1072 lines
No EOL
26 KiB
C
1072 lines
No EOL
26 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
Copyright (C) 2007 HermitWorks Entertainment Corporation
|
|
|
|
This file is part of the Space Trader source code.
|
|
|
|
The Space Trader source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
The Space Trader source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with the Space Trader source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
|
|
#include "tr_local.h"
|
|
#include "tr_stars.h"
|
|
|
|
#define SKY_SUBDIVISIONS 8
|
|
#define HALF_SKY_SUBDIVISIONS (SKY_SUBDIVISIONS/2)
|
|
|
|
static float s_cloudTexCoords[6][SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1][2];
|
|
static float s_cloudTexP[6][SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1];
|
|
|
|
/*
|
|
===================================================================================
|
|
|
|
POLYGON TO BOX SIDE PROJECTION
|
|
|
|
===================================================================================
|
|
*/
|
|
|
|
static vec3_t sky_clip[6] =
|
|
{
|
|
{ 1, 1, 0 },
|
|
{ 1, -1, 0 },
|
|
{ 0, -1, 1 },
|
|
{ 0, 1, 1 },
|
|
{ 1, 0, 1 },
|
|
{ -1, 0, 1 }
|
|
};
|
|
|
|
static float sky_mins[2][6], sky_maxs[2][6];
|
|
static float sky_min, sky_max;
|
|
|
|
/*
|
|
================
|
|
AddSkyPolygon
|
|
================
|
|
*/
|
|
static void AddSkyPolygon (int nump, vec3_t vecs)
|
|
{
|
|
int i,j;
|
|
vec3_t v, av;
|
|
float s, t, dv;
|
|
int axis;
|
|
float *vp;
|
|
// s = [0]/[2], t = [1]/[2]
|
|
static int vec_to_st[6][3] =
|
|
{
|
|
{-2,3,1},
|
|
{2,3,-1},
|
|
|
|
{1,3,2},
|
|
{-1,3,-2},
|
|
|
|
{-2,-1,3},
|
|
{-2,1,-3}
|
|
|
|
// {-1,2,3},
|
|
// {1,2,-3}
|
|
};
|
|
|
|
// decide which face it maps to
|
|
VectorCopy (vec3_origin, v);
|
|
for (i=0, vp=vecs ; i<nump ; i++, vp+=3)
|
|
{
|
|
VectorAdd (vp, v, v);
|
|
}
|
|
av[0] = fabs(v[0]);
|
|
av[1] = fabs(v[1]);
|
|
av[2] = fabs(v[2]);
|
|
if (av[0] > av[1] && av[0] > av[2])
|
|
{
|
|
if (v[0] < 0)
|
|
axis = 1;
|
|
else
|
|
axis = 0;
|
|
}
|
|
else if (av[1] > av[2] && av[1] > av[0])
|
|
{
|
|
if (v[1] < 0)
|
|
axis = 3;
|
|
else
|
|
axis = 2;
|
|
}
|
|
else
|
|
{
|
|
if (v[2] < 0)
|
|
axis = 5;
|
|
else
|
|
axis = 4;
|
|
}
|
|
|
|
// project new texture coords
|
|
for (i=0 ; i<nump ; i++, vecs+=3)
|
|
{
|
|
j = vec_to_st[axis][2];
|
|
if (j > 0)
|
|
dv = vecs[j - 1];
|
|
else
|
|
dv = -vecs[-j - 1];
|
|
if (dv < 0.001)
|
|
continue; // don't divide by zero
|
|
j = vec_to_st[axis][0];
|
|
if (j < 0)
|
|
s = -vecs[-j -1] / dv;
|
|
else
|
|
s = vecs[j-1] / dv;
|
|
j = vec_to_st[axis][1];
|
|
if (j < 0)
|
|
t = -vecs[-j -1] / dv;
|
|
else
|
|
t = vecs[j-1] / dv;
|
|
|
|
if (s < sky_mins[0][axis])
|
|
sky_mins[0][axis] = s;
|
|
if (t < sky_mins[1][axis])
|
|
sky_mins[1][axis] = t;
|
|
if (s > sky_maxs[0][axis])
|
|
sky_maxs[0][axis] = s;
|
|
if (t > sky_maxs[1][axis])
|
|
sky_maxs[1][axis] = t;
|
|
}
|
|
}
|
|
|
|
#define ON_EPSILON 0.1f // point on plane side epsilon
|
|
#define MAX_CLIP_VERTS 64
|
|
/*
|
|
================
|
|
ClipSkyPolygon
|
|
================
|
|
*/
|
|
static void ClipSkyPolygon (int nump, vec3_t vecs, int stage)
|
|
{
|
|
float *norm;
|
|
float *v;
|
|
qboolean front, back;
|
|
float d, e;
|
|
float dists[MAX_CLIP_VERTS];
|
|
int sides[MAX_CLIP_VERTS];
|
|
vec3_t newv[2][MAX_CLIP_VERTS];
|
|
int newc[2];
|
|
int i, j;
|
|
|
|
if (nump > MAX_CLIP_VERTS-2)
|
|
ri.Error (ERR_DROP, "ClipSkyPolygon: MAX_CLIP_VERTS");
|
|
if (stage == 6)
|
|
