doom3-bfg/neo/renderer/jpeg-6/jcphuff.cpp
2012-11-26 12:58:24 -06:00

847 lines
28 KiB
C++

/*
* jcphuff.c
*
* Copyright (C) 1995, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains Huffman entropy encoding routines for progressive JPEG.
*
* We do not support output suspension in this module, since the library
* currently does not allow multiple-scan files to be written with output
* suspension.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jchuff.h" /* Declarations shared with jchuff.c */
#ifdef C_PROGRESSIVE_SUPPORTED
/* Expanded entropy encoder object for progressive Huffman encoding. */
typedef struct {
struct jpeg_entropy_encoder pub;/* public fields */
/* Mode flag: TRUE for optimization, FALSE for actual data output */
boolean gather_statistics;
/* Bit-level coding status.
* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
*/
JOCTET * next_output_byte; /* => next byte to write in buffer */
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
INT32 put_buffer; /* current bit-accumulation buffer */
int put_bits; /* # of bits now in it */
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
/* Coding status for DC components */
int last_dc_val[MAX_COMPS_IN_SCAN];/* last DC coef for each component */
/* Coding status for AC components */
int ac_tbl_no; /* the table number of the single component */
unsigned int EOBRUN; /* run length of EOBs */
unsigned int BE; /* # of buffered correction bits before MCU */
char * bit_buffer;/* buffer for correction bits (1 per char) */
/* packing correction bits tightly would save some space but cost time... */
unsigned int restarts_to_go;/* MCUs left in this restart interval */
int next_restart_num; /* next restart number to write (0-7) */
/* Pointers to derived tables (these workspaces have image lifespan).
* Since any one scan codes only DC or only AC, we only need one set
* of tables, not one for DC and one for AC.
*/
c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
/* Statistics tables for optimization; again, one set is enough */
long * count_ptrs[NUM_HUFF_TBLS];
} phuff_entropy_encoder;
typedef phuff_entropy_encoder * phuff_entropy_ptr;
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
* buffer can hold. Larger sizes may slightly improve compression, but
* 1000 is already well into the realm of overkill.
* The minimum safe size is 64 bits.
*/
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
* We assume that int right shift is unsigned if INT32 right shift is,
* which should be safe.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS int ishift_temp;
#define IRIGHT_SHIFT( x, shft ) \
( ( ishift_temp = ( x ) ) < 0 ? \
( ishift_temp >> ( shft ) ) | ( ( ~0 ) << ( 16 - ( shft ) ) ) : \
( ishift_temp >> ( shft ) ) )
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT( x, shft ) ( ( x ) >> ( shft ) )
#endif
/* Forward declarations */
METHODDEF boolean encode_mcu_DC_first JPP( ( j_compress_ptr cinfo,
JBLOCKROW * MCU_data ) );
METHODDEF boolean encode_mcu_AC_first JPP( ( j_compress_ptr cinfo,
JBLOCKROW * MCU_data ) );
METHODDEF boolean encode_mcu_DC_refine JPP( ( j_compress_ptr cinfo,
JBLOCKROW * MCU_data ) );
METHODDEF boolean encode_mcu_AC_refine JPP( ( j_compress_ptr cinfo,
JBLOCKROW * MCU_data ) );
METHODDEF void finish_pass_phuff JPP( (j_compress_ptr cinfo) );
METHODDEF void finish_pass_gather_phuff JPP( (j_compress_ptr cinfo) );
/*
* Initialize for a Huffman-compressed scan using progressive JPEG.
