doom3-bfg/neo/renderer/Model_ma.cpp

1314 lines
29 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "precompiled.h"
#include "Model_ma.h"
/*
======================================================================
Parses Maya ASCII files.
======================================================================
*/
#define MA_VERBOSE( x ) { if ( maGlobal.verbose ) { common->Printf x ; } }
// working variables used during parsing
typedef struct
{
bool verbose;
maModel_t* model;
maObject_t* currentObject;
} ma_t;
static ma_t maGlobal;
void MA_ParseNodeHeader( idParser& parser, maNodeHeader_t* header )
{
memset( header, 0, sizeof( maNodeHeader_t ) );
idToken token;
while( parser.ReadToken( &token ) )
{
if( !token.Icmp( "-" ) )
{
parser.ReadToken( &token );
if( !token.Icmp( "n" ) )
{
parser.ReadToken( &token );
strcpy( header->name, token.c_str() );
}
else if( !token.Icmp( "p" ) )
{
parser.ReadToken( &token );
strcpy( header->parent, token.c_str() );
}
}
else if( !token.Icmp( ";" ) )
{
break;
}
}
}
bool MA_ParseHeaderIndex( maAttribHeader_t* header, int& minIndex, int& maxIndex, const char* headerType, const char* skipString )
{
idParser miniParse;
idToken token;
miniParse.LoadMemory( header->name, strlen( header->name ), headerType );
if( skipString )
{
miniParse.SkipUntilString( skipString );
}
if( !miniParse.SkipUntilString( "[" ) )
{
//This was just a header
return false;
}
minIndex = miniParse.ParseInt();
miniParse.ReadToken( &token );
if( !token.Icmp( "]" ) )
{
maxIndex = minIndex;
}
else
{
maxIndex = miniParse.ParseInt();
}
return true;
}
bool MA_ParseAttribHeader( idParser& parser, maAttribHeader_t* header )
{
idToken token;
memset( header, 0, sizeof( maAttribHeader_t ) );
parser.ReadToken( &token );
if( !token.Icmp( "-" ) )
{
parser.ReadToken( &token );
if( !token.Icmp( "s" ) )
{
header->size = parser.ParseInt();
parser.ReadToken( &token );
}
}
strcpy( header->name, token.c_str() );
return true;
}
bool MA_ReadVec3( idParser& parser, idVec3& vec )
{
idToken token;
if( !parser.SkipUntilString( "double3" ) )
{
throw idException( va( "Maya Loader '%s': Invalid Vec3", parser.GetFileName() ) );
}
//We need to flip y and z because of the maya coordinate system
vec.x = parser.ParseFloat();
vec.z = parser.ParseFloat();
vec.y = parser.ParseFloat();
return true;
}
bool IsNodeComplete( idToken& token )
{
if( !token.Icmp( "createNode" ) || !token.Icmp( "connectAttr" ) || !token.Icmp( "select" ) )
{
return true;
}
return false;
}
bool MA_ParseTransform( idParser& parser )
{
maNodeHeader_t header;
maTransform_t* transform;
memset( &header, 0, sizeof( header ) );
//Allocate room for the transform
transform = ( maTransform_t* )Mem_Alloc( sizeof( maTransform_t ), TAG_MODEL );
memset( transform, 0, sizeof( maTransform_t ) );
transform->scale.x = transform->scale.y = transform->scale.z = 1;
//Get the header info from the transform
MA_ParseNodeHeader( parser, &header );
//Read the transform attributes
idToken token;
while( parser.ReadToken( &token ) )
{
if( IsNodeComplete( token ) )
{
parser.UnreadToken( &token );
break;
}
if( !token.Icmp( "setAttr" ) )
{
parser.ReadToken( &token );
if( !token.Icmp( ".t" ) )
{
if( !MA_ReadVec3( parser, transform->translate ) )
{
return false;
}
transform->translate.y *= -1;
}