{ // fully clipped, so draw it
|
|
AddSkyPolygon (nump, vecs);
|
|
return;
|
|
}
|
|
|
|
front = back = qfalse;
|
|
norm = sky_clip[stage];
|
|
for (i=0, v = vecs ; i<nump ; i++, v+=3)
|
|
{
|
|
d = DotProduct (v, norm);
|
|
if (d > ON_EPSILON)
|
|
{
|
|
front = qtrue;
|
|
sides[i] = SIDE_FRONT;
|
|
}
|
|
else if (d < -ON_EPSILON)
|
|
{
|
|
back = qtrue;
|
|
sides[i] = SIDE_BACK;
|
|
}
|
|
else
|
|
sides[i] = SIDE_ON;
|
|
dists[i] = d;
|
|
}
|
|
|
|
if (!front || !back)
|
|
{ // not clipped
|
|
ClipSkyPolygon (nump, vecs, stage+1);
|
|
return;
|
|
}
|
|
|
|
// clip it
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
VectorCopy (vecs, (vecs+(i*3)) );
|
|
newc[0] = newc[1] = 0;
|
|
|
|
for (i=0, v = vecs ; i<nump ; i++, v+=3)
|
|
{
|
|
switch (sides[i])
|
|
{
|
|
case SIDE_FRONT:
|
|
VectorCopy (v, newv[0][newc[0]]);
|
|
newc[0]++;
|
|
break;
|
|
case SIDE_BACK:
|
|
VectorCopy (v, newv[1][newc[1]]);
|
|
newc[1]++;
|
|
break;
|
|
case SIDE_ON:
|
|
VectorCopy (v, newv[0][newc[0]]);
|
|
newc[0]++;
|
|
VectorCopy (v, newv[1][newc[1]]);
|
|
newc[1]++;
|
|
break;
|
|
}
|
|
|
|
if (sides[i] == SIDE_ON || sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
|
|
continue;
|
|
|
|
d = dists[i] / (dists[i] - dists[i+1]);
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
e = v[j] + d*(v[j+3] - v[j]);
|
|
newv[0][newc[0]][j] = e;
|
|
newv[1][newc[1]][j] = e;
|
|
}
|
|
newc[0]++;
|
|
newc[1]++;
|
|
}
|
|
|
|
// continue
|
|
ClipSkyPolygon (newc[0], newv[0][0], stage+1);
|
|
ClipSkyPolygon (newc[1], newv[1][0], stage+1);
|
|
}
|
|
|
|
/*
|
|
==============
|
|
ClearSkyBox
|
|
==============
|
|
*/
|
|
static void ClearSkyBox (void) {
|
|
int i;
|
|
|
|
for (i=0 ; i<6 ; i++) {
|
|
sky_mins[0][i] = sky_mins[1][i] = 9999;
|
|
sky_maxs[0][i] = sky_maxs[1][i] = -9999;
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
RB_ClipSkyPolygons
|
|
================
|
|
*/
|
|
void RB_ClipSkyPolygons( shaderCommands_t *input )
|
|
{
|
|
vec3_t p[5]; // need one extra point for clipping
|
|
int i, j;
|
|
|
|
ClearSkyBox();
|
|
|
|
for ( i = 0; i < input->numIndexes; i += 3 )
|
|
{
|
|
for (j = 0 ; j < 3 ; j++)
|
|
{
|
|
VectorSubtract( input->xyz[input->indexes[i+j]],
|
|
backEnd.viewParms.or.origin,
|
|
p[j] );
|
|
}
|
|
ClipSkyPolygon( 3, p[0], 0 );
|
|
}
|
|
}
|
|
|
|
/*
|
|
===================================================================================
|
|
|
|
CLOUD VERTEX GENERATION
|
|
|
|
===================================================================================
|
|
*/
|
|
|
|
/*
|
|
** MakeSkyVec
|
|
**
|
|
** Parms: s, t range from -1 to 1
|
|
*/
|
|
static void MakeSkyVec( float s, float t, int axis, float outSt[2], vec3_t outXYZ )
|
|
{
|
|
// 1 = s, 2 = t, 3 = 2048
|
|
static int st_to_vec[6][3] =
|
|
{
|
|
{3,-1,2},
|
|
{-3,1,2},
|
|
|
|
{1,3,2},
|
|
{-1,-3,2},
|
|
|
|
{-2,-1,3}, // 0 degrees yaw, look straight up
|
|
{2,-1,-3} // look straight down
|
|
};
|
|
|
|
vec3_t b;
|
|
int j, k;
|
|
float boxSize;
|
|
|
|
boxSize = backEnd.viewParms.zFar / 1.75; // div sqrt(3)
|
|
b[0] = s*boxSize;
|
|
b[1] = t*boxSize;
|
|
b[2] = boxSize;
|
|
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
k = st_to_vec[axis][j];
|
|
if (k < 0)
|
|
{
|
|
outXYZ[j] = -b[-k - 1];
|
|
}
|
|
else
|
|
{
|
|
outXYZ[j] = b[k - 1];
|
|
}
|
|
}
|
|
|
|
// avoid bilerp seam
|
|
s = (s+1)*0.5;
|
|
t = (t+1)*0.5;
|
|
if (s < sky_min)
|
|
{
|
|
s = sky_min;
|
|
}
|
|
else if (s > sky_max)
|
|
{
|
|
s = sky_max;
|
|
}
|
|
|
|
if (t < sky_min)
