doom3-bfg/base/renderprogs/interactionSM.pixel

260 lines
8 KiB
Text

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2013-2014 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "renderprogs/global.inc"
uniform sampler2D samp0 : register(s0); // texture 1 is the per-surface bump map
uniform sampler2D samp1 : register(s1); // texture 2 is the light falloff texture
uniform sampler2D samp2 : register(s2); // texture 3 is the light projection texture
uniform sampler2D samp3 : register(s3); // texture 4 is the per-surface diffuse map
uniform sampler2D samp4 : register(s4); // texture 5 is the per-surface specular map
uniform sampler2DArrayShadow samp5 : register(s5); // texture 6 is the shadowmap array
uniform sampler2D samp6 : register(s6); // texture 7 is the jitter texture
struct PS_IN
{
half4 position : VPOS;
half4 texcoord0 : TEXCOORD0_centroid;
half4 texcoord1 : TEXCOORD1_centroid;
half4 texcoord2 : TEXCOORD2_centroid;
half4 texcoord3 : TEXCOORD3_centroid;
half4 texcoord4 : TEXCOORD4_centroid;
half4 texcoord5 : TEXCOORD5_centroid;
half4 texcoord6 : TEXCOORD6_centroid;
half4 texcoord7 : TEXCOORD7_centroid;
half4 texcoord8 : TEXCOORD8_centroid;
half4 texcoord9 : TEXCOORD9_centroid;
half4 color : COLOR0;
};
struct PS_OUT
{
half4 color : COLOR;
};
void main( PS_IN fragment, out PS_OUT result )
{
half4 bumpMap = tex2D( samp0, fragment.texcoord1.xy );
half4 lightFalloff = idtex2Dproj( samp1, fragment.texcoord2 );
half4 lightProj = idtex2Dproj( samp2, fragment.texcoord3 );
half4 YCoCG = tex2D( samp3, fragment.texcoord4.xy );
half4 specMap = tex2D( samp4, fragment.texcoord5.xy );
half3 lightVector = normalize( fragment.texcoord0.xyz );
half3 diffuseMap = ConvertYCoCgToRGB( YCoCG );
half3 localNormal;
// RB begin
#if defined(GLES2)
localNormal.xy = bumpMap.rg - 0.5;
#else
localNormal.xy = bumpMap.wy - 0.5;
#endif
// RB end
localNormal.z = sqrt( abs( dot( localNormal.xy, localNormal.xy ) - 0.25 ) );
localNormal = normalize( localNormal );
// RB: http://developer.valvesoftware.com/wiki/Half_Lambert
float halfLdotN = dot3( localNormal, lightVector ) * 0.5 + 0.5;
halfLdotN *= halfLdotN;
// traditional very dark Lambert light model used in Doom 3
float ldotN = dot3( localNormal, lightVector );
const half specularPower = 10.0f;
half hDotN = dot3( normalize( fragment.texcoord6.xyz ), localNormal );
// RB: added abs
half3 specularContribution = _half3( pow( abs( hDotN ), specularPower ) );
half3 diffuseColor = diffuseMap * rpDiffuseModifier.xyz;
half3 specularColor = specMap.xyz * specularContribution * rpSpecularModifier.xyz;
half3 lightColor = lightProj.xyz * lightFalloff.xyz;
half rim = 1.0f - saturate( hDotN );
half rimPower = 16.0f;
half3 rimColor = diffuseColor * lightProj.xyz * lightFalloff.xyz * 1.0f * pow( rim, rimPower ) * fragment.color.rgb;// * halfLdotN;
//
// shadow mapping
//
int shadowIndex = 0;
#if defined( LIGHT_POINT )
float3 toLightGlobal = normalize( fragment.texcoord8.xyz );
float axis[6];
axis[0] = -toLightGlobal.x;
axis[1] = toLightGlobal.x;
axis[2] = -toLightGlobal.y;
axis[3] = toLightGlobal.y;
axis[4] = -toLightGlobal.z;
axis[5] = toLightGlobal.z;
for( int i = 0; i < 6; i++ )
{