else if( !token.Icmp( ".r" ) )
{
if( !MA_ReadVec3( parser, transform->rotate ) )
{
return false;
}
}
else if( !token.Icmp( ".s" ) )
{
if( !MA_ReadVec3( parser, transform->scale ) )
{
return false;
}
}
else
{
parser.SkipRestOfLine();
}
}
}
if( header.parent[0] != 0 )
{
//Find the parent
maTransform_t** parent;
maGlobal.model->transforms.Get( header.parent, &parent );
if( parent )
{
transform->parent = *parent;
}
}
//Add this transform to the list
maGlobal.model->transforms.Set( header.name, transform );
return true;
}
bool MA_ParseVertex( idParser& parser, maAttribHeader_t* header )
{
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
idToken token;
//Allocate enough space for all the verts if this is the first attribute for verticies
if( !pMesh->vertexes )
{
pMesh->numVertexes = header->size;
pMesh->vertexes = ( idVec3* )Mem_Alloc( sizeof( idVec3 ) * pMesh->numVertexes, TAG_MODEL );
}
//Get the start and end index for this attribute
int minIndex, maxIndex;
if( !MA_ParseHeaderIndex( header, minIndex, maxIndex, "VertexHeader", NULL ) )
{
//This was just a header
return true;
}
//Read each vert
for( int i = minIndex; i <= maxIndex; i++ )
{
pMesh->vertexes[i].x = parser.ParseFloat();
pMesh->vertexes[i].z = parser.ParseFloat();
pMesh->vertexes[i].y = -parser.ParseFloat();
}
return true;
}
bool MA_ParseVertexTransforms( idParser& parser, maAttribHeader_t* header )
{
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
idToken token;
//Allocate enough space for all the verts if this is the first attribute for verticies
if( !pMesh->vertTransforms )
{
if( header->size == 0 )
{
header->size = 1;
}
pMesh->numVertTransforms = header->size;
pMesh->vertTransforms = ( idVec4* )Mem_Alloc( sizeof( idVec4 ) * pMesh->numVertTransforms, TAG_MODEL );
pMesh->nextVertTransformIndex = 0;
}
//Get the start and end index for this attribute
int minIndex, maxIndex;
if( !MA_ParseHeaderIndex( header, minIndex, maxIndex, "VertexTransformHeader", NULL ) )
{
//This was just a header
return true;
}
parser.ReadToken( &token );
if( !token.Icmp( "-" ) )
{
idToken tk2;
parser.ReadToken( &tk2 );
if( !tk2.Icmp( "type" ) )
{
parser.SkipUntilString( "float3" );
}
else
{
parser.UnreadToken( &tk2 );
parser.UnreadToken( &token );
}
}
else
{
parser.UnreadToken( &token );
}
//Read each vert
for( int i = minIndex; i <= maxIndex; i++ )
{
pMesh->vertTransforms[pMesh->nextVertTransformIndex].x = parser.ParseFloat();
pMesh->vertTransforms[pMesh->nextVertTransformIndex].z = parser.ParseFloat();
pMesh->vertTransforms[pMesh->nextVertTransformIndex].y = -parser.ParseFloat();
//w hold the vert index
pMesh->vertTransforms[pMesh->nextVertTransformIndex].w = i;
pMesh->nextVertTransformIndex++;
}
return true;
}
bool MA_ParseEdge( idParser& parser, maAttribHeader_t* header )
{
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
idToken token;
//Allocate enough space for all the verts if this is the first attribute for verticies
if( !pMesh->edges )
{
pMesh->numEdges = header->size;
pMesh->edges = ( idVec3* )Mem_Alloc( sizeof( idVec3 ) * pMesh->numEdges, TAG_MODEL );
}
//Get the start and end index for this attribute
int minIndex, maxIndex;
if( !MA_ParseHeaderIndex( header, minIndex, maxIndex, "EdgeHeader", NULL ) )
{
//This was just a header
return true;