|
|
{
|
|
t = sky_min;
|
|
}
|
|
else if (t > sky_max)
|
|
{
|
|
t = sky_max;
|
|
}
|
|
|
|
t = 1.0 - t;
|
|
|
|
|
|
if ( outSt )
|
|
{
|
|
outSt[0] = s;
|
|
outSt[1] = t;
|
|
}
|
|
}
|
|
|
|
static int sky_texorder[6] = {0,2,1,3,4,5};
|
|
static vec3_t s_skyPoints[SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1];
|
|
static float s_skyTexCoords[SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1][2];
|
|
|
|
static stateGroup_t DrawSkySide( struct image_t *image, const int mins[2], const int maxs[2], stateGroup_t prevSg )
|
|
{
|
|
stateGroup_t sg;
|
|
int s, t;
|
|
|
|
sg = R_StateBeginGroup();
|
|
|
|
R_StateSetTexture( image, GL_TEXTURE0_ARB );
|
|
|
|
R_StateRestorePriorGroupStates( prevSg );
|
|
prevSg = sg;
|
|
|
|
for ( t = mins[1]+HALF_SKY_SUBDIVISIONS; t < maxs[1]+HALF_SKY_SUBDIVISIONS; t++ )
|
|
{
|
|
glBegin( GL_TRIANGLE_STRIP );
|
|
|
|
for ( s = mins[0]+HALF_SKY_SUBDIVISIONS; s <= maxs[0]+HALF_SKY_SUBDIVISIONS; s++ )
|
|
{
|
|
glTexCoord2fv( s_skyTexCoords[t][s] );
|
|
glVertex3fv( s_skyPoints[t][s] );
|
|
|
|
glTexCoord2fv( s_skyTexCoords[t+1][s] );
|
|
glVertex3fv( s_skyPoints[t+1][s] );
|
|
}
|
|
|
|
glEnd();
|
|
}
|
|
|
|
return prevSg;
|
|
}
|
|
|
|
static void DrawSkyBox( shader_t *shader, stateGroup_t sg )
|
|
{
|
|
int i;
|
|
|
|
sky_min = 0;
|
|
sky_max = 1;
|
|
|
|
Com_Memset( s_skyTexCoords, 0, sizeof( s_skyTexCoords ) );
|
|
|
|
for (i=0 ; i<6 ; i++)
|
|
{
|
|
int sky_mins_subd[2], sky_maxs_subd[2];
|
|
int s, t;
|
|
|
|
sky_mins[0][i] = floor( sky_mins[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
|
|
sky_mins[1][i] = floor( sky_mins[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
|
|
sky_maxs[0][i] = ceil( sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
|
|
sky_maxs[1][i] = ceil( sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
|
|
|
|
if ( ( sky_mins[0][i] >= sky_maxs[0][i] ) ||
|
|
( sky_mins[1][i] >= sky_maxs[1][i] ) )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
sky_mins_subd[0] = sky_mins[0][i] * HALF_SKY_SUBDIVISIONS;
|
|
sky_mins_subd[1] = sky_mins[1][i] * HALF_SKY_SUBDIVISIONS;
|
|
sky_maxs_subd[0] = sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS;
|
|
sky_maxs_subd[1] = sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS;
|
|
|
|
if ( sky_mins_subd[0] < -HALF_SKY_SUBDIVISIONS )
|
|
sky_mins_subd[0] = -HALF_SKY_SUBDIVISIONS;
|
|
else if ( sky_mins_subd[0] > HALF_SKY_SUBDIVISIONS )
|
|
sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS;
|
|
if ( sky_mins_subd[1] < -HALF_SKY_SUBDIVISIONS )
|
|
sky_mins_subd[1] = -HALF_SKY_SUBDIVISIONS;
|
|
else if ( sky_mins_subd[1] > HALF_SKY_SUBDIVISIONS )
|
|
sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS;
|
|
|
|
if ( sky_maxs_subd[0] < -HALF_SKY_SUBDIVISIONS )
|
|
sky_maxs_subd[0] = -HALF_SKY_SUBDIVISIONS;
|
|
else if ( sky_maxs_subd[0] > HALF_SKY_SUBDIVISIONS )
|
|
sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS;
|
|
if ( sky_maxs_subd[1] < -HALF_SKY_SUBDIVISIONS )
|
|
sky_maxs_subd[1] = -HALF_SKY_SUBDIVISIONS;
|
|
else if ( sky_maxs_subd[1] > HALF_SKY_SUBDIVISIONS )
|
|
sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS;
|
|
|
|
//
|
|
// iterate through the subdivisions
|
|
//
|
|
for ( t = sky_mins_subd[1]+HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1]+HALF_SKY_SUBDIVISIONS; t++ )
|
|
{
|
|
for ( s = sky_mins_subd[0]+HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0]+HALF_SKY_SUBDIVISIONS; s++ )
|
|
{
|
|
MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
