only upon successful completion of an MCU.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdhuff.h" /* Declarations shared with jdphuff.c */
/*
* Expanded entropy decoder object for Huffman decoding.
*
* The savable_state subrecord contains fields that change within an MCU,
* but must not be updated permanently until we complete the MCU.
*/
typedef struct {
int last_dc_val[MAX_COMPS_IN_SCAN];/* last DC coef for each component */
} savable_state;
/* This macro is to work around compilers with missing or broken
* structure assignment. You'll need to fix this code if you have
* such a compiler and you change MAX_COMPS_IN_SCAN.
*/
#ifndef NO_STRUCT_ASSIGN
#define ASSIGN_STATE( dest, src ) ( ( dest ) = ( src ) )
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE( dest, src ) \
( ( dest ).last_dc_val[0] = ( src ).last_dc_val[0], \
( dest ).last_dc_val[1] = ( src ).last_dc_val[1], \
( dest ).last_dc_val[2] = ( src ).last_dc_val[2], \
( dest ).last_dc_val[3] = ( src ).last_dc_val[3] )
#endif
#endif
typedef struct {
struct jpeg_entropy_decoder pub;/* public fields */
/* These fields are loaded into local variables at start of each MCU.
* In case of suspension, we exit WITHOUT updating them.
*/
bitread_perm_state bitstate;/* Bit buffer at start of MCU */
savable_state saved; /* Other state at start of MCU */
/* These fields are NOT loaded into local working state. */
unsigned int restarts_to_go;/* MCUs left in this restart interval */
/* Pointers to derived tables (these workspaces have image lifespan) */
d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
} huff_entropy_decoder;
typedef huff_entropy_decoder * huff_entropy_ptr;
/*
* Initialize for a Huffman-compressed scan.
*/
METHODDEF void
start_pass_huff_decoder( j_decompress_ptr cinfo ) {
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int ci, dctbl, actbl;
jpeg_component_info * compptr;
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
* This ought to be an error condition, but we make it a warning because
* there are some baseline files out there with all zeroes in these bytes.
*/
if ( ( cinfo->Ss != 0 ) || ( cinfo->Se != DCTSIZE2 - 1 ) ||
( cinfo->Ah != 0 ) || ( cinfo->Al != 0 ) ) {
WARNMS( cinfo, JWRN_NOT_SEQUENTIAL );
}
for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
compptr = cinfo->cur_comp_info[ci];
dctbl = compptr->dc_tbl_no;
actbl = compptr->ac_tbl_no;
/* Make sure requested tables are present */
if ( ( dctbl < 0 ) || ( dctbl >= NUM_HUFF_TBLS ) ||
( cinfo->dc_huff_tbl_ptrs[dctbl] == NULL ) ) {
ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, dctbl );
}
if ( ( actbl < 0 ) || ( actbl >= NUM_HUFF_TBLS ) ||
( cinfo->ac_huff_tbl_ptrs[actbl] == NULL ) ) {
ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, actbl );
}
/* Compute derived values for Huffman tables */
/* We may do this more than once for a table, but it's not expensive */
jpeg_make_d_derived_tbl( cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
&entropy->dc_derived_tbls[dctbl] );
jpeg_make_d_derived_tbl( cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
&entropy->ac_derived_tbls[actbl] );
/* Initialize DC predictions to 0 */
entropy->saved.last_dc_val[ci] = 0;
}
/* Initialize bitread state variables */
entropy->bitstate.bits_left = 0;
entropy->bitstate.get_buffer = 0;/* unnecessary, but keeps Purify quiet */
entropy->bitstate.printed_eod = FALSE;
/* Initialize restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
}
/*
* Compute the derived values for a Huffman table.
* Note this is also used by jdphuff.c.