*/
METHODDEF void
start_pass_phuff( j_compress_ptr cinfo, boolean gather_statistics ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
boolean is_DC_band;
int ci, tbl;
jpeg_component_info * compptr;
entropy->cinfo = cinfo;
entropy->gather_statistics = gather_statistics;
is_DC_band = ( cinfo->Ss == 0 );
/* We assume jcmaster.c already validated the scan parameters. */
/* Select execution routines */
if ( cinfo->Ah == 0 ) {
if ( is_DC_band ) {
entropy->pub.encode_mcu = encode_mcu_DC_first;
} else {
entropy->pub.encode_mcu = encode_mcu_AC_first;
}
} else {
if ( is_DC_band ) {
entropy->pub.encode_mcu = encode_mcu_DC_refine;
} else {
entropy->pub.encode_mcu = encode_mcu_AC_refine;
/* AC refinement needs a correction bit buffer */
if ( entropy->bit_buffer == NULL ) {
entropy->bit_buffer = (char *)
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
MAX_CORR_BITS * SIZEOF( char ) );
}
}
}
if ( gather_statistics ) {
entropy->pub.finish_pass = finish_pass_gather_phuff;
} else {
entropy->pub.finish_pass = finish_pass_phuff;
}
/* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
* for AC coefficients.
*/
for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
compptr = cinfo->cur_comp_info[ci];
/* Initialize DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
/* Make sure requested tables are present */
/* (In gather mode, tables need not be allocated yet) */
if ( is_DC_band ) {
if ( cinfo->Ah != 0 ) {/* DC refinement needs no table */
continue;
}
tbl = compptr->dc_tbl_no;
if ( ( tbl < 0 ) || ( tbl >= NUM_HUFF_TBLS ) ||
( ( cinfo->dc_huff_tbl_ptrs[tbl] == NULL ) && ( !gather_statistics ) ) ) {
ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, tbl );
}
} else {
entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
if ( ( tbl < 0 ) || ( tbl >= NUM_HUFF_TBLS ) ||
( ( cinfo->ac_huff_tbl_ptrs[tbl] == NULL ) && ( !gather_statistics ) ) ) {
ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, tbl );
}
}
if ( gather_statistics ) {
/* Allocate and zero the statistics tables */
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
if ( entropy->count_ptrs[tbl] == NULL ) {
entropy->count_ptrs[tbl] = (long *)
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
257 * SIZEOF( long ) );
}
MEMZERO( entropy->count_ptrs[tbl], 257 * SIZEOF( long ) );
} else {
/* Compute derived values for Huffman tables */
/* We may do this more than once for a table, but it's not expensive */
if ( is_DC_band ) {
jpeg_make_c_derived_tbl( cinfo, cinfo->dc_huff_tbl_ptrs[tbl],
&entropy->derived_tbls[tbl] );
} else {
jpeg_make_c_derived_tbl( cinfo, cinfo->ac_huff_tbl_ptrs[tbl],
&entropy->derived_tbls[tbl] );
}
}
}
/* Initialize AC stuff */
entropy->EOBRUN = 0;
entropy->BE = 0;
/* Initialize bit buffer to empty */
entropy->put_buffer = 0;
entropy->put_bits = 0;
/* Initialize restart stuff */
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num = 0;
}
/* Outputting bytes to the file.
* NB: these must be called only when actually outputting,
* that is, entropy->gather_statistics == FALSE.
*/
/* Emit a byte */
#define emit_byte( entropy, val ) \
{ *( entropy )->next_output_byte++ = (JOCTET) ( val ); \
if ( -- ( entropy )->free_in_buffer == 0 ) { \
dump_buffer( entropy ); } }
LOCAL void
dump_buffer( phuff_entropy_ptr entropy ) {
/* Empty the output buffer; we do not support suspension in this module. */
struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
if ( !( *dest->empty_output_buffer )( entropy->cinfo ) ) {
ERREXIT( entropy->cinfo, JERR_CANT_SUSPEND );
}
/* After a successful buffer dump, must reset buffer pointers */
entropy->next_output_byte = dest->next_output_byte;
entropy->free_in_buffer = dest->free_in_buffer;
}
/* Outputting bits to the file */
/* Only the right 24 bits of put_buffer are used; the valid bits are
* left-justified in this part. At most 16 bits can be passed to emit_bits
* in one call, and we never retain more than 7 bits in put_buffer
* between calls, so 24 bits are sufficient.