|
|
( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
|
|
i,
|
|
s_skyTexCoords[t][s],
|
|
s_skyPoints[t][s] );
|
|
}
|
|
}
|
|
|
|
sg = DrawSkySide( shader->sky.outerbox[sky_texorder[i]], sky_mins_subd, sky_maxs_subd, sg );
|
|
}
|
|
|
|
}
|
|
|
|
static void FillCloudySkySide( const int mins[2], const int maxs[2], qboolean addIndexes )
|
|
{
|
|
int s, t;
|
|
int vertexStart = tess.numVertexes;
|
|
int tHeight, sWidth;
|
|
|
|
tHeight = maxs[1] - mins[1] + 1;
|
|
sWidth = maxs[0] - mins[0] + 1;
|
|
|
|
for ( t = mins[1]+HALF_SKY_SUBDIVISIONS; t <= maxs[1]+HALF_SKY_SUBDIVISIONS; t++ )
|
|
{
|
|
for ( s = mins[0]+HALF_SKY_SUBDIVISIONS; s <= maxs[0]+HALF_SKY_SUBDIVISIONS; s++ )
|
|
{
|
|
VectorAdd( s_skyPoints[t][s], backEnd.viewParms.or.origin, tess.xyz[tess.numVertexes] );
|
|
tess.texCoords[tess.numVertexes][0][0] = s_skyTexCoords[t][s][0];
|
|
tess.texCoords[tess.numVertexes][0][1] = s_skyTexCoords[t][s][1];
|
|
|
|
tess.numVertexes++;
|
|
|
|
if ( tess.numVertexes >= SHADER_MAX_VERTEXES )
|
|
{
|
|
ri.Error( ERR_DROP, "SHADER_MAX_VERTEXES hit in FillCloudySkySide()\n" );
|
|
}
|
|
}
|
|
}
|
|
|
|
// only add indexes for one pass, otherwise it would draw multiple times for each pass
|
|
if ( addIndexes ) {
|
|
for ( t = 0; t < tHeight-1; t++ )
|
|
{
|
|
for ( s = 0; s < sWidth-1; s++ )
|
|
{
|
|
tess.indexes[tess.numIndexes] = vertexStart + s + t * ( sWidth );
|
|
tess.numIndexes++;
|
|
tess.indexes[tess.numIndexes] = vertexStart + s + ( t + 1 ) * ( sWidth );
|
|
tess.numIndexes++;
|
|
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * ( sWidth );
|
|
tess.numIndexes++;
|
|
|
|
tess.indexes[tess.numIndexes] = vertexStart + s + ( t + 1 ) * ( sWidth );
|
|
tess.numIndexes++;
|
|
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + ( t + 1 ) * ( sWidth );
|
|
tess.numIndexes++;
|
|
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * ( sWidth );
|
|
tess.numIndexes++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void FillCloudBox( const shader_t *shader, int stage )
|
|
{
|
|
int i;
|
|
|
|
for ( i =0; i < 6; i++ )
|
|
{
|
|
int sky_mins_subd[2], sky_maxs_subd[2];
|
|
int s, t;
|
|
float MIN_T;
|
|
|
|
if ( 1 ) // FIXME? shader->sky.fullClouds )
|
|
{
|
|
MIN_T = -HALF_SKY_SUBDIVISIONS;
|
|
|
|
// still don't want to draw the bottom, even if fullClouds
|
|
if ( i == 5 )
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
switch( i )
|
|
{
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
MIN_T = -1;
|
|
break;
|
|
case 5:
|
|
// don't draw clouds beneath you
|
|
continue;
|
|
case 4: // top
|
|
default:
|
|
MIN_T = -HALF_SKY_SUBDIVISIONS;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sky_mins[0][i] = floor( sky_mins[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
|
|
sky_mins[1][i] = floor( sky_mins[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
|
|
sky_maxs[0][i] = ceil( sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
|
|
sky_maxs[1][i] = ceil( sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
|
|
|
|
if ( ( sky_mins[0][i] >= sky_maxs[0][i] ) ||
|
|
( sky_mins[1][i] >= sky_maxs[1][i] ) )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
sky_mins_subd[0] = (int)( sky_mins[0][i] * HALF_SKY_SUBDIVISIONS );
|
|
sky_mins_subd[1] = (int)( sky_mins[1][i] * HALF_SKY_SUBDIVISIONS );
|
|
sky_maxs_subd[0] = (int)( sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS );
|
|
sky_maxs_subd[1] = (int)( sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS );
|
|
|
|
if ( sky_mins_subd[0] < -HALF_SKY_SUBDIVISIONS )
|
|
sky_mins_subd[0] = -HALF_SKY_SUBDIVISIONS;
|
|
else if ( sky_mins_subd[0] > HALF_SKY_SUBDIVISIONS )
|
|
sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS;
|
|
if ( sky_mins_subd[1] < MIN_T )
|
|
sky_mins_subd[1] = MIN_T;
|
|
else if ( sky_mins_subd[1] > HALF_SKY_SUBDIVISIONS )
|
|
sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS;
|
|
|
|
if ( sky_maxs_subd[0] < -HALF_SKY_SUBDIVISIONS )
|
|
sky_maxs_subd[0] = -HALF_SKY_SUBDIVISIONS;
|
|
else if ( sky_maxs_subd[0] > HALF_SKY_SUBDIVISIONS )
|
|
sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS;
|
|
if ( sky_maxs_subd[1] < MIN_T )
|
|
sky_maxs_subd[1] = MIN_T;
|
|
else if ( sky_maxs_subd[1] > HALF_SKY_SUBDIVISIONS )
|
|
sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS;
|
|
|
|
//
|
|
// iterate through the subdivisions
|
|
//
|
|
for ( t = sky_mins_subd[1]+HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1]+HALF_SKY_SUBDIVISIONS; t++ )
|
|
{
|
|
for ( s = sky_mins_subd[0]+HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0]+HALF_SKY_SUBDIVISIONS; s++ )
|
|
{
|
|
MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
|
|
( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
|
|
i,
|
|
NULL,
|
|
s_skyPoints[t][s] );
|
|
|
|
s_skyTexCoords[t][s][0] = s_cloudTexCoords[i][t][s][0];
|
|
s_skyTexCoords[t][s][1] = s_cloudTexCoords[i][t][s][1];
|
|
}
|
|
}
|
|
|
|
// only add indexes for first stage
|
|
FillCloudySkySide( sky_mins_subd, sky_maxs_subd, ( stage == 0 ) );
|
|
}
|
|
}
|
|
|
|
/*
|
|
** R_BuildCloudData
|
|
*/
|
|
void R_BuildCloudData( shaderCommands_t *input )
|
|
{
|
|
int i;
|
|
shader_t *shader;
|
|
|
|
shader = input->shader;
|
|
|
|
assert( shader->isSky );
|
|
|
|
sky_min = 1.0 / 256.0f; // FIXME: not correct?
|
|
sky_max = 255.0 / 256.0f;
|
|
|
|
// set up for drawing
|
|
tess.numIndexes = 0;
|
|
tess.numVertexes = 0;
|
|
|
|
if ( input->shader->sky.cloudHeight )
|
|
{
|
|
for ( i = 0; i < MAX_SHADER_STAGES; i++ )
|
|
{
|
|
if ( !tess.xstages[i] ) {
|
|
break;
|
|
}
|
|
FillCloudBox( input->shader, i );
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** R_InitSkyTexCoords
|
|
** Called when a sky shader is parsed
|
|
*/
|
|
#define SQR( a ) ((a)*(a))
|
|
void R_InitSkyTexCoords( float heightCloud )
|
|
{
|
|
int i, s, t;
|
|
float radiusWorld = 4096;
|
|
float p;
|
|
float sRad, tRad;
|
|
vec3_t skyVec;
|
|
vec3_t v;
|
|
|
|
// init zfar so MakeSkyVec works even though
|
|
// a world hasn't been bounded
|
|
backEnd.viewParms.zFar = 1024;
|
|
|
|
for ( i = 0; i < 6; i++ )
|
|
{
|
|
for ( t = 0; t <= SKY_SUBDIVISIONS; t++ )
|
|
{
|
|
for ( s = 0; s <= SKY_SUBDIVISIONS; s++ )
|
|
{
|
|
// compute vector from view origin to sky side integral point
|
|
MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
|
|
( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
|
|
i,
|
|
NULL,
|
|
skyVec );
|
|
|
|
// compute parametric value 'p' that intersects with cloud layer
|
|
p = ( 1.0f / ( 2 * DotProduct( skyVec, skyVec ) ) ) *
|
|
( -2 * skyVec[2] * radiusWorld +
|
|
2 * sqrtf( SQR( skyVec[2] ) * SQR( radiusWorld ) +
|
|
2 * SQR( skyVec[0] ) * radiusWorld * heightCloud +
|
|
SQR( skyVec[0] ) * SQR( heightCloud ) +
|
|
2 * SQR( skyVec[1] ) * radiusWorld * heightCloud +
|
|
SQR( skyVec[1] ) * SQR( heightCloud ) +
|
|
2 * SQR( skyVec[2] ) * radiusWorld * heightCloud +
|
|
SQR( skyVec[2] ) * SQR( heightCloud ) ) );
|
|
|
|
s_cloudTexP[i][t][s] = p;
|
|
|
|
