1961 lines
45 KiB
C
1961 lines
45 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
Copyright (C) 2007 HermitWorks Entertainment Corporation
|
|
|
|
This file is part of the Space Trader source code.
|
|
|
|
The Space Trader source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
The Space Trader source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with the Space Trader source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
//
|
|
// q_math.c -- stateless support routines that are included in each code module
|
|
|
|
// Some of the vector functions are static inline in q_shared.h. q3asm
|
|
// doesn't understand static functions though, so we only want them in
|
|
// one file. That's what this is about.
|
|
#ifdef Q3_VM
|
|
#define __Q3_VM_MATH
|
|
#endif
|
|
|
|
#include "q_shared.h"
|
|
|
|
vec3_t vec3_origin = {0,0,0};
|
|
|
|
|
|
vec4_t colorBlack = {0, 0, 0, 1};
|
|
vec4_t colorRed = {1, 0, 0, 1};
|
|
vec4_t colorGreen = {0, 1, 0, 1};
|
|
vec4_t colorBlue = {0, 0, 1, 1};
|
|
vec4_t colorYellow = {1, 1, 0, 1};
|
|
vec4_t colorMagenta= {1, 0, 1, 1};
|
|
vec4_t colorCyan = {0, 1, 1, 1};
|
|
vec4_t colorWhite = {1, 1, 1, 1};
|
|
vec4_t colorLtGrey = {0.75, 0.75, 0.75, 1};
|
|
vec4_t colorMdGrey = {0.5, 0.5, 0.5, 1};
|
|
vec4_t colorDkGrey = {0.25, 0.25, 0.25, 1};
|
|
|
|
const vec4_t g_color_table[9] =
|
|
{
|
|
{0.0, 0.0, 0.0, 1.0},
|
|
{1.0, 0.0, 0.0, 1.0},
|
|
{0.0, 1.0, 0.0, 1.0},
|
|
{1.0, 1.0, 0.0, 1.0},
|
|
{0.0, 0.0, 1.0, 1.0},
|
|
{0.0, 1.0, 1.0, 1.0},
|
|
{1.0, 0.0, 1.0, 1.0},
|
|
{1.0, 1.0, 1.0, 1.0},
|
|
{0.5, 0.5, 0.5, 1.0},
|
|
};
|
|
|
|
|
|
static const vec3_t bytedirs[NUMVERTEXNORMALS] =
|
|
{
|
|
{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f},
|
|
{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f},
|
|
{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f},
|
|
{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f},
|
|
{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f},
|
|
{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f},
|
|
{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f},
|
|
{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f},
|
|
{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f},
|
|
{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f},
|
|
{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f},
|
|
{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f},
|
|
{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f},
|
|
{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f},
|
|
{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f},
|
|
{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f},
|
|
{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f},
|
|
{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f},
|
|
{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f},
|
|
{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f},
|
|
{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f},
|
|
{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f},
|
|
{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f},
|
|
{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f},
|
|
{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f},
|
|
{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f},
|
|
{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f},
|
|
{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f},
|
|
{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f},
|
|
{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f},
|
|
{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f},
|
|
{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f},
|
|
{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
|
|
{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f},
|
|
{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f},
|
|
{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f},
|
|
{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f},
|
|
{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f},
|
|
{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f},
|
|
{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f},
|
|
{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f},
|
|
{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f},
|
|
{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f},
|
|
{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f},
|
|
{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f},
|
|
{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f},
|
|
{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f},
|
|
{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f},
|
|
{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f},
|
|
{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f},
|
|
{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f},
|
|
{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f},
|
|
{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f},
|
|
{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f},
|
|
{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f},
|
|
{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f},
|
|
{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f},
|
|
{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f},
|
|
{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f},
|
|
{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f},
|
|
{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f},
|
|
{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f},
|
|
{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f},
|
|
{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f},
|
|
{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f},
|
|
{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f},
|
|
{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f},
|
|
{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f},
|
|
{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f},
|
|
{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f},
|
|
{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f},
|
|
{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f},
|
|
{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f},
|
|
{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f},
|
|
{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f},
|
|
{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f},
|
|
{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f},
|
|
{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f},
|
|
{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f},
|
|
{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f},
|
|
{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
|
|
};
|
|
|
|
//==============================================================
|
|
|
|
#if 0 //__LCC__
|
|
|
|
int VectorCompare( const vec3_t v1, const vec3_t v2 ) {
|
|
if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
vec_t VectorLength( const vec3_t v ) {
|
|
return (vec_t)sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
|
}
|
|
|
|
vec_t VectorLengthSquared( const vec3_t v ) {
|
|
return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
|
}
|
|
|
|
vec_t Distance( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract (p2, p1, v);
|
|
return VectorLength( v );
|
|
}
|
|
|
|
vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract (p2, p1, v);
|
|
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
}
|
|
|
|
// fast vector normalize routine that does not check to make sure
|
|
// that length != 0, nor does it return length, uses rsqrt approximation
|
|
void VectorNormalizeFast( vec3_t v )
|
|
{
|
|
float ilength;
|
|
|
|
ilength = Q_rsqrt( DotProduct( v, v ) );
|
|
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
void VectorInverse( vec3_t v ){
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
|
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
#endif
|
|
|
|
//=======================================================
|
|
|
|
signed char ClampChar( int i )
|
|
{
|
|
if( i < -128 )
|
|
return -128;
|
|
|
|
if( i > 127 )
|
|
return 127;
|
|
|
|
return (signed char)i;
|
|
}
|
|
|
|
signed short ClampShort( int i )
|
|
{
|
|
if( i < -32768 )
|
|
return -32768;
|
|
|
|
if( i > 0x7fff )
|
|
return 0x7fff;
|
|
|
|
return (signed short)i;
|
|
}
|
|
|
|
|
|
// this isn't a real cheap function to call!
