doom3-bfg/neo/renderer/jpeg-6/jdphuff.cpp

671 lines
23 KiB
C++
Raw Normal View History

2012-11-26 18:58:24 +00:00
/*
* jdphuff.c
*
* Copyright (C) 1995, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains Huffman entropy decoding routines for progressive JPEG.
*
* Much of the complexity here has to do with supporting input suspension.
* If the data source module demands suspension, we want to be able to back
* up to the start of the current MCU. To do this, we copy state variables
* into local working storage, and update them back to the permanent
* storage only upon successful completion of an MCU.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdhuff.h" /* Declarations shared with jdhuff.c */
#ifdef D_PROGRESSIVE_SUPPORTED
/*
* Expanded entropy decoder object for progressive Huffman decoding.
*
* The savable_state subrecord contains fields that change within an MCU,
* but must not be updated permanently until we complete the MCU.
*/
typedef struct {
unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
} savable_state;
/* This macro is to work around compilers with missing or broken
* structure assignment. You'll need to fix this code if you have
* such a compiler and you change MAX_COMPS_IN_SCAN.
*/
#ifndef NO_STRUCT_ASSIGN
#define ASSIGN_STATE( dest, src ) ( ( dest ) = ( src ) )
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE( dest, src ) \
( ( dest ).EOBRUN = ( src ).EOBRUN, \
( dest ).last_dc_val[0] = ( src ).last_dc_val[0], \
( dest ).last_dc_val[1] = ( src ).last_dc_val[1], \
( dest ).last_dc_val[2] = ( src ).last_dc_val[2], \
( dest ).last_dc_val[3] = ( src ).last_dc_val[3] )
#endif
#endif
typedef struct {
struct jpeg_entropy_decoder pub;/* public fields */
/* These fields are loaded into local variables at start of each MCU.
* In case of suspension, we exit WITHOUT updating them.
*/
bitread_perm_state bitstate;/* Bit buffer at start of MCU */
savable_state saved; /* Other state at start of MCU */
/* These fields are NOT loaded into local working state. */
unsigned int restarts_to_go;/* MCUs left in this restart interval */
/* Pointers to derived tables (these workspaces have image lifespan) */
d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
d_derived_tbl * ac_derived_tbl;/* active table during an AC scan */
} phuff_entropy_decoder;
typedef phuff_entropy_decoder * phuff_entropy_ptr;
/* Forward declarations */
METHODDEF boolean decode_mcu_DC_first JPP( ( j_decompress_ptr cinfo,
JBLOCKROW * MCU_data ) );
METHODDEF boolean decode_mcu_AC_first JPP( ( j_decompress_ptr cinfo,
JBLOCKROW * MCU_data ) );
METHODDEF boolean decode_mcu_DC_refine JPP( ( j_decompress_ptr cinfo,
JBLOCKROW * MCU_data ) );
METHODDEF boolean decode_mcu_AC_refine JPP( ( j_decompress_ptr cinfo,
JBLOCKROW * MCU_data ) );
/*
* Initialize for a Huffman-compressed scan.
*/
METHODDEF void
start_pass_phuff_decoder( j_decompress_ptr cinfo ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
boolean is_DC_band, bad;
int ci, coefi, tbl;
int * coef_bit_ptr;
jpeg_component_info * compptr;
is_DC_band = ( cinfo->Ss == 0 );
/* Validate scan parameters */
bad = FALSE;
if ( is_DC_band ) {
if ( cinfo->Se != 0 ) {
bad = TRUE;
}
} else {
/* need not check Ss/Se < 0 since they came from unsigned bytes */
if ( ( cinfo->Ss > cinfo->Se ) || ( cinfo->Se >= DCTSIZE2 ) ) {
bad = TRUE;
}
/* AC scans may have only one component */
if ( cinfo->comps_in_scan != 1 ) {
bad = TRUE;
}
}
if ( cinfo->Ah != 0 ) {
/* Successive approximation refinement scan: must have Al = Ah-1. */
if ( cinfo->Al != cinfo->Ah - 1 ) {
bad = TRUE;
}
}
if ( cinfo->Al > 13 ) { /* need not check for < 0 */
bad = TRUE;
}
if ( bad ) {
ERREXIT4( cinfo, JERR_BAD_PROGRESSION,
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al );
}
/* Update progression status, and verify that scan order is legal.