// compute intersection point based on p
|
|
VectorScale( skyVec, p, v );
|
|
v[2] += radiusWorld;
|
|
|
|
// compute vector from world origin to intersection point 'v'
|
|
VectorNormalize( v );
|
|
|
|
sRad = Q_acos( v[0] );
|
|
tRad = Q_acos( v[1] );
|
|
|
|
s_cloudTexCoords[i][t][s][0] = sRad;
|
|
s_cloudTexCoords[i][t][s][1] = tRad;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//======================================================================================
|
|
|
|
/*
|
|
** RB_DrawSun
|
|
*/
|
|
void RB_DrawSun( void ) {
|
|
float size;
|
|
float dist;
|
|
vec3_t origin, vec1, vec2;
|
|
vec3_t temp;
|
|
|
|
if ( !backEnd.skyRenderedThisView ) {
|
|
return;
|
|
}
|
|
if ( !r_drawSun->integer ) {
|
|
return;
|
|
}
|
|
R_StateSetModelViewMatrixCountedRaw( backEnd.viewParms.world.modelMatrix );
|
|
glTranslatef (backEnd.viewParms.or.origin[0], backEnd.viewParms.or.origin[1], backEnd.viewParms.or.origin[2]);
|
|
|
|
dist = backEnd.viewParms.zFar / 1.75; // div sqrt(3)
|
|
size = dist * 0.4;
|
|
|
|
VectorScale( tr.sunDirection, dist, origin );
|
|
PerpendicularVector( vec1, tr.sunDirection );
|
|
CrossProduct( tr.sunDirection, vec1, vec2 );
|
|
|
|
VectorScale( vec1, size, vec1 );
|
|
VectorScale( vec2, size, vec2 );
|
|
|
|
// farthest depth range
|
|
R_StateSetDepthRange( 1.0, 1.0 );
|
|
|
|
// FIXME: use quad stamp
|
|
RB_BeginSurface( tr.sunShader, tess.fogNum, GL_TRIANGLES );
|
|
VectorCopy( origin, temp );
|
|
VectorSubtract( temp, vec1, temp );
|
|
VectorSubtract( temp, vec2, temp );
|
|
VectorCopy( temp, tess.xyz[tess.numVertexes] );
|
|
tess.texCoords[tess.numVertexes][0][0] = 0;
|
|
tess.texCoords[tess.numVertexes][0][1] = 0;
|
|
tess.vertexColors[tess.numVertexes][0] = 255;
|
|
tess.vertexColors[tess.numVertexes][1] = 255;
|
|
tess.vertexColors[tess.numVertexes][2] = 255;
|
|
tess.numVertexes++;
|
|
|
|
VectorCopy( origin, temp );
|
|
VectorAdd( temp, vec1, temp );
|
|
VectorSubtract( temp, vec2, temp );
|
|
VectorCopy( temp, tess.xyz[tess.numVertexes] );
|
|
tess.texCoords[tess.numVertexes][0][0] = 0;
|
|
tess.texCoords[tess.numVertexes][0][1] = 1;
|
|
tess.vertexColors[tess.numVertexes][0] = 255;
|
|
tess.vertexColors[tess.numVertexes][1] = 255;
|
|
tess.vertexColors[tess.numVertexes][2] = 255;
|
|
tess.numVertexes++;
|
|
|
|
VectorCopy( origin, temp );
|
|
VectorAdd( temp, vec1, temp );
|
|
VectorAdd( temp, vec2, temp );
|
|
VectorCopy( temp, tess.xyz[tess.numVertexes] );
|
|
tess.texCoords[tess.numVertexes][0][0] = 1;
|
|
tess.texCoords[tess.numVertexes][0][1] = 1;
|
|
tess.vertexColors[tess.numVertexes][0] = 255;
|
|
tess.vertexColors[tess.numVertexes][1] = 255;
|
|
tess.vertexColors[tess.numVertexes][2] = 255;
|
|
tess.numVertexes++;
|
|
|
|
VectorCopy( origin, temp );
|
|
VectorSubtract( temp, vec1, temp );
|
|
VectorAdd( temp, vec2, temp );
|
|
VectorCopy( temp, tess.xyz[tess.numVertexes] );
|
|
tess.texCoords[tess.numVertexes][0][0] = 1;
|
|
tess.texCoords[tess.numVertexes][0][1] = 0;
|
|
tess.vertexColors[tess.numVertexes][0] = 255;
|
|
tess.vertexColors[tess.numVertexes][1] = 255;
|
|
tess.vertexColors[tess.numVertexes][2] = 255;
|
|
tess.numVertexes++;
|
|
|
|
tess.indexes[tess.numIndexes++] = 0;
|
|
tess.indexes[tess.numIndexes++] = 1;
|
|
tess.indexes[tess.numIndexes++] = 2;
|
|
tess.indexes[tess.numIndexes++] = 0;
|
|
tess.indexes[tess.numIndexes++] = 2;
|
|
tess.indexes[tess.numIndexes++] = 3;
|
|
|
|
RB_EndSurface();
|
|
|
|
// back to normal depth range
|
|
R_StateSetDepthRange( 0.0, 1.0 );