}
//Read each vert
for( int i = minIndex; i <= maxIndex; i++ )
{
pMesh->edges[i].x = parser.ParseFloat();
pMesh->edges[i].y = parser.ParseFloat();
pMesh->edges[i].z = parser.ParseFloat();
}
return true;
}
bool MA_ParseNormal( idParser& parser, maAttribHeader_t* header )
{
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
idToken token;
//Allocate enough space for all the verts if this is the first attribute for verticies
if( !pMesh->normals )
{
pMesh->numNormals = header->size;
pMesh->normals = ( idVec3* )Mem_Alloc( sizeof( idVec3 ) * pMesh->numNormals, TAG_MODEL );
}
//Get the start and end index for this attribute
int minIndex, maxIndex;
if( !MA_ParseHeaderIndex( header, minIndex, maxIndex, "NormalHeader", NULL ) )
{
//This was just a header
return true;
}
parser.ReadToken( &token );
if( !token.Icmp( "-" ) )
{
idToken tk2;
parser.ReadToken( &tk2 );
if( !tk2.Icmp( "type" ) )
{
parser.SkipUntilString( "float3" );
}
else
{
parser.UnreadToken( &tk2 );
parser.UnreadToken( &token );
}
}
else
{
parser.UnreadToken( &token );
}
//Read each vert
for( int i = minIndex; i <= maxIndex; i++ )
{
pMesh->normals[i].x = parser.ParseFloat();
//Adjust the normals for the change in coordinate systems
pMesh->normals[i].z = parser.ParseFloat();
pMesh->normals[i].y = -parser.ParseFloat();
pMesh->normals[i].Normalize();
}
pMesh->normalsParsed = true;
pMesh->nextNormal = 0;
return true;
}
bool MA_ParseFace( idParser& parser, maAttribHeader_t* header )
{
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
idToken token;
//Allocate enough space for all the verts if this is the first attribute for verticies
if( !pMesh->faces )
{
pMesh->numFaces = header->size;
pMesh->faces = ( maFace_t* )Mem_Alloc( sizeof( maFace_t ) * pMesh->numFaces, TAG_MODEL );
}
//Get the start and end index for this attribute
int minIndex, maxIndex;
if( !MA_ParseHeaderIndex( header, minIndex, maxIndex, "FaceHeader", NULL ) )
{
//This was just a header
return true;
}
//Read the face data
int currentFace = minIndex - 1;
while( parser.ReadToken( &token ) )
{
if( IsNodeComplete( token ) )
{
parser.UnreadToken( &token );
break;
}
if( !token.Icmp( "f" ) )
{
int count = parser.ParseInt();
if( count != 3 )
{
throw idException( va( "Maya Loader '%s': Face is not a triangle.", parser.GetFileName() ) );
}
//Increment the face number because a new face always starts with an "f" token
currentFace++;
//We cannot reorder edges until later because the normal processing
//assumes the edges are in the original order
pMesh->faces[currentFace].edge[0] = parser.ParseInt();
pMesh->faces[currentFace].edge[1] = parser.ParseInt();
pMesh->faces[currentFace].edge[2] = parser.ParseInt();
//Some more init stuff
pMesh->faces[currentFace].vertexColors[0] = pMesh->faces[currentFace].vertexColors[1] = pMesh->faces[currentFace].vertexColors[2] = -1;
}
else if( !token.Icmp( "mu" ) )
{
int uvstIndex = parser.ParseInt();
uvstIndex;
int count = parser.ParseInt();
if( count != 3 )
{
throw idException( va( "Maya Loader '%s': Invalid texture coordinates.", parser.GetFileName() ) );
}
pMesh->faces[currentFace].tVertexNum[0] = parser.ParseInt();
pMesh->faces[currentFace].tVertexNum[1] = parser.ParseInt();
pMesh->faces[currentFace].tVertexNum[2] = parser.ParseInt();
}
else if( !token.Icmp( "mf" ) )