*/
GLOBAL void
jpeg_make_d_derived_tbl( j_decompress_ptr cinfo, JHUFF_TBL * htbl,
d_derived_tbl ** pdtbl ) {
d_derived_tbl * dtbl;
int p, i, l, si;
int lookbits, ctr;
char huffsize[257];
unsigned int huffcode[257];
unsigned int code;
/* Allocate a workspace if we haven't already done so. */
if ( *pdtbl == NULL ) {
*pdtbl = (d_derived_tbl *)
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF( d_derived_tbl ) );
}
dtbl = *pdtbl;
dtbl->pub = htbl; /* fill in back link */
/* Figure C.1: make table of Huffman code length for each symbol */
/* Note that this is in code-length order. */
p = 0;
for ( l = 1; l <= 16; l++ ) {
for ( i = 1; i <= (int) htbl->bits[l]; i++ ) {
huffsize[p++] = (char) l;
}
}
huffsize[p] = 0;
/* Figure C.2: generate the codes themselves */
/* Note that this is in code-length order. */
code = 0;
si = huffsize[0];
p = 0;
while ( huffsize[p] ) {
while ( ( (int) huffsize[p] ) == si ) {
huffcode[p++] = code;
code++;
}
code <<= 1;
si++;
}
/* Figure F.15: generate decoding tables for bit-sequential decoding */
p = 0;
for ( l = 1; l <= 16; l++ ) {
if ( htbl->bits[l] ) {
dtbl->valptr[l] = p;/* huffval[] index of 1st symbol of code length l */
dtbl->mincode[l] = huffcode[p];/* minimum code of length l */
p += htbl->bits[l];
dtbl->maxcode[l] = huffcode[p - 1];/* maximum code of length l */
} else {
dtbl->maxcode[l] = -1;/* -1 if no codes of this length */
}
}
dtbl->maxcode[17] = 0xFFFFFL;/* ensures jpeg_huff_decode terminates */
/* Compute lookahead tables to speed up decoding.
* First we set all the table entries to 0, indicating "too long";
* then we iterate through the Huffman codes that are short enough and
* fill in all the entries that correspond to bit sequences starting
* with that code.
*/
MEMZERO( dtbl->look_nbits, SIZEOF( dtbl->look_nbits ) );
p = 0;
for ( l = 1; l <= HUFF_LOOKAHEAD; l++ ) {
for ( i = 1; i <= (int) htbl->bits[l]; i++, p++ ) {
/* l = current code's length, p = its index in huffcode[] & huffval[]. */
/* Generate left-justified code followed by all possible bit sequences */
lookbits = huffcode[p] << ( HUFF_LOOKAHEAD - l );
for ( ctr = 1 << ( HUFF_LOOKAHEAD - l ); ctr > 0; ctr-- ) {
dtbl->look_nbits[lookbits] = l;
dtbl->look_sym[lookbits] = htbl->huffval[p];
lookbits++;
}
}
}
}
/*
* Out-of-line code for bit fetching (shared with jdphuff.c).
* See jdhuff.h for info about usage.
* Note: current values of get_buffer and bits_left are passed as parameters,
* but are returned in the corresponding fields of the state struct.
*
* On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
* of get_buffer to be used. (On machines with wider words, an even larger
* buffer could be used.) However, on some machines 32-bit shifts are
* quite slow and take time proportional to the number of places shifted.
* (This is true with most PC compilers, for instance.) In this case it may
* be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
* average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
*/
#ifdef SLOW_SHIFT_32
#define MIN_GET_BITS 15 /* minimum allowable value */
#else
#define MIN_GET_BITS ( BIT_BUF_SIZE - 7 )
#endif
GLOBAL boolean
jpeg_fill_bit_buffer( bitread_working_state * state,
register bit_buf_type get_buffer, register int bits_left,
int nbits ) {
/* Load up the bit buffer to a depth of at least nbits */
/* Copy heavily used state fields into locals (hopefully registers) */
register const JOCTET * next_input_byte = state->next_input_byte;
register size_t bytes_in_buffer = state->bytes_in_buffer;
register int c;
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
/* (It is assumed that no request will be for more than that many bits.) */
while ( bits_left < MIN_GET_BITS ) {
/* Attempt to read a byte */
if ( state->unread_marker != 0 ) {
goto no_more_data;
} /* can't advance past a marker */
if ( bytes_in_buffer == 0 ) {
if ( !( *state->cinfo->src->fill_input_buffer )( state->cinfo ) ) {
return FALSE;
}
next_input_byte = state->cinfo->src->next_input_byte;
bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
}
bytes_in_buffer--;
c = GETJOCTET( *next_input_byte++ );
/* If it's 0xFF, check and discard stuffed zero byte */
if ( c == 0xFF ) {
do {
if ( bytes_in_buffer == 0 ) {
if ( !( *state->cinfo->src->fill_input_buffer )( state->cinfo ) ) {
return FALSE;
}
next_input_byte = state->cinfo->src->next_input_byte;
bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
}
bytes_in_buffer--;
c = GETJOCTET( *next_input_byte++ );
} while ( c == 0xFF );
if ( c == 0 ) {
/* Found FF/00, which represents an FF data byte */
c = 0xFF;
} else {
/* Oops, it's actually a marker indicating end of compressed data. */
/* Better put it back for use later */
state->unread_marker = c;
no_more_data:
/* There should be enough bits still left in the data segment; */
/* if so, just break out of the outer while loop. */
if ( bits_left >= nbits ) {
break;
}
/* Uh-oh. Report corrupted data to user and stuff zeroes into
* the data stream, so that we can produce some kind of image.