*/
INLINE
LOCAL void
emit_bits( phuff_entropy_ptr entropy, unsigned int code, int size ) {
/* Emit some bits, unless we are in gather mode */
/* This routine is heavily used, so it's worth coding tightly. */
register INT32 put_buffer = (INT32) code;
register int put_bits = entropy->put_bits;
/* if size is 0, caller used an invalid Huffman table entry */
if ( size == 0 ) {
ERREXIT( entropy->cinfo, JERR_HUFF_MISSING_CODE );
}
if ( entropy->gather_statistics ) {
return;
} /* do nothing if we're only getting stats */
put_buffer &= ( ( (INT32) 1 ) << size ) - 1;/* mask off any extra bits in code */
put_bits += size; /* new number of bits in buffer */
put_buffer <<= 24 - put_bits;/* align incoming bits */
put_buffer |= entropy->put_buffer;/* and merge with old buffer contents */
while ( put_bits >= 8 ) {
int c = (int) ( ( put_buffer >> 16 ) & 0xFF );
emit_byte( entropy, c );
if ( c == 0xFF ) { /* need to stuff a zero byte? */
emit_byte( entropy, 0 );
}
put_buffer <<= 8;
put_bits -= 8;
}
entropy->put_buffer = put_buffer;/* update variables */
entropy->put_bits = put_bits;
}
LOCAL void
flush_bits( phuff_entropy_ptr entropy ) {
emit_bits( entropy, 0x7F, 7 );/* fill any partial byte with ones */
entropy->put_buffer = 0; /* and reset bit-buffer to empty */
entropy->put_bits = 0;
}
/*
* Emit (or just count) a Huffman symbol.
*/
INLINE
LOCAL void
emit_symbol( phuff_entropy_ptr entropy, int tbl_no, int symbol ) {
if ( entropy->gather_statistics ) {
entropy->count_ptrs[tbl_no][symbol]++;
} else {
c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
emit_bits( entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol] );
}
}
/*
* Emit bits from a correction bit buffer.
*/
LOCAL void
emit_buffered_bits( phuff_entropy_ptr entropy, char * bufstart,
unsigned int nbits ) {
if ( entropy->gather_statistics ) {
return;
} /* no real work */
while ( nbits > 0 ) {
emit_bits( entropy, (unsigned int) ( *bufstart ), 1 );
bufstart++;
nbits--;
}
}
/*
* Emit any pending EOBRUN symbol.
*/
LOCAL void
emit_eobrun( phuff_entropy_ptr entropy ) {
register int temp, nbits;
if ( entropy->EOBRUN > 0 ) {/* if there is any pending EOBRUN */
temp = entropy->EOBRUN;
nbits = 0;
while ( ( temp >>= 1 ) ) {
nbits++;
}
emit_symbol( entropy, entropy->ac_tbl_no, nbits << 4 );
if ( nbits ) {
emit_bits( entropy, entropy->EOBRUN, nbits );
}
entropy->EOBRUN = 0;
/* Emit any buffered correction bits */
emit_buffered_bits( entropy, entropy->bit_buffer, entropy->BE );
entropy->BE = 0;
}
}
/*
* Emit a restart marker & resynchronize predictions.
*/
LOCAL void
emit_restart( phuff_entropy_ptr entropy, int restart_num ) {
int ci;
emit_eobrun( entropy );
if ( !entropy->gather_statistics ) {
flush_bits( entropy );
emit_byte( entropy, 0xFF );
emit_byte( entropy, JPEG_RST0 + restart_num );
}
if ( entropy->cinfo->Ss == 0 ) {
/* Re-initialize DC predictions to 0 */
for ( ci = 0; ci < entropy->cinfo->comps_in_scan; ci++ ) {
entropy->last_dc_val[ci] = 0;
}
} else {
/* Re-initialize all AC-related fields to 0 */
entropy->EOBRUN = 0;
entropy->BE = 0;
}
}
/*
* MCU encoding for DC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF boolean
encode_mcu_DC_first( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
register int temp, temp2;
register int nbits;
int blkn, ci;
int Al = cinfo->Al;
JBLOCKROW block;
jpeg_component_info * compptr;
ISHIFT_TEMPS
entropy->next_output_byte = cinfo->dest->next_output_byte;
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
/* Emit restart marker if needed */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
emit_restart( entropy, entropy->next_restart_num );
}
}
/* Encode the MCU data blocks */
for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
/* Compute the DC value after the required point transform by Al.