{
int count = parser.ParseInt();
if( count != 3 )
{
throw idException( va( "Maya Loader '%s': Invalid texture coordinates.", parser.GetFileName() ) );
}
pMesh->faces[currentFace].tVertexNum[0] = parser.ParseInt();
pMesh->faces[currentFace].tVertexNum[1] = parser.ParseInt();
pMesh->faces[currentFace].tVertexNum[2] = parser.ParseInt();
}
else if( !token.Icmp( "fc" ) )
{
int count = parser.ParseInt();
if( count != 3 )
{
throw idException( va( "Maya Loader '%s': Invalid vertex color.", parser.GetFileName() ) );
}
pMesh->faces[currentFace].vertexColors[0] = parser.ParseInt();
pMesh->faces[currentFace].vertexColors[1] = parser.ParseInt();
pMesh->faces[currentFace].vertexColors[2] = parser.ParseInt();
}
}
return true;
}
bool MA_ParseColor( idParser& parser, maAttribHeader_t* header )
{
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
idToken token;
//Allocate enough space for all the verts if this is the first attribute for verticies
if( !pMesh->colors )
{
pMesh->numColors = header->size;
pMesh->colors = ( byte* )Mem_Alloc( sizeof( byte ) * pMesh->numColors * 4, TAG_MODEL );
}
//Get the start and end index for this attribute
int minIndex, maxIndex;
if( !MA_ParseHeaderIndex( header, minIndex, maxIndex, "ColorHeader", NULL ) )
{
//This was just a header
return true;
}
//Read each vert
for( int i = minIndex; i <= maxIndex; i++ )
{
pMesh->colors[i * 4] = parser.ParseFloat() * 255;
pMesh->colors[i * 4 + 1] = parser.ParseFloat() * 255;
pMesh->colors[i * 4 + 2] = parser.ParseFloat() * 255;
pMesh->colors[i * 4 + 3] = parser.ParseFloat() * 255;
}
return true;
}
bool MA_ParseTVert( idParser& parser, maAttribHeader_t* header )
{
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
idToken token;
//This is not the texture coordinates. It is just the name so ignore it
if( strstr( header->name, "uvsn" ) )
{
return true;
}
//Allocate enough space for all the data
if( !pMesh->tvertexes )
{
pMesh->numTVertexes = header->size;
pMesh->tvertexes = ( idVec2* )Mem_Alloc( sizeof( idVec2 ) * pMesh->numTVertexes, TAG_MODEL );
}
//Get the start and end index for this attribute
int minIndex, maxIndex;
if( !MA_ParseHeaderIndex( header, minIndex, maxIndex, "TextureCoordHeader", "uvsp" ) )
{
//This was just a header
return true;
}
parser.ReadToken( &token );
if( !token.Icmp( "-" ) )
{
idToken tk2;
parser.ReadToken( &tk2 );
if( !tk2.Icmp( "type" ) )
{
parser.SkipUntilString( "float2" );
}
else
{
parser.UnreadToken( &tk2 );
parser.UnreadToken( &token );
}
}
else
{
parser.UnreadToken( &token );
}
//Read each tvert
for( int i = minIndex; i <= maxIndex; i++ )
{
pMesh->tvertexes[i].x = parser.ParseFloat();
pMesh->tvertexes[i].y = 1.0f - parser.ParseFloat();
}
return true;
}
/*
* Quick check to see if the vert participates in a shared normal
*/
bool MA_QuickIsVertShared( int faceIndex, int vertIndex )
{
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
int vertNum = pMesh->faces[faceIndex].vertexNum[vertIndex];
for( int i = 0; i < 3; i++ )
{
int edge = pMesh->faces[faceIndex].edge[i];
if( edge < 0 )
{
edge = idMath::Fabs( edge ) - 1;
}
if( pMesh->edges[edge].z == 1 && ( pMesh->edges[edge].x == vertNum || pMesh->edges[edge].y == vertNum ) )
{
return true;
}
}
return false;
}