* Note that this code will be repeated for each byte demanded
* for the rest of the segment. We use a nonvolatile flag to ensure
* that only one warning message appears.
*/
if ( ! * ( state->printed_eod_ptr ) ) {
WARNMS( state->cinfo, JWRN_HIT_MARKER );
*( state->printed_eod_ptr ) = TRUE;
}
c = 0;/* insert a zero byte into bit buffer */
}
}
/* OK, load c into get_buffer */
get_buffer = ( get_buffer << 8 ) | c;
bits_left += 8;
}
/* Unload the local registers */
state->next_input_byte = next_input_byte;
state->bytes_in_buffer = bytes_in_buffer;
state->get_buffer = get_buffer;
state->bits_left = bits_left;
return TRUE;
}
/*
* Out-of-line code for Huffman code decoding.
* See jdhuff.h for info about usage.
*/
GLOBAL int
jpeg_huff_decode( bitread_working_state * state,
register bit_buf_type get_buffer, register int bits_left,
d_derived_tbl * htbl, int min_bits ) {
register int l = min_bits;
register INT32 code;
/* HUFF_DECODE has determined that the code is at least min_bits */
/* bits long, so fetch that many bits in one swoop. */
CHECK_BIT_BUFFER( *state, l, return -1 );
code = GET_BITS( l );
/* Collect the rest of the Huffman code one bit at a time. */
/* This is per Figure F.16 in the JPEG spec. */
while ( code > htbl->maxcode[l] ) {
code <<= 1;
CHECK_BIT_BUFFER( *state, 1, return -1 );
code |= GET_BITS( 1 );
l++;
}
/* Unload the local registers */
state->get_buffer = get_buffer;
state->bits_left = bits_left;
/* With garbage input we may reach the sentinel value l = 17. */
if ( l > 16 ) {
WARNMS( state->cinfo, JWRN_HUFF_BAD_CODE );
return 0; /* fake a zero as the safest result */
}
return htbl->pub->huffval[ htbl->valptr[l] +
( (int) ( code - htbl->mincode[l] ) ) ];
}
/*
* Figure F.12: extend sign bit.
* On some machines, a shift and add will be faster than a table lookup.
*/
#ifdef AVOID_TABLES
#define HUFF_EXTEND( x, s ) ( ( x ) < ( 1 << ( ( s ) - 1 ) ) ? ( x ) + ( ( ( -1 ) << ( s ) ) + 1 ) : ( x ) )
#else
#define HUFF_EXTEND( x, s ) ( ( x ) < extend_test[s] ? ( x ) + extend_offset[s] : ( x ) )
static const int extend_test[16] = /* entry n is 2**(n-1) */
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
{ 0, ( ( -1 ) << 1 ) + 1, ( ( -1 ) << 2 ) + 1, ( ( -1 ) << 3 ) + 1, ( ( -1 ) << 4 ) + 1,
( ( -1 ) << 5 ) + 1, ( ( -1 ) << 6 ) + 1, ( ( -1 ) << 7 ) + 1, ( ( -1 ) << 8 ) + 1,
( ( -1 ) << 9 ) + 1, ( ( -1 ) << 10 ) + 1, ( ( -1 ) << 11 ) + 1, ( ( -1 ) << 12 ) + 1,
( ( -1 ) << 13 ) + 1, ( ( -1 ) << 14 ) + 1, ( ( -1 ) << 15 ) + 1 };
#endif /* AVOID_TABLES */
/*
* Check for a restart marker & resynchronize decoder.
* Returns FALSE if must suspend.