* This is simply an arithmetic right shift.
*/
temp2 = IRIGHT_SHIFT( (int) ( ( *block )[0] ), Al );
/* DC differences are figured on the point-transformed values. */
temp = temp2 - entropy->last_dc_val[ci];
entropy->last_dc_val[ci] = temp2;
/* Encode the DC coefficient difference per section G.1.2.1 */
temp2 = temp;
if ( temp < 0 ) {
temp = -temp;/* temp is abs value of input */
/* For a negative input, want temp2 = bitwise complement of abs(input) */
/* This code assumes we are on a two's complement machine */
temp2--;
}
/* Find the number of bits needed for the magnitude of the coefficient */
nbits = 0;
while ( temp ) {
nbits++;
temp >>= 1;
}
/* Count/emit the Huffman-coded symbol for the number of bits */
emit_symbol( entropy, compptr->dc_tbl_no, nbits );
/* Emit that number of bits of the value, if positive, */
/* or the complement of its magnitude, if negative. */
if ( nbits ) { /* emit_bits rejects calls with size 0 */
emit_bits( entropy, (unsigned int) temp2, nbits );
}
}
cinfo->dest->next_output_byte = entropy->next_output_byte;
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
/* Update restart-interval state too */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
return TRUE;
}
/*
* MCU encoding for AC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF boolean
encode_mcu_AC_first( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
register int temp, temp2;
register int nbits;
register int r, k;
int Se = cinfo->Se;
int Al = cinfo->Al;
JBLOCKROW block;
entropy->next_output_byte = cinfo->dest->next_output_byte;
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
/* Emit restart marker if needed */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
emit_restart( entropy, entropy->next_restart_num );
}
}
/* Encode the MCU data block */
block = MCU_data[0];
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
r = 0; /* r = run length of zeros */
for ( k = cinfo->Ss; k <= Se; k++ ) {
if ( ( temp = ( *block )[jpeg_natural_order[k]] ) == 0 ) {
r++;
continue;
}
/* We must apply the point transform by Al. For AC coefficients this
* is an integer division with rounding towards 0. To do this portably
* in C, we shift after obtaining the absolute value; so the code is
* interwoven with finding the abs value (temp) and output bits (temp2).
*/
if ( temp < 0 ) {
temp = -temp;/* temp is abs value of input */
temp >>= Al;/* apply the point transform */
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
temp2 = ~temp;
} else {
temp >>= Al;/* apply the point transform */
temp2 = temp;
}
/* Watch out for case that nonzero coef is zero after point transform */
if ( temp == 0 ) {
r++;
continue;
}
/* Emit any pending EOBRUN */
if ( entropy->EOBRUN > 0 ) {
emit_eobrun( entropy );
}
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
while ( r > 15 ) {
emit_symbol( entropy, entropy->ac_tbl_no, 0xF0 );
r -= 16;
}
/* Find the number of bits needed for the magnitude of the coefficient */
nbits = 1; /* there must be at least one 1 bit */
while ( ( temp >>= 1 ) ) {
nbits++;
}
/* Count/emit Huffman symbol for run length / number of bits */
emit_symbol( entropy, entropy->ac_tbl_no, ( r << 4 ) + nbits );
/* Emit that number of bits of the value, if positive, */
/* or the complement of its magnitude, if negative. */
emit_bits( entropy, (unsigned int) temp2, nbits );
r = 0; /* reset zero run length */
}
if ( r > 0 ) { /* If there are trailing zeroes, */
entropy->EOBRUN++; /* count an EOB */
if ( entropy->EOBRUN == 0x7FFF ) {
emit_eobrun( entropy );
} /* force it out to avoid overflow */
}
cinfo->dest->next_output_byte = entropy->next_output_byte;
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
/* Update restart-interval state too */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
return TRUE;
}
/*
* MCU encoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component, although the spec
* is not very clear on the point.
