mirror of
https://github.com/id-Software/DOOM-3-BFG.git
synced 2024-11-24 13:01:27 +00:00
91 lines
No EOL
3.4 KiB
Text
91 lines
No EOL
3.4 KiB
Text
/*
|
|
===========================================================================
|
|
|
|
Doom 3 BFG Edition GPL Source Code
|
|
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
|
|
|
|
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
|
|
|
|
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
|
|
|
|
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
|
|
|
|
===========================================================================
|
|
*/
|
|
|
|
#include "global.inc"
|
|
|
|
uniform matrices_ubo { float4 matrices[408]; };
|
|
|
|
struct VS_IN {
|
|
float4 position : POSITION;
|
|
float4 color : COLOR0;
|
|
float4 color2 : COLOR1;
|
|
};
|
|
|
|
struct VS_OUT {
|
|
float4 position : POSITION;
|
|
};
|
|
|
|
void main( VS_IN vertex, out VS_OUT result ) {
|
|
//--------------------------------------------------------------
|
|
// GPU transformation of the normal / binormal / bitangent
|
|
//
|
|
// multiplying with 255.1 give us the same result and is faster than floor( w * 255 + 0.5 )
|
|
//--------------------------------------------------------------
|
|
const float w0 = vertex.color2.x;
|
|
const float w1 = vertex.color2.y;
|
|
const float w2 = vertex.color2.z;
|
|
const float w3 = vertex.color2.w;
|
|
|
|
float4 matX, matY, matZ; // must be float4 for vec4
|
|
float joint = vertex.color.x * 255.1 * 3;
|
|
matX = matrices[int(joint+0)] * w0;
|
|
matY = matrices[int(joint+1)] * w0;
|
|
matZ = matrices[int(joint+2)] * w0;
|
|
|
|
joint = vertex.color.y * 255.1 * 3;
|
|
matX += matrices[int(joint+0)] * w1;
|
|
matY += matrices[int(joint+1)] * w1;
|
|
matZ += matrices[int(joint+2)] * w1;
|
|
|
|
joint = vertex.color.z * 255.1 * 3;
|
|
matX += matrices[int(joint+0)] * w2;
|
|
matY += matrices[int(joint+1)] * w2;
|
|
matZ += matrices[int(joint+2)] * w2;
|
|
|
|
joint = vertex.color.w * 255.1 * 3;
|
|
matX += matrices[int(joint+0)] * w3;
|
|
matY += matrices[int(joint+1)] * w3;
|
|
matZ += matrices[int(joint+2)] * w3;
|
|
|
|
float4 vertexPosition = vertex.position;
|
|
vertexPosition.w = 1.0;
|
|
|
|
float4 modelPosition;
|
|
modelPosition.x = dot4( matX, vertexPosition );
|
|
modelPosition.y = dot4( matY, vertexPosition );
|
|
modelPosition.z = dot4( matZ, vertexPosition );
|
|
modelPosition.w = vertex.position.w;
|
|
|
|
float4 vPos = modelPosition - rpLocalLightOrigin;
|
|
vPos = ( vPos.wwww * rpLocalLightOrigin ) + vPos;
|
|
|
|
result.position.x = dot4( vPos, rpMVPmatrixX );
|
|
result.position.y = dot4( vPos, rpMVPmatrixY );
|
|
result.position.z = dot4( vPos, rpMVPmatrixZ );
|
|
result.position.w = dot4( vPos, rpMVPmatrixW );
|
|
} |