doom3-bfg/doomclassic/timidity/filter.cpp

206 lines
5.2 KiB
C++
Raw Normal View History

2012-11-26 18:58:24 +00:00
/*
TiMidity -- Experimental MIDI to WAVE converter
Copyright (C) 1995 Tuukka Toivonen <toivonen@clinet.fi>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
filter.c: written by Vincent Pagel ( pagel@loria.fr )
implements fir antialiasing filter : should help when setting sample
rates as low as 8Khz.
April 95
- first draft
22/5/95
- modify "filter" so that it simulate leading and trailing 0 in the buffer
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "config.h"
#include "common.h"
#include "controls.h"
#include "instrum.h"
#include "filter.h"
void Real_Tim_Free( void *pt );
/* bessel function */
static float ino(float x)
{
float y, de, e, sde;
int i;
y = x / 2;
e = 1.0;
de = 1.0;
i = 1;
do {
de = de * y / (float) i;
sde = de * de;
e += sde;
} while (!( (e * 1.0e-08 - sde > 0) || (i++ > 25) ));
return(e);
}
/* Kaiser Window (symetric) */
static void kaiser(float *w,int n,float beta)
{
float xind, xi;
int i;
xind = (float)((2*n - 1) * (2*n - 1));
for (i =0; i<n ; i++)
{
xi = (float)(i + 0.5);
w[i] = ino((float)(beta * sqrt((double)(1. - 4 * xi * xi / xind))))
/ ino((float)beta);
}
}
/*
* fir coef in g, cuttoff frequency in fc
*/
static void designfir(float *g , float fc)
{
int i;
float xi, omega, att, beta ;
float w[ORDER2];
for (i =0; i < ORDER2 ;i++)
{
xi = (float) (i + 0.5);
omega = (float)(PI * xi);
g[i] = (float)(sin( (double) omega * fc) / omega);
}
att = 40.; /* attenuation in db */
beta = (float) (exp(log((double)0.58417 * (att - 20.96)) * 0.4) + 0.07886
* (att - 20.96));
kaiser( w, ORDER2, beta);
/* Matrix product */
for (i =0; i < ORDER2 ; i++)
g[i] = g[i] * w[i];
}
/*
* FIR filtering -> apply the filter given by coef[] to the data buffer
* Note that we simulate leading and trailing 0 at the border of the
* data buffer
*/
static void filter(sample_t *result,sample_t *data, int32_t length,float coef[])
{
int32_t sample,i,sample_window;
int16_t peak = 0;
float sum;
/* Simulate leading 0 at the begining of the buffer */
for (sample = 0; sample < ORDER2 ; sample++ )
{
sum = 0.0;
sample_window= sample - ORDER2;
for (i = 0; i < ORDER ;i++)
sum += (float)(coef[i] *
((sample_window<0)? 0.0 : data[sample_window++])) ;
/* Saturation ??? */
if (sum> 32767.) { sum=32767.; peak++; }
if (sum< -32768.) { sum=-32768; peak++; }
result[sample] = (sample_t) sum;
}
/* The core of the buffer */
for (sample = ORDER2; sample < length - ORDER + ORDER2 ; sample++ )
{
sum = 0.0;
sample_window= sample - ORDER2;
for (i = 0; i < ORDER ;i++)
sum += data[sample_window++] * coef[i];
/* Saturation ??? */
if (sum> 32767.) { sum=32767.; peak++; }
if (sum< -32768.) { sum=-32768; peak++; }
result[sample] = (sample_t) sum;
}
/* Simulate 0 at the end of the buffer */
for (sample = length - ORDER + ORDER2; sample < length ; sample++ )
{
sum = 0.0;
sample_window= sample - ORDER2;
for (i = 0; i < ORDER ;i++)
sum += (float)(coef[i] *
((sample_window>=length)? 0.0 : data[sample_window++])) ;
/* Saturation ??? */
if (sum> 32767.) { sum=32767.; peak++; }
if (sum< -32768.) { sum=-32768; peak++; }
result[sample] = (sample_t) sum;
}
if (peak)
ctl->cmsg(CMSG_ERROR, VERB_NORMAL,
"Saturation %2.3f %%.", 100.0*peak/ (float) length);
}
/***********************************************************************/
/* Prevent aliasing by filtering any freq above the output_rate */
/* */
/* I don't worry about looping point -> they will remain soft if they */
/* were already */
/***********************************************************************/
void antialiasing(Sample *sp, int32_t output_rate )
{
sample_t *temp;
int i;
float fir_symetric[ORDER];
float fir_coef[ORDER2];
float freq_cut; /* cutoff frequency [0..1.0] FREQ_CUT/SAMP_FREQ*/
ctl->cmsg(CMSG_INFO, VERB_NOISY, "Antialiasing: Fsample=%iKHz",
sp->sample_rate);
/* No oversampling */
if (output_rate>=sp->sample_rate)
return;
freq_cut= (float) output_rate / (float) sp->sample_rate;
ctl->cmsg(CMSG_INFO, VERB_NOISY, "Antialiasing: cutoff=%f%%",
freq_cut*100.);
designfir(fir_coef,freq_cut);
/* Make the filter symetric */
for (i = 0 ; i<ORDER2 ;i++)
fir_symetric[ORDER-1 - i] = fir_symetric[i] = fir_coef[ORDER2-1 - i];
/* We apply the filter we have designed on a copy of the patch */
temp = (sample_t*)safe_malloc(sp->data_length);
memcpy(temp,sp->data,sp->data_length);
filter(sp->data,temp,sp->data_length/sizeof(sample_t),fir_symetric);
Real_Tim_Free(temp);
}