*/
METHODDEF boolean
encode_mcu_DC_refine( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
register int temp;
int blkn;
int Al = cinfo->Al;
JBLOCKROW block;
entropy->next_output_byte = cinfo->dest->next_output_byte;
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
/* Emit restart marker if needed */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
emit_restart( entropy, entropy->next_restart_num );
}
}
/* Encode the MCU data blocks */
for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) {
block = MCU_data[blkn];
/* We simply emit the Al'th bit of the DC coefficient value. */
temp = ( *block )[0];
emit_bits( entropy, (unsigned int) ( temp >> Al ), 1 );
}
cinfo->dest->next_output_byte = entropy->next_output_byte;
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
/* Update restart-interval state too */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
return TRUE;
}
/*
* MCU encoding for AC successive approximation refinement scan.
*/
METHODDEF boolean
encode_mcu_AC_refine( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
register int temp;
register int r, k;
int EOB;
char * BR_buffer;
unsigned int BR;
int Se = cinfo->Se;
int Al = cinfo->Al;
JBLOCKROW block;
int absvalues[DCTSIZE2];
entropy->next_output_byte = cinfo->dest->next_output_byte;
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
/* Emit restart marker if needed */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
emit_restart( entropy, entropy->next_restart_num );
}
}
/* Encode the MCU data block */
block = MCU_data[0];
/* It is convenient to make a pre-pass to determine the transformed
* coefficients' absolute values and the EOB position.
*/
EOB = 0;
for ( k = cinfo->Ss; k <= Se; k++ ) {
temp = ( *block )[jpeg_natural_order[k]];
/* We must apply the point transform by Al. For AC coefficients this
* is an integer division with rounding towards 0. To do this portably
* in C, we shift after obtaining the absolute value.
*/
if ( temp < 0 ) {
temp = -temp;
} /* temp is abs value of input */
temp >>= Al; /* apply the point transform */
absvalues[k] = temp;/* save abs value for main pass */
if ( temp == 1 ) {
EOB = k;
} /* EOB = index of last newly-nonzero coef */
}
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
r = 0; /* r = run length of zeros */
BR = 0; /* BR = count of buffered bits added now */
BR_buffer = entropy->bit_buffer + entropy->BE;/* Append bits to buffer */
for ( k = cinfo->Ss; k <= Se; k++ ) {
if ( ( temp = absvalues[k] ) == 0 ) {
r++;
continue;
}
/* Emit any required ZRLs, but not if they can be folded into EOB */
while ( r > 15 && k <= EOB ) {
/* emit any pending EOBRUN and the BE correction bits */
emit_eobrun( entropy );
/* Emit ZRL */
emit_symbol( entropy, entropy->ac_tbl_no, 0xF0 );
r -= 16;
/* Emit buffered correction bits that must be associated with ZRL */
emit_buffered_bits( entropy, BR_buffer, BR );
BR_buffer = entropy->bit_buffer;/* BE bits are gone now */
BR = 0;
}
/* If the coef was previously nonzero, it only needs a correction bit.
* NOTE: a straight translation of the spec's figure G.7 would suggest
* that we also need to test r > 15. But if r > 15, we can only get here
* if k > EOB, which implies that this coefficient is not 1.