void MA_GetSharedFace( int faceIndex, int vertIndex, int& sharedFace, int& sharedVert )
{
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
int vertNum = pMesh->faces[faceIndex].vertexNum[vertIndex];
sharedFace = -1;
sharedVert = -1;
//Find a shared edge on this face that contains the specified vert
for( int edgeIndex = 0; edgeIndex < 3; edgeIndex++ )
{
int edge = pMesh->faces[faceIndex].edge[edgeIndex];
if( edge < 0 )
{
edge = idMath::Fabs( edge ) - 1;
}
if( pMesh->edges[edge].z == 1 && ( pMesh->edges[edge].x == vertNum || pMesh->edges[edge].y == vertNum ) )
{
for( int i = 0; i < faceIndex; i++ )
{
for( int j = 0; j < 3; j++ )
{
if( pMesh->faces[i].vertexNum[j] == vertNum )
{
sharedFace = i;
sharedVert = j;
break;
}
}
}
}
if( sharedFace != -1 )
break;
}
}
void MA_ParseMesh( idParser& parser )
{
maObject_t* object;
object = ( maObject_t* )Mem_Alloc( sizeof( maObject_t ), TAG_MODEL );
memset( object, 0, sizeof( maObject_t ) );
maGlobal.model->objects.Append( object );
maGlobal.currentObject = object;
object->materialRef = -1;
//Get the header info from the mesh
maNodeHeader_t header;
MA_ParseNodeHeader( parser, &header );
//Find my parent
if( header.parent[0] != 0 )
{
//Find the parent
maTransform_t** parent;
maGlobal.model->transforms.Get( header.parent, &parent );
if( parent )
{
maGlobal.currentObject->mesh.transform = *parent;
}
}
strcpy( object->name, header.name );
//Read the transform attributes
idToken token;
while( parser.ReadToken( &token ) )
{
if( IsNodeComplete( token ) )
{
parser.UnreadToken( &token );
break;
}
if( !token.Icmp( "setAttr" ) )
{
maAttribHeader_t header;
MA_ParseAttribHeader( parser, &header );
if( strstr( header.name, ".vt" ) )
{
MA_ParseVertex( parser, &header );
}
else if( strstr( header.name, ".ed" ) )
{
MA_ParseEdge( parser, &header );
}
else if( strstr( header.name, ".pt" ) )
{
MA_ParseVertexTransforms( parser, &header );
}
else if( strstr( header.name, ".n" ) )
{
MA_ParseNormal( parser, &header );
}
else if( strstr( header.name, ".fc" ) )
{
MA_ParseFace( parser, &header );
}
else if( strstr( header.name, ".clr" ) )
{
MA_ParseColor( parser, &header );
}
else if( strstr( header.name, ".uvst" ) )
{
MA_ParseTVert( parser, &header );
}
else
{
parser.SkipRestOfLine();
}
}
}
maMesh_t* pMesh = &maGlobal.currentObject->mesh;
//Get the verts from the edge
for( int i = 0; i < pMesh->numFaces; i++ )
{
for( int j = 0; j < 3; j++ )
{
int edge = pMesh->faces[i].edge[j];
if( edge < 0 )
{
edge = idMath::Fabs( edge ) - 1;
pMesh->faces[i].vertexNum[j] = pMesh->edges[edge].y;
}
else
{
pMesh->faces[i].vertexNum[j] = pMesh->edges[edge].x;
}
}
}
//Get the normals
if( pMesh->normalsParsed )
{
for( int i = 0; i < pMesh->numFaces; i++ )
{
for( int j = 0; j < 3; j++ )
{
//Is this vertex shared
int sharedFace = -1;
int sharedVert = -1;
if( MA_QuickIsVertShared( i, j ) )
{
MA_GetSharedFace( i, j, sharedFace, sharedVert );
}
if( sharedFace != -1 )
{
//Get the normal from the share
pMesh->faces[i].vertexNormals[j] = pMesh->faces[sharedFace].vertexNormals[sharedVert];
}
else
{
//The vertex is not shared so get the next normal
if( pMesh->nextNormal >= pMesh->numNormals )
{
//We are using more normals than exist
throw idException( va( "Maya Loader '%s': Invalid Normals Index.", parser.GetFileName() ) );
}