* Note that inter-scan inconsistencies are treated as warnings
* not fatal errors ... not clear if this is right way to behave.
*/
for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
int cindex = cinfo->cur_comp_info[ci]->component_index;
coef_bit_ptr = &cinfo->coef_bits[cindex][0];
if ( ( !is_DC_band ) && ( coef_bit_ptr[0] < 0 ) ) {/* AC without prior DC scan */
WARNMS2( cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0 );
}
for ( coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++ ) {
int expected = ( coef_bit_ptr[coefi] < 0 ) ? 0 : coef_bit_ptr[coefi];
if ( cinfo->Ah != expected ) {
WARNMS2( cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi );
}
coef_bit_ptr[coefi] = cinfo->Al;
}
}
/* Select MCU decoding routine */
if ( cinfo->Ah == 0 ) {
if ( is_DC_band ) {
entropy->pub.decode_mcu = decode_mcu_DC_first;
} else {
entropy->pub.decode_mcu = decode_mcu_AC_first;
}
} else {
if ( is_DC_band ) {
entropy->pub.decode_mcu = decode_mcu_DC_refine;
} else {
entropy->pub.decode_mcu = decode_mcu_AC_refine;
}
}
for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
compptr = cinfo->cur_comp_info[ci];
/* Make sure requested tables are present, and compute derived tables.
* We may build same derived table more than once, but it's not expensive.
*/
if ( is_DC_band ) {
if ( cinfo->Ah == 0 ) {/* DC refinement needs no table */
tbl = compptr->dc_tbl_no;
if ( ( tbl < 0 ) || ( tbl >= NUM_HUFF_TBLS ) ||
( cinfo->dc_huff_tbl_ptrs[tbl] == NULL ) ) {
ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, tbl );
}
jpeg_make_d_derived_tbl( cinfo, cinfo->dc_huff_tbl_ptrs[tbl],
&entropy->derived_tbls[tbl] );
}
} else {
tbl = compptr->ac_tbl_no;
if ( ( tbl < 0 ) || ( tbl >= NUM_HUFF_TBLS ) ||
( cinfo->ac_huff_tbl_ptrs[tbl] == NULL ) ) {
ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, tbl );
}
jpeg_make_d_derived_tbl( cinfo, cinfo->ac_huff_tbl_ptrs[tbl],
&entropy->derived_tbls[tbl] );
/* remember the single active table */
entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
}
/* Initialize DC predictions to 0 */
entropy->saved.last_dc_val[ci] = 0;
}
/* Initialize bitread state variables */
entropy->bitstate.bits_left = 0;
entropy->bitstate.get_buffer = 0;/* unnecessary, but keeps Purify quiet */
entropy->bitstate.printed_eod = FALSE;
/* Initialize private state variables */
entropy->saved.EOBRUN = 0;
/* Initialize restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
}
/*
* Figure F.12: extend sign bit.
* On some machines, a shift and add will be faster than a table lookup.
*/
#ifdef AVOID_TABLES
#define HUFF_EXTEND( x, s ) ( ( x ) < ( 1 << ( ( s ) - 1 ) ) ? ( x ) + ( ( ( -1 ) << ( s ) ) + 1 ) : ( x ) )
#else
#define HUFF_EXTEND( x, s ) ( ( x ) < extend_test[s] ? ( x ) + extend_offset[s] : ( x ) )
static const int extend_test[16] = /* entry n is 2**(n-1) */
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
{ 0, ( ( -1 ) << 1 ) + 1, ( ( -1 ) << 2 ) + 1, ( ( -1 ) << 3 ) + 1, ( ( -1 ) << 4 ) + 1,
( ( -1 ) << 5 ) + 1, ( ( -1 ) << 6 ) + 1, ( ( -1 ) << 7 ) + 1, ( ( -1 ) << 8 ) + 1,
( ( -1 ) << 9 ) + 1, ( ( -1 ) << 10 ) + 1, ( ( -1 ) << 11 ) + 1, ( ( -1 ) << 12 ) + 1,
( ( -1 ) << 13 ) + 1, ( ( -1 ) << 14 ) + 1, ( ( -1 ) << 15 ) + 1 };
#endif /* AVOID_TABLES */
/*
* Check for a restart marker & resynchronize decoder.