*/
if ( temp > 1 ) {
/* The correction bit is the next bit of the absolute value. */
BR_buffer[BR++] = (char) ( temp & 1 );
continue;
}
/* Emit any pending EOBRUN and the BE correction bits */
emit_eobrun( entropy );
/* Count/emit Huffman symbol for run length / number of bits */
emit_symbol( entropy, entropy->ac_tbl_no, ( r << 4 ) + 1 );
/* Emit output bit for newly-nonzero coef */
temp = ( ( *block )[jpeg_natural_order[k]] < 0 ) ? 0 : 1;
emit_bits( entropy, (unsigned int) temp, 1 );
/* Emit buffered correction bits that must be associated with this code */
emit_buffered_bits( entropy, BR_buffer, BR );
BR_buffer = entropy->bit_buffer;/* BE bits are gone now */
BR = 0;
r = 0; /* reset zero run length */
}
if ( ( r > 0 ) || ( BR > 0 ) ) {/* If there are trailing zeroes, */
entropy->EOBRUN++; /* count an EOB */
entropy->BE += BR; /* concat my correction bits to older ones */
/* We force out the EOB if we risk either:
* 1. overflow of the EOB counter;
* 2. overflow of the correction bit buffer during the next MCU.
*/
if ( ( entropy->EOBRUN == 0x7FFF ) || ( entropy->BE > ( MAX_CORR_BITS - DCTSIZE2 + 1 ) ) ) {
emit_eobrun( entropy );
}
}
cinfo->dest->next_output_byte = entropy->next_output_byte;
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
/* Update restart-interval state too */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
return TRUE;
}
/*
* Finish up at the end of a Huffman-compressed progressive scan.
*/
METHODDEF void
finish_pass_phuff( j_compress_ptr cinfo ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
entropy->next_output_byte = cinfo->dest->next_output_byte;
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
/* Flush out any buffered data */
emit_eobrun( entropy );
flush_bits( entropy );
cinfo->dest->next_output_byte = entropy->next_output_byte;
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
}
/*
* Finish up a statistics-gathering pass and create the new Huffman tables.
*/
METHODDEF void
finish_pass_gather_phuff( j_compress_ptr cinfo ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
boolean is_DC_band;
int ci, tbl;
jpeg_component_info * compptr;
JHUFF_TBL ** htblptr;
boolean did[NUM_HUFF_TBLS];
/* Flush out buffered data (all we care about is counting the EOB symbol) */
emit_eobrun( entropy );
is_DC_band = ( cinfo->Ss == 0 );
/* It's important not to apply jpeg_gen_optimal_table more than once
* per table, because it clobbers the input frequency counts!
*/
MEMZERO( did, SIZEOF( did ) );
for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
compptr = cinfo->cur_comp_info[ci];
if ( is_DC_band ) {
if ( cinfo->Ah != 0 ) {/* DC refinement needs no table */
continue;
}
tbl = compptr->dc_tbl_no;
} else {
tbl = compptr->ac_tbl_no;
}
if ( !did[tbl] ) {
if ( is_DC_band ) {
htblptr = &cinfo->dc_huff_tbl_ptrs[tbl];
} else {
htblptr = &cinfo->ac_huff_tbl_ptrs[tbl];
}
if ( *htblptr == NULL ) {
*htblptr = jpeg_alloc_huff_table( (j_common_ptr) cinfo );
}
jpeg_gen_optimal_table( cinfo, *htblptr, entropy->count_ptrs[tbl] );
did[tbl] = TRUE;
}
}
}
/*
* Module initialization routine for progressive Huffman entropy encoding.
*/
GLOBAL void
jinit_phuff_encoder( j_compress_ptr cinfo ) {
phuff_entropy_ptr entropy;
int i;
entropy = (phuff_entropy_ptr)
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF( phuff_entropy_encoder ) );
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
entropy->pub.start_pass = start_pass_phuff;
/* Mark tables unallocated */
for ( i = 0; i < NUM_HUFF_TBLS; i++ ) {
entropy->derived_tbls[i] = NULL;
entropy->count_ptrs[i] = NULL;
}
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
}
#endif /* C_PROGRESSIVE_SUPPORTED */