pMesh->faces[i].vertexNormals[j] = pMesh->normals[pMesh->nextNormal];
pMesh->nextNormal++;
}
}
}
}
//Now that the normals are good...lets reorder the verts to make the tris face the right way
for( int i = 0; i < pMesh->numFaces; i++ )
{
int tmp = pMesh->faces[i].vertexNum[1];
pMesh->faces[i].vertexNum[1] = pMesh->faces[i].vertexNum[2];
pMesh->faces[i].vertexNum[2] = tmp;
idVec3 tmpVec = pMesh->faces[i].vertexNormals[1];
pMesh->faces[i].vertexNormals[1] = pMesh->faces[i].vertexNormals[2];
pMesh->faces[i].vertexNormals[2] = tmpVec;
tmp = pMesh->faces[i].tVertexNum[1];
pMesh->faces[i].tVertexNum[1] = pMesh->faces[i].tVertexNum[2];
pMesh->faces[i].tVertexNum[2] = tmp;
tmp = pMesh->faces[i].vertexColors[1];
pMesh->faces[i].vertexColors[1] = pMesh->faces[i].vertexColors[2];
pMesh->faces[i].vertexColors[2] = tmp;
}
//Now apply the pt transformations
for( int i = 0; i < pMesh->numVertTransforms; i++ )
{
pMesh->vertexes[( int )pMesh->vertTransforms[i].w] += pMesh->vertTransforms[i].ToVec3();
}
MA_VERBOSE( ( va( "MESH %s - parent %s\n", header.name, header.parent ) ) );
MA_VERBOSE( ( va( "\tverts:%d\n", maGlobal.currentObject->mesh.numVertexes ) ) );
MA_VERBOSE( ( va( "\tfaces:%d\n", maGlobal.currentObject->mesh.numFaces ) ) );
}
void MA_ParseFileNode( idParser& parser )
{
//Get the header info from the node
maNodeHeader_t header;
MA_ParseNodeHeader( parser, &header );
//Read the transform attributes
idToken token;
while( parser.ReadToken( &token ) )
{
if( IsNodeComplete( token ) )
{
parser.UnreadToken( &token );
break;
}
if( !token.Icmp( "setAttr" ) )
{
maAttribHeader_t attribHeader;
MA_ParseAttribHeader( parser, &attribHeader );
if( strstr( attribHeader.name, ".ftn" ) )
{
parser.SkipUntilString( "string" );
parser.ReadToken( &token );
if( !token.Icmp( "(" ) )
{
parser.ReadToken( &token );
}
maFileNode_t* fileNode;
fileNode = ( maFileNode_t* )Mem_Alloc( sizeof( maFileNode_t ), TAG_MODEL );
strcpy( fileNode->name, header.name );
strcpy( fileNode->path, token.c_str() );
maGlobal.model->fileNodes.Set( fileNode->name, fileNode );
}
else
{
parser.SkipRestOfLine();
}
}
}
}
void MA_ParseMaterialNode( idParser& parser )
{
//Get the header info from the node
maNodeHeader_t header;
MA_ParseNodeHeader( parser, &header );
maMaterialNode_t* matNode;
matNode = ( maMaterialNode_t* )Mem_Alloc( sizeof( maMaterialNode_t ), TAG_MODEL );
memset( matNode, 0, sizeof( maMaterialNode_t ) );
strcpy( matNode->name, header.name );
maGlobal.model->materialNodes.Set( matNode->name, matNode );
}
void MA_ParseCreateNode( idParser& parser )
{
idToken token;
parser.ReadToken( &token );
if( !token.Icmp( "transform" ) )
{
MA_ParseTransform( parser );
}
else if( !token.Icmp( "mesh" ) )
{
MA_ParseMesh( parser );
}
else if( !token.Icmp( "file" ) )
{
MA_ParseFileNode( parser );
}
else if( !token.Icmp( "shadingEngine" ) || !token.Icmp( "lambert" ) || !token.Icmp( "phong" ) || !token.Icmp( "blinn" ) )
{
MA_ParseMaterialNode( parser );
}
}
int MA_AddMaterial( const char* materialName )
{
maMaterialNode_t** destNode;
maGlobal.model->materialNodes.Get( materialName, &destNode );
if( destNode )
{
maMaterialNode_t* matNode = *destNode;
//Iterate down the tree until we get a file
while( matNode && !matNode->file )
{
matNode = matNode->child;
}
if( matNode && matNode->file )
{