* Returns FALSE if must suspend.
*/
LOCAL boolean
process_restart( j_decompress_ptr cinfo ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
int ci;
/* Throw away any unused bits remaining in bit buffer; */
/* include any full bytes in next_marker's count of discarded bytes */
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
entropy->bitstate.bits_left = 0;
/* Advance past the RSTn marker */
if ( !( *cinfo->marker->read_restart_marker )( cinfo ) ) {
return FALSE;
}
/* Re-initialize DC predictions to 0 */
for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
entropy->saved.last_dc_val[ci] = 0;
}
/* Re-init EOB run count, too */
entropy->saved.EOBRUN = 0;
/* Reset restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
/* Next segment can get another out-of-data warning */
entropy->bitstate.printed_eod = FALSE;
return TRUE;
}
/*
* Huffman MCU decoding.
* Each of these routines decodes and returns one MCU's worth of
* Huffman-compressed coefficients.
* The coefficients are reordered from zigzag order into natural array order,
* but are not dequantized.
*
* The i'th block of the MCU is stored into the block pointed to by
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
*
* We return FALSE if data source requested suspension. In that case no
* changes have been made to permanent state. (Exception: some output
* coefficients may already have been assigned. This is harmless for
* spectral selection, since we'll just re-assign them on the next call.
* Successive approximation AC refinement has to be more careful, however.)
*/
/*
* MCU decoding for DC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF boolean
decode_mcu_DC_first( j_decompress_ptr cinfo, JBLOCKROW * MCU_data ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
int Al = cinfo->Al;
register int s, r;
int blkn, ci;
JBLOCKROW block;
BITREAD_STATE_VARS;
savable_state state;
d_derived_tbl * tbl;
jpeg_component_info * compptr;
/* Process restart marker if needed; may have to suspend */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
if ( !process_restart( cinfo ) ) {
return FALSE;
}
}
}
/* Load up working state */
BITREAD_LOAD_STATE( cinfo, entropy->bitstate );
ASSIGN_STATE( state, entropy->saved );
/* Outer loop handles each block in the MCU */
for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
tbl = entropy->derived_tbls[compptr->dc_tbl_no];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE( s, br_state, tbl, return FALSE, label1 );
if ( s ) {
CHECK_BIT_BUFFER( br_state, s, return FALSE );
r = GET_BITS( s );
s = HUFF_EXTEND( r, s );
}
/* Convert DC difference to actual value, update last_dc_val */
s += state.last_dc_val[ci];
state.last_dc_val[ci] = s;
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
( *block )[0] = (JCOEF) ( s << Al );
}
/* Completed MCU, so update state */
BITREAD_SAVE_STATE( cinfo, entropy->bitstate );
ASSIGN_STATE( entropy->saved, state );
/* Account for restart interval (no-op if not using restarts) */
entropy->restarts_to_go--;
return TRUE;
}
/*
* MCU decoding for AC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF boolean
decode_mcu_AC_first( j_decompress_ptr cinfo, JBLOCKROW * MCU_data ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
int Se = cinfo->Se;
int Al = cinfo->Al;
register int s, k, r;
unsigned int EOBRUN;
JBLOCKROW block;
BITREAD_STATE_VARS;
d_derived_tbl * tbl;
/* Process restart marker if needed; may have to suspend */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
if ( !process_restart( cinfo ) ) {
return FALSE;
}
}
}
/* Load up working state.
* We can avoid loading/saving bitread state if in an EOB run.