*/
LOCAL boolean
process_restart( j_decompress_ptr cinfo ) {
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int ci;
/* Throw away any unused bits remaining in bit buffer; */
/* include any full bytes in next_marker's count of discarded bytes */
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
entropy->bitstate.bits_left = 0;
/* Advance past the RSTn marker */
if ( !( *cinfo->marker->read_restart_marker )( cinfo ) ) {
return FALSE;
}
/* Re-initialize DC predictions to 0 */
for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
entropy->saved.last_dc_val[ci] = 0;
}
/* Reset restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
/* Next segment can get another out-of-data warning */
entropy->bitstate.printed_eod = FALSE;
return TRUE;
}
/*
* Decode and return one MCU's worth of Huffman-compressed coefficients.
* The coefficients are reordered from zigzag order into natural array order,
* but are not dequantized.
*
* The i'th block of the MCU is stored into the block pointed to by
* MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
* (Wholesale zeroing is usually a little faster than retail...)
*
* Returns FALSE if data source requested suspension. In that case no
* changes have been made to permanent state. (Exception: some output
* coefficients may already have been assigned. This is harmless for
* this module, since we'll just re-assign them on the next call.)
*/
METHODDEF boolean
decode_mcu( j_decompress_ptr cinfo, JBLOCKROW * MCU_data ) {
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
register int s, k, r;
int blkn, ci;
JBLOCKROW block;
BITREAD_STATE_VARS;
savable_state state;
d_derived_tbl * dctbl;
d_derived_tbl * actbl;
jpeg_component_info * compptr;
/* Process restart marker if needed; may have to suspend */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
if ( !process_restart( cinfo ) ) {
return FALSE;
}
}
}
/* Load up working state */
BITREAD_LOAD_STATE( cinfo, entropy->bitstate );
ASSIGN_STATE( state, entropy->saved );
/* Outer loop handles each block in the MCU */
for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE( s, br_state, dctbl, return FALSE, label1 );
if ( s ) {
CHECK_BIT_BUFFER( br_state, s, return FALSE );
r = GET_BITS( s );
s = HUFF_EXTEND( r, s );
}
/* Shortcut if component's values are not interesting */
if ( !compptr->component_needed ) {
goto skip_ACs;
}
/* Convert DC difference to actual value, update last_dc_val */
s += state.last_dc_val[ci];
state.last_dc_val[ci] = s;
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
( *block )[0] = (JCOEF) s;
/* Do we need to decode the AC coefficients for this component? */
if ( compptr->DCT_scaled_size > 1 ) {
/* Section F.2.2.2: decode the AC coefficients */
/* Since zeroes are skipped, output area must be cleared beforehand */
for ( k = 1; k < DCTSIZE2; k++ ) {
HUFF_DECODE( s, br_state, actbl, return FALSE, label2 );
r = s >> 4;
s &= 15;
if ( s ) {
k += r;
CHECK_BIT_BUFFER( br_state, s, return FALSE );
r = GET_BITS( s );
s = HUFF_EXTEND( r, s );
/* Output coefficient in natural (dezigzagged) order.
* Note: the extra entries in jpeg_natural_order[] will save us
* if k >= DCTSIZE2, which could happen if the data is corrupted.
*/
( *block )[jpeg_natural_order[k]] = (JCOEF) s;
} else {
if ( r != 15 ) {
break;
}
k += 15;
}
}
} else {
skip_ACs:
/* Section F.2.2.2: decode the AC coefficients */
/* In this path we just discard the values */
for ( k = 1; k < DCTSIZE2; k++ ) {
HUFF_DECODE( s, br_state, actbl, return FALSE, label3 );
r = s >> 4;
s &= 15;
if ( s ) {
k += r;
CHECK_BIT_BUFFER( br_state, s, return FALSE );
DROP_BITS( s );
} else {
if ( r != 15 ) {
break;
}
k += 15;
}
}
}
}
/* Completed MCU, so update state */
BITREAD_SAVE_STATE( cinfo, entropy->bitstate );
ASSIGN_STATE( entropy->saved, state );
/* Account for restart interval (no-op if not using restarts) */
entropy->restarts_to_go--;
return TRUE;
}
/*
* Module initialization routine for Huffman entropy decoding.
*/
GLOBAL void
jinit_huff_decoder( j_decompress_ptr cinfo ) {
huff_entropy_ptr entropy;
int i;
entropy = (huff_entropy_ptr)
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF( huff_entropy_decoder ) );
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
entropy->pub.start_pass = start_pass_huff_decoder;
entropy->pub.decode_mcu = decode_mcu;
/* Mark tables unallocated */
for ( i = 0; i < NUM_HUFF_TBLS; i++ ) {
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
}
}