//Got the file
maMaterial_t* material;
material = ( maMaterial_t* )Mem_Alloc( sizeof( maMaterial_t ), TAG_MODEL );
memset( material, 0, sizeof( maMaterial_t ) );
//Remove the OS stuff
idStr qPath;
qPath = fileSystem->OSPathToRelativePath( matNode->file->path );
strcpy( material->name, qPath.c_str() );
maGlobal.model->materials.Append( material );
return maGlobal.model->materials.Num() - 1;
}
}
return -1;
}
bool MA_ParseConnectAttr( idParser& parser )
{
idStr temp;
idStr srcName;
idStr srcType;
idStr destName;
idStr destType;
idToken token;
parser.ReadToken( &token );
temp = token;
int dot = temp.Find( "." );
if( dot == -1 )
{
throw idException( va( "Maya Loader '%s': Invalid Connect Attribute.", parser.GetFileName() ) );
}
srcName = temp.Left( dot );
srcType = temp.Right( temp.Length() - dot - 1 );
parser.ReadToken( &token );
temp = token;
dot = temp.Find( "." );
if( dot == -1 )
{
throw idException( va( "Maya Loader '%s': Invalid Connect Attribute.", parser.GetFileName() ) );
}
destName = temp.Left( dot );
destType = temp.Right( temp.Length() - dot - 1 );
if( srcType.Find( "oc" ) != -1 )
{
//Is this attribute a material node attribute
maMaterialNode_t** matNode;
maGlobal.model->materialNodes.Get( srcName, &matNode );
if( matNode )
{
maMaterialNode_t** destNode;
maGlobal.model->materialNodes.Get( destName, &destNode );
if( destNode )
{
( *destNode )->child = *matNode;
}
}
//Is this attribute a file node
maFileNode_t** fileNode;
maGlobal.model->fileNodes.Get( srcName, &fileNode );
if( fileNode )
{
maMaterialNode_t** destNode;
maGlobal.model->materialNodes.Get( destName, &destNode );
if( destNode )
{
( *destNode )->file = *fileNode;
}
}
}
if( srcType.Find( "iog" ) != -1 )
{
//Is this an attribute for one of our meshes
for( int i = 0; i < maGlobal.model->objects.Num(); i++ )
{
if( !strcmp( maGlobal.model->objects[i]->name, srcName ) )
{
//maGlobal.model->objects[i]->materialRef = MA_AddMaterial(destName);
strcpy( maGlobal.model->objects[i]->materialName, destName );
break;
}
}
}
return true;
}
void MA_BuildScale( idMat4& mat, float x, float y, float z )
{
mat.Identity();
mat[0][0] = x;
mat[1][1] = y;
mat[2][2] = z;
}
void MA_BuildAxisRotation( idMat4& mat, float ang, int axis )
{
float sinAng = idMath::Sin( ang );
float cosAng = idMath::Cos( ang );
mat.Identity();
switch( axis )
{
case 0: //x
mat[1][1] = cosAng;
mat[1][2] = sinAng;
mat[2][1] = -sinAng;
mat[2][2] = cosAng;
break;
case 1: //y
mat[0][0] = cosAng;
mat[0][2] = -sinAng;
mat[2][0] = sinAng;
mat[2][2] = cosAng;
break;
case 2://z
mat[0][0] = cosAng;
mat[0][1] = sinAng;
mat[1][0] = -sinAng;
mat[1][1] = cosAng;
break;
}
}
void MA_ApplyTransformation( maModel_t* model )
{
for( int i = 0; i < model->objects.Num(); i++ )
{
maMesh_t* mesh = &model->objects[i]->mesh;
maTransform_t* transform = mesh->transform;
while( transform )
{
idMat4 rotx, roty, rotz;
idMat4 scale;
rotx.Identity();
roty.Identity();
rotz.Identity();
if( fabs( transform->rotate.x ) > 0.0f )
{
MA_BuildAxisRotation( rotx, DEG2RAD( -transform->rotate.x ), 0 );
}
if( fabs( transform->rotate.y ) > 0.0f )
{
MA_BuildAxisRotation( roty, DEG2RAD( transform->rotate.y ), 1 );
}
if( fabs( transform->rotate.z ) > 0.0f )
{
MA_BuildAxisRotation( rotz, DEG2RAD( -transform->rotate.z ), 2 );
}