*/
EOBRUN = entropy->saved.EOBRUN;/* only part of saved state we care about */
/* There is always only one block per MCU */
if ( EOBRUN > 0 ) { /* if it's a band of zeroes... */
EOBRUN--;
} /* ...process it now (we do nothing) */
else {
BITREAD_LOAD_STATE( cinfo, entropy->bitstate );
block = MCU_data[0];
tbl = entropy->ac_derived_tbl;
for ( k = cinfo->Ss; k <= Se; k++ ) {
HUFF_DECODE( s, br_state, tbl, return FALSE, label2 );
r = s >> 4;
s &= 15;
if ( s ) {
k += r;
CHECK_BIT_BUFFER( br_state, s, return FALSE );
r = GET_BITS( s );
s = HUFF_EXTEND( r, s );
/* Scale and output coefficient in natural (dezigzagged) order */
( *block )[jpeg_natural_order[k]] = (JCOEF) ( s << Al );
} else {
if ( r == 15 ) {/* ZRL */
k += 15;/* skip 15 zeroes in band */
} else {/* EOBr, run length is 2^r + appended bits */
EOBRUN = 1 << r;
if ( r ) {/* EOBr, r > 0 */
CHECK_BIT_BUFFER( br_state, r, return FALSE );
r = GET_BITS( r );
EOBRUN += r;
}
EOBRUN--; /* this band is processed at this moment */
break; /* force end-of-band */
}
}
}
BITREAD_SAVE_STATE( cinfo, entropy->bitstate );
}
/* Completed MCU, so update state */
entropy->saved.EOBRUN = EOBRUN;/* only part of saved state we care about */
/* Account for restart interval (no-op if not using restarts) */
entropy->restarts_to_go--;
return TRUE;
}
/*
* MCU decoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component, although the spec
* is not very clear on the point.
*/
METHODDEF boolean
decode_mcu_DC_refine( j_decompress_ptr cinfo, JBLOCKROW * MCU_data ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
int p1 = 1 << cinfo->Al;/* 1 in the bit position being coded */
int blkn;
JBLOCKROW block;
BITREAD_STATE_VARS;
/* Process restart marker if needed; may have to suspend */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
if ( !process_restart( cinfo ) ) {
return FALSE;
}
}
}
/* Load up working state */
BITREAD_LOAD_STATE( cinfo, entropy->bitstate );
/* Outer loop handles each block in the MCU */
for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) {
block = MCU_data[blkn];
/* Encoded data is simply the next bit of the two's-complement DC value */
CHECK_BIT_BUFFER( br_state, 1, return FALSE );
if ( GET_BITS( 1 ) ) {
( *block )[0] |= p1;
}
/* Note: since we use |=, repeating the assignment later is safe */
}
/* Completed MCU, so update state */
BITREAD_SAVE_STATE( cinfo, entropy->bitstate );
/* Account for restart interval (no-op if not using restarts) */
entropy->restarts_to_go--;
return TRUE;
}
/*
* MCU decoding for AC successive approximation refinement scan.
*/
METHODDEF boolean
decode_mcu_AC_refine( j_decompress_ptr cinfo, JBLOCKROW * MCU_data ) {
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
int Se = cinfo->Se;
int p1 = 1 << cinfo->Al;/* 1 in the bit position being coded */
int m1 = ( -1 ) << cinfo->Al;/* -1 in the bit position being coded */
register int s, k, r;
unsigned int EOBRUN;
JBLOCKROW block;
JCOEFPTR thiscoef;
BITREAD_STATE_VARS;
d_derived_tbl * tbl;
int num_newnz;
int newnz_pos[DCTSIZE2];
/* Process restart marker if needed; may have to suspend */
if ( cinfo->restart_interval ) {
if ( entropy->restarts_to_go == 0 ) {
if ( !process_restart( cinfo ) ) {
return FALSE;
}
}
}
/* Load up working state */
BITREAD_LOAD_STATE( cinfo, entropy->bitstate );
EOBRUN = entropy->saved.EOBRUN;/* only part of saved state we care about */
/* There is always only one block per MCU */
block = MCU_data[0];
tbl = entropy->ac_derived_tbl;
/* If we are forced to suspend, we must undo the assignments to any newly
* nonzero coefficients in the block, because otherwise we'd get confused
* next time about which coefficients were already nonzero.
* But we need not undo addition of bits to already-nonzero coefficients;
* instead, we can test the current bit position to see if we already did it.