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
================
|
|
RB_StageIteratorSky
|
|
|
|
All of the visible sky triangles are in tess
|
|
|
|
Other things could be stuck in here, like birds in the sky, etc
|
|
================
|
|
*/
|
|
static float s_flipMatrix[16] =
|
|
{
|
|
// convert from our coordinate system (looking down X)
|
|
// to OpenGL's coordinate system (looking down -Z)
|
|
0, 0, -1, 0,
|
|
-1, 0, 0, 0,
|
|
0, 1, 0, 0,
|
|
0, 0, 0, 1
|
|
};
|
|
|
|
static void GetSkyRotation( affine_t *mat, bool tip_coords )
|
|
{
|
|
if( tess.shader->sky.rot_base || tess.shader->sky.rot_speed )
|
|
{
|
|
float angle = tess.shader->sky.rot_speed * tess.shaderTime + tess.shader->sky.rot_base;
|
|
const float *v = tess.shader->sky.rotAxis;
|
|
|
|
vec3_t ax;
|
|
quat_t q;
|
|
|
|
if( tip_coords )
|
|
{
|
|
ax[0] = v[0];
|
|
ax[1] = -v[2];
|
|
ax[2] = -v[1];
|
|
}
|
|
else
|
|
VectorCopy( v, ax );
|
|
|
|
Quat_AxisAngle( q, ax, DEG2RAD( angle ) );
|
|
QuatToAffine( mat, q );
|
|
}
|
|
else
|
|
Affine_Set( mat, NULL, NULL );
|
|
}
|
|
|
|
static void glMultAffine( const affine_t *mat )
|
|
{
|
|
float rawmat[16];
|
|
|
|
Matrix_SetFromAffine( rawmat, mat );
|
|
glMultMatrixf( rawmat );
|
|
}
|
|
|
|
static void ApplySkyRotation( bool tip_coords )
|
|
{
|
|
affine_t mat;
|
|
GetSkyRotation( &mat, tip_coords );
|
|
glMultAffine( &mat );
|
|
}
|
|
|
|
void RB_StageIteratorSky( void )
|
|
{
|
|
stateGroup_t sg;
|
|
|
|
if( r_fastsky->integer )
|
|
return;
|
|
|
|
GLimp_LogComment( 1, "BEGIN RB_StageIteratorSky( %s )", tess.shader->name );
|
|
|
|
sg = R_StateBeginGroup();
|
|
|
|
// r_showsky will let all the sky blocks be drawn in
|
|
// front of everything to allow developers to see how
|
|
// much sky is getting sucked in
|
|
if( r_showsky->integer )
|
|
R_StateSetDepthRange( 0, 0 );
|
|
else
|
|
R_StateSetDepthRange( 1, 1 );
|
|
|
|
R_StateSetDepthMask( qfalse );
|
|
R_StateSetCull( GL_FRONT_AND_BACK );
|
|
|
|
// draw the outer skybox
|
|
if( tess.shader->sky.cube )
|
|
{
|
|
float tm[16] =
|
|
{
|
|
-1, 0, 0, 0,
|
|
0, 0, 1, 0,
|
|
0, 1, 0, 0,
|
|
0, 0, 0, 1
|
|
};
|
|
|
|
samplerState_t sampler = { GL_CLAMP_TO_EDGE_EXT, GL_CLAMP_TO_EDGE_EXT, GL_CLAMP_TO_EDGE_EXT, GL_NONE, GL_NONE, 0 };
|
|
|
|
GLimp_LogComment( 3, "Sky is Cube" );
|
|
|
|
glPushClientAttrib( GL_CLIENT_VERTEX_ARRAY_BIT );
|
|
|
|
glVertexPointer( 3, GL_FLOAT, sizeof( float ) * 4, tess.xyz );
|
|
|
|
R_StateSetActiveClientTmuUntracked( GL_TEXTURE0_ARB );
|
|
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
|
|
|
|
glTexCoordPointer( 3, GL_FLOAT, sizeof( float ) * 4, tess.xyz );
|
|
|
|
R_StateSetTexture( tess.shader->sky.cube, GL_TEXTURE0_ARB );
|
|
R_StateSetBlend( tess.shader->sky.srcblend, tess.shader->sky.dstblend );
|
|
R_StateSetTextureSampler( &sampler, GL_TEXTURE0_ARB );
|
|
R_StateSetActiveTmuUntracked( GL_TEXTURE0_ARB );
|
|
|
|
glMatrixMode( GL_TEXTURE );
|
|
glPushMatrix();
|
|
|
|
tm[12] = backEnd.viewParms.or.origin[0];
|
|
tm[13] = -backEnd.viewParms.or.origin[2];
|
|
tm[14] = -backEnd.viewParms.or.origin[1];
|
|
|
|
R_StateSetActiveClientTmuUntracked( GL_TEXTURE0_ARB );
|
|
ApplySkyRotation( true );
|
|
R_StateMulTextureMatrixCountedRaw( tm, GL_TEXTURE0_ARB );
|
|
|
|
glColor4f( 1, 1, 1, 1 );
|
|
|
|
R_StateRestorePriorGroupStates( sg );
|
|
glDrawElements( tess.primType, tess.numIndexes, GL_INDEX_TYPE, tess.indexes );
|
|
|
|
R_StateSetActiveTmuUntracked( GL_TEXTURE0_ARB );
|
|
glMatrixMode( GL_TEXTURE );