if( axis[i] > axis[shadowIndex] )
{
shadowIndex = i;
}
}
#endif // #if defined( POINTLIGHT )
#if defined( LIGHT_PARALLEL )
float viewZ = -fragment.texcoord9.z;
shadowIndex = 4;
for( int i = 0; i < 4; i++ )
{
if( viewZ < rpCascadeDistances[i] )
{
shadowIndex = i;
break;
}
}
#endif
#if 0
if( shadowIndex == 0 )
{
result.color = float4( 1.0, 0.0, 0.0, 1.0 );
}
else if( shadowIndex == 1 )
{
result.color = float4( 0.0, 1.0, 0.0, 1.0 );
}
else if( shadowIndex == 2 )
{
result.color = float4( 0.0, 0.0, 1.0, 1.0 );
}
else if( shadowIndex == 3 )
{
result.color = float4( 1.0, 1.0, 0.0, 1.0 );
}
else if( shadowIndex == 4 )
{
result.color = float4( 1.0, 0.0, 1.0, 1.0 );
}
else if( shadowIndex == 5 )
{
result.color = float4( 0.0, 1.0, 1.0, 1.0 );
}
//result.color.xyz *= lightColor;
return;
#endif
float4 shadowMatrixX = rpShadowMatrices[ int ( shadowIndex * 4 + 0 ) ];
float4 shadowMatrixY = rpShadowMatrices[ int ( shadowIndex * 4 + 1 ) ];
float4 shadowMatrixZ = rpShadowMatrices[ int ( shadowIndex * 4 + 2 ) ];
float4 shadowMatrixW = rpShadowMatrices[ int ( shadowIndex * 4 + 3 ) ];
float4 modelPosition = float4( fragment.texcoord7.xyz, 1.0 );
float4 shadowTexcoord;
shadowTexcoord.x = dot4( modelPosition, shadowMatrixX );
shadowTexcoord.y = dot4( modelPosition, shadowMatrixY );
shadowTexcoord.z = dot4( modelPosition, shadowMatrixZ );
shadowTexcoord.w = dot4( modelPosition, shadowMatrixW );
//float bias = 0.001 * tan( acos( ldotN ) );
//bias = clamp( bias, 0, 0.001 );
float bias = 0.001;
shadowTexcoord.xyz /= shadowTexcoord.w;
shadowTexcoord.z = shadowTexcoord.z * 0.9991;
//shadowTexcoord.z = shadowTexcoord.z - bias;
shadowTexcoord.w = float(shadowIndex);
#if 0
result.color.xyz = float3( shadowTexcoord.z, shadowTexcoord.z, shadowTexcoord.z );
result.color.w = 1.0;
return;
#endif
// multiple taps
#if 0
const float2 poissonDisk2[12] = float2[](
float2(-0.326,-0.406),
float2(-0.840,-0.074),
float2(-0.696, 0.457),
float2(-0.203, 0.621),
float2( 0.962,-0.195),
float2( 0.473,-0.480),
float2( 0.519, 0.767),
float2( 0.185,-0.893),
float2( 0.507, 0.064),
float2( 0.896, 0.412),
float2(-0.322,-0.933),
float2(-0.792,-0.598)
);
float shadow = 0.0;
float shadowTexelSize = ( 1.0 / 1024.0 ) * 0.5;
for( int i = 0; i < 12; i++ )
{
int index = int( rand( shadowTexcoord.xy * 1.0 ) * 12 );
float4 shadowTexcoordOffset = float4( shadowTexcoord.xy + poissonDisk2[index] * shadowTexelSize, shadowTexcoord.z, shadowTexcoord.w );
shadow += texture( samp5, shadowTexcoordOffset.xywz);
}
shadow *= ( 1.0 / 12.0 );
#elif 1
float4 base = shadowTexcoord;
base.xy += rpJitterTexScale.xy * -0.5;
float shadow = 0.0;
float stepSize = 1.0 / 16.0;
float4 jitterTC = ( fragment.position * rpScreenCorrectionFactor ) + rpJitterTexOffset;
for( int i = 0; i < 16; i++ )
{
float4 jitter = base + tex2D( samp6, jitterTC.xy ) * rpJitterTexScale;
jitter.zw = shadowTexcoord.zw;
shadow += texture( samp5, jitter.xywz );
jitterTC.x += stepSize;
}
shadow *= ( 1.0 / 16.0 );
#else
float shadow = texture( samp5, shadowTexcoord.xywz );
#endif
result.color.xyz = ( diffuseColor + specularColor ) * halfLdotN * lightColor * fragment.color.rgb * shadow;// + rimColor;
result.color.w = 1.0;
}