*/
num_newnz = 0;
/* initialize coefficient loop counter to start of band */
k = cinfo->Ss;
if ( EOBRUN == 0 ) {
for (; k <= Se; k++ ) {
HUFF_DECODE( s, br_state, tbl, goto undoit, label3 );
r = s >> 4;
s &= 15;
if ( s ) {
if ( s != 1 ) {/* size of new coef should always be 1 */
WARNMS( cinfo, JWRN_HUFF_BAD_CODE );
}
CHECK_BIT_BUFFER( br_state, 1, goto undoit );
if ( GET_BITS( 1 ) ) {
s = p1;
} /* newly nonzero coef is positive */
else {
s = m1;
} /* newly nonzero coef is negative */
} else {
if ( r != 15 ) {
EOBRUN = 1 << r;/* EOBr, run length is 2^r + appended bits */
if ( r ) {
CHECK_BIT_BUFFER( br_state, r, goto undoit );
r = GET_BITS( r );
EOBRUN += r;
}
break; /* rest of block is handled by EOB logic */
}
/* note s = 0 for processing ZRL */
}
/* Advance over already-nonzero coefs and r still-zero coefs,
* appending correction bits to the nonzeroes. A correction bit is 1
* if the absolute value of the coefficient must be increased.
*/
do {
thiscoef = *block + jpeg_natural_order[k];
if ( *thiscoef != 0 ) {
CHECK_BIT_BUFFER( br_state, 1, goto undoit );
if ( GET_BITS( 1 ) ) {
if ( ( *thiscoef & p1 ) == 0 ) {/* do nothing if already changed it */
if ( *thiscoef >= 0 ) {
*thiscoef += p1;
} else {
*thiscoef += m1;
}
}
}
} else {
if ( --r < 0 ) {
break;
} /* reached target zero coefficient */
}
k++;
} while ( k <= Se );
if ( s ) {
int pos = jpeg_natural_order[k];
/* Output newly nonzero coefficient */
( *block )[pos] = (JCOEF) s;
/* Remember its position in case we have to suspend */
newnz_pos[num_newnz++] = pos;
}
}
}
if ( EOBRUN > 0 ) {
/* Scan any remaining coefficient positions after the end-of-band
* (the last newly nonzero coefficient, if any). Append a correction
* bit to each already-nonzero coefficient. A correction bit is 1
* if the absolute value of the coefficient must be increased.
*/
for (; k <= Se; k++ ) {
thiscoef = *block + jpeg_natural_order[k];
if ( *thiscoef != 0 ) {
CHECK_BIT_BUFFER( br_state, 1, goto undoit );
if ( GET_BITS( 1 ) ) {
if ( ( *thiscoef & p1 ) == 0 ) {/* do nothing if already changed it */
if ( *thiscoef >= 0 ) {
*thiscoef += p1;
} else {
*thiscoef += m1;
}
}
}
}
}
/* Count one block completed in EOB run */
EOBRUN--;
}
/* Completed MCU, so update state */
BITREAD_SAVE_STATE( cinfo, entropy->bitstate );
entropy->saved.EOBRUN = EOBRUN;/* only part of saved state we care about */
/* Account for restart interval (no-op if not using restarts) */
entropy->restarts_to_go--;
return TRUE;
undoit:
/* Re-zero any output coefficients that we made newly nonzero */
while ( num_newnz > 0 ) {
( *block )[newnz_pos[--num_newnz]] = 0;
}
return FALSE;
}
/*
* Module initialization routine for progressive Huffman entropy decoding.
*/
GLOBAL void
jinit_phuff_decoder( j_decompress_ptr cinfo ) {
phuff_entropy_ptr entropy;
int * coef_bit_ptr;
int ci, i;
entropy = (phuff_entropy_ptr)
( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF( phuff_entropy_decoder ) );
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
entropy->pub.start_pass = start_pass_phuff_decoder;
/* Mark derived tables unallocated */
for ( i = 0; i < NUM_HUFF_TBLS; i++ ) {
entropy->derived_tbls[i] = NULL;
}
/* Create progression status table */
cinfo->coef_bits = ( int ( * )[DCTSIZE2] )
( *cinfo->mem->alloc_small ) ( (j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->num_components * DCTSIZE2 * SIZEOF( int ) );
coef_bit_ptr = &cinfo->coef_bits[0][0];
for ( ci = 0; ci < cinfo->num_components; ci++ ) {
for ( i = 0; i < DCTSIZE2; i++ ) {
*coef_bit_ptr++ = -1;
}
}
}
#endif /* D_PROGRESSIVE_SUPPORTED */