|
|
glPopMatrix();
|
|
|
|
glMatrixMode( GL_MODELVIEW );
|
|
|
|
glPopClientAttrib();
|
|
}
|
|
else if( tess.shader->sky.outerbox[0] && tess.shader->sky.outerbox[0] != tr.defaultImage )
|
|
{
|
|
GLimp_LogComment( 3, "Sky is Old-Style" );
|
|
|
|
// go through all the polygons and project them onto
|
|
// the sky box to see which blocks on each side need
|
|
// to be drawn
|
|
RB_ClipSkyPolygons( &tess );
|
|
|
|
glColor3f( tr.identityLight, tr.identityLight, tr.identityLight );
|
|
|
|
glPushMatrix();
|
|
glTranslatef( backEnd.viewParms.or.origin[0], backEnd.viewParms.or.origin[1], backEnd.viewParms.or.origin[2] );
|
|
|
|
GL_State( 0 );
|
|
|
|
DrawSkyBox( tess.shader, sg );
|
|
|
|
glPopMatrix();
|
|
}
|
|
|
|
// generate the vertexes for all the clouds, which will be drawn
|
|
// by the generic shader routine
|
|
|
|
if( tess.shader->stages[0] )
|
|
{
|
|
GLimp_LogComment( 3, "Drawing Sky Cloud Layers" );
|
|
|
|
R_BuildCloudData( &tess );
|
|
RB_StageIteratorGeneric();
|
|
}
|
|
|
|
// note that sky was drawn so we will draw a sun later
|
|
backEnd.skyRenderedThisView = qtrue;
|
|
|
|
GLimp_LogComment( 1, "END RB_StageIteratorSky( %s )", tess.shader->name );
|
|
}
|
|
|
|
static ID_INLINE float clampf( float f, float m, float M )
|
|
{
|
|
if( f < m ) return m;
|
|
if( f > M ) return M;
|
|
return f;
|
|
}
|
|
|
|
void RB_DrawOrbit()
|
|
{
|
|
float theta, r, w, *p, l, t, r0, s;
|
|
vec4_t c;
|
|
|
|
qboolean invA = qfalse;
|
|
|
|
stateGroup_t sg = R_StateBeginGroup();
|
|
|
|
if( backEnd.currentEntity->e.renderfx & RF_ORBIT_LINE )
|
|
{
|
|
glLineWidth( backEnd.currentEntity->e.width );
|
|
}
|
|
|
|
R_StateSetBlend( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
|
|
R_StateSetDepthMask( qfalse );
|
|
|
|
R_StateSetCull( GL_FRONT_AND_BACK );
|
|
|
|
R_StateRestorePriorGroupStates( sg );
|
|
|
|
c[0] = backEnd.currentEntity->e.shaderRGBA[0] * (1.0F / 255.0F);
|
|
c[1] = backEnd.currentEntity->e.shaderRGBA[1] * (1.0F / 255.0F);
|
|
c[2] = backEnd.currentEntity->e.shaderRGBA[2] * (1.0F / 255.0F);
|
|
c[3] = backEnd.currentEntity->e.shaderRGBA[3] * (1.0F / 255.0F);
|
|
|
|
r = backEnd.currentEntity->e.radius;
|
|
if( r < 0 )
|
|
{
|
|
invA = qtrue;
|
|
r = -r;
|
|
}
|
|
p = backEnd.currentEntity->e.origin;
|
|
l = backEnd.currentEntity->e.lightingOrigin[0] / r;
|
|
|
|
if( l < 0 )
|
|
s = -1;
|
|
else
|
|
s = 1;
|
|
|
|
r0 = backEnd.currentEntity->e.rotation;
|
|
t = l / 100.0f;
|
|
|
|
w = backEnd.currentEntity->e.width;
|
|
if( w < 1 )
|
|
w = 1;
|
|
|
|
if( backEnd.currentEntity->e.renderfx & RF_ORBIT_LINE )
|
|
{
|
|
glBegin( GL_LINE_STRIP );
|
|
|
|
for( theta = 0; theta * s < fabsf( l ); theta += t )
|
|
{
|
|
float x, y, ca;
|
|
|
|
ca = theta / l;
|
|
|
|
if( !invA )
|
|
ca = 1.0F - ca;
|
|
|
|
ca *= clampf( fabsf( theta ) / DEG2RAD( 5 ), 0, 1 );
|
|
|
|
glColor4f( c[0], c[1], c[2], c[3] * ca );
|
|
|
|
x = sinf( r0 + theta );
|
|
y = cosf( r0 + theta );
|
|
|
|
glVertex3f( p[0] + x * r, p[1] + y * r, p[2] );
|
|
}
|
|
|
|
glEnd();
|
|
}
|
|
else
|
|
{
|
|
glBegin( GL_QUAD_STRIP );
|
|
|
|
for( theta = 0; theta * s < fabsf( l ); theta += t )
|
|
{
|
|
float x, y, ca;
|
|
|
|
ca = 1.0f - (theta / l);
|
|
if( invA )
|
|
ca = 1.0F - ca;
|
|
|
|
glColor4f( c[0], c[1], c[2], c[3] * ca );
|
|
|
|
x = sinf( r0 + theta );
|
|
y = cosf( r0 + theta );
|
|
|
|
glVertex3f( p[0] + x * r, p[1] + y * r, p[2] );
|
|
glVertex3f( p[0] + x * (r + w), p[1] + y * (r + w), p[2] );
|
|
}
|
|
|
|
glEnd();
|
|
}
|
|
} |