MA_BuildScale( scale, transform->scale.x, transform->scale.y, transform->scale.z );
//Apply the transformation to each vert
for( int j = 0; j < mesh->numVertexes; j++ )
{
mesh->vertexes[j] = scale * mesh->vertexes[j];
mesh->vertexes[j] = rotx * mesh->vertexes[j];
mesh->vertexes[j] = rotz * mesh->vertexes[j];
mesh->vertexes[j] = roty * mesh->vertexes[j];
mesh->vertexes[j] = mesh->vertexes[j] + transform->translate;
}
transform = transform->parent;
}
}
}
/*
=================
MA_Parse
=================
*/
maModel_t* MA_Parse( const char* buffer, const char* filename, bool verbose )
{
memset( &maGlobal, 0, sizeof( maGlobal ) );
maGlobal.verbose = verbose;
maGlobal.currentObject = NULL;
// NOTE: using new operator because aseModel_t contains idList class objects
maGlobal.model = new( TAG_MODEL ) maModel_t;
maGlobal.model->objects.Resize( 32, 32 );
maGlobal.model->materials.Resize( 32, 32 );
idParser parser;
parser.SetFlags( LEXFL_NOSTRINGCONCAT );
parser.LoadMemory( buffer, strlen( buffer ), filename );
idToken token;
while( parser.ReadToken( &token ) )
{
if( !token.Icmp( "createNode" ) )
{
MA_ParseCreateNode( parser );
}
else if( !token.Icmp( "connectAttr" ) )
{
MA_ParseConnectAttr( parser );
}
}
//Resolve The Materials
for( int i = 0; i < maGlobal.model->objects.Num(); i++ )
{
maGlobal.model->objects[i]->materialRef = MA_AddMaterial( maGlobal.model->objects[i]->materialName );
}
//Apply Transformation
MA_ApplyTransformation( maGlobal.model );
return maGlobal.model;
}
/*
=================
MA_Load
=================
*/
maModel_t* MA_Load( const char* fileName )
{
char* buf;
ID_TIME_T timeStamp;
maModel_t* ma;
fileSystem->ReadFile( fileName, ( void** )&buf, &timeStamp );
if( !buf )
{
return NULL;
}
try
{
ma = MA_Parse( buf, fileName, false );
ma->timeStamp = timeStamp;
}
catch( idException& e )
{
common->Warning( "%s", e.GetError() );
if( maGlobal.model )
{
MA_Free( maGlobal.model );
}
ma = NULL;
}
fileSystem->FreeFile( buf );
return ma;
}
/*
=================
MA_Free
=================
*/
void MA_Free( maModel_t* ma )
{
int i;
maObject_t* obj;
maMesh_t* mesh;
maMaterial_t* material;
if( !ma )
{
return;
}
for( i = 0; i < ma->objects.Num(); i++ )
{
obj = ma->objects[i];
// free the base nesh
mesh = &obj->mesh;
if( mesh->vertexes )
{
Mem_Free( mesh->vertexes );
}
if( mesh->vertTransforms )
{
Mem_Free( mesh->vertTransforms );
}
if( mesh->normals )
{
Mem_Free( mesh->normals );
}
if( mesh->tvertexes )
{
Mem_Free( mesh->tvertexes );
}
if( mesh->edges )
{
Mem_Free( mesh->edges );
}
if( mesh->colors )
{
Mem_Free( mesh->colors );
}
if( mesh->faces )
{
Mem_Free( mesh->faces );
}
Mem_Free( obj );
}
ma->objects.Clear();
for( i = 0; i < ma->materials.Num(); i++ )
{
material = ma->materials[i];
Mem_Free( material );
}
ma->materials.Clear();
maTransform_t** trans;
for( i = 0; i < ma->transforms.Num(); i++ )
{
trans = ma->transforms.GetIndex( i );
Mem_Free( *trans );
}
ma->transforms.Clear();
maFileNode_t** fileNode;
for( i = 0; i < ma->fileNodes.Num(); i++ )
{
fileNode = ma->fileNodes.GetIndex( i );
Mem_Free( *fileNode );
}
ma->fileNodes.Clear();
maMaterialNode_t** matNode;
for( i = 0; i < ma->materialNodes.Num(); i++ )
{
matNode = ma->materialNodes.GetIndex( i );
Mem_Free( *matNode );
}
ma->materialNodes.Clear();
delete ma;
}