|
|
int DirToByte( vec3_t dir ) {
|
|
int i, best;
|
|
float d, bestd;
|
|
|
|
if ( !dir ) {
|
|
return 0;
|
|
}
|
|
|
|
bestd = 0;
|
|
best = 0;
|
|
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
|
|
{
|
|
d = DotProduct (dir, bytedirs[i]);
|
|
if (d > bestd)
|
|
{
|
|
bestd = d;
|
|
best = i;
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
void ByteToDir( int b, vec3_t dir ) {
|
|
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
|
|
VectorCopy( vec3_origin, dir );
|
|
return;
|
|
}
|
|
VectorCopy (bytedirs[b], dir);
|
|
}
|
|
|
|
|
|
unsigned ColorBytes3( float r, float g, float b )
|
|
{
|
|
unsigned i;
|
|
|
|
((byte*)&i)[0] = (byte)(r * 0xFF);
|
|
((byte*)&i)[1] = (byte)(g * 0xFF);
|
|
((byte*)&i)[2] = (byte)(b * 0xFF);
|
|
|
|
return i;
|
|
}
|
|
|
|
unsigned ColorBytes4( float r, float g, float b, float a )
|
|
{
|
|
unsigned i;
|
|
|
|
((byte*)&i)[0] = (byte)(r * 0xFF);
|
|
((byte*)&i)[1] = (byte)(g * 0xFF);
|
|
((byte*)&i)[2] = (byte)(b * 0xFF);
|
|
((byte*)&i)[3] = (byte)(a * 0xFF);
|
|
|
|
return i;
|
|
}
|
|
|
|
float NormalizeColor( const vec3_t in, vec3_t out )
|
|
{
|
|
float max;
|
|
|
|
max = in[0];
|
|
if ( in[1] > max ) {
|
|
max = in[1];
|
|
}
|
|
if ( in[2] > max ) {
|
|
max = in[2];
|
|
}
|
|
|
|
if ( !max ) {
|
|
VectorClear( out );
|
|
} else {
|
|
out[0] = in[0] / max;
|
|
out[1] = in[1] / max;
|
|
out[2] = in[2] / max;
|
|
}
|
|
return max;
|
|
}
|
|
|
|
|
|
/*
|
|
=====================
|
|
PlaneFromPoints
|
|
|
|
Returns false if the triangle is degenrate.
|
|
The normal will point out of the clock for clockwise ordered points
|
|
=====================
|
|
*/
|
|
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
|
|
vec3_t d1, d2;
|
|
|
|
VectorSubtract( b, a, d1 );
|
|
VectorSubtract( c, a, d2 );
|
|
CrossProduct( d2, d1, plane );
|
|
if ( VectorNormalize( plane ) == 0 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
plane[3] = DotProduct( a, plane );
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotatePointAroundVector
|
|
|
|
This is not implemented very well...
|
|
===============
|
|
*/
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
|
|
float degrees ) {
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
float rad;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
rad = DEG2RAD( degrees );
|
|
zrot[0][0] = cosf( rad );
|
|
zrot[0][1] = sinf( rad );
|
|
zrot[1][0] = -sinf( rad );
|
|
zrot[1][1] = cosf( rad );
|
|
|
|
MatrixMultiply( m, zrot, tmpmat );
|
|
MatrixMultiply( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ ) {
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotateAroundDirection
|
|
===============
|
|
*/
|
|
void RotateAroundDirection( vec3_t axis[3], float yaw ) {
|
|
|
|
// create an arbitrary axis[1]
|
|
PerpendicularVector( axis[1], axis[0] );
|
|
|
|
// rotate it around axis[0] by yaw
|
|
if ( yaw ) {
|
|
vec3_t temp;
|
|
|
|
VectorCopy( axis[1], temp );
|
|
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
|
|
}
|
|
|
|
// cross to get axis[2]
|
|
CrossProduct( axis[0], axis[1], axis[2] );
|
|
}
|
|
|
|
|
|
|
|
void vectoangles( const vec3_t value1, vec3_t angles ) {
|
|
float forward;
|
|
float yaw, pitch;
|
|
|
|
if ( value1[1] == 0 && value1[0] == 0 ) {
|
|
yaw = 0;
|
|
if ( value1[2] > 0 ) {
|
|
pitch = 90;
|
|
}
|
|
else {
|
|
pitch = 270;
|
|
}
|
|
}
|
|
else {
|
|
if ( value1[0] ) {
|
|
yaw = ( atan2f ( value1[1], value1[0] ) * 180 / M_PI );
|
|
}
|
|
else if ( value1[1] > 0 ) {
|
|
yaw = 90;
|
|
}
|
|
else {
|
|
yaw = 270;
|
|
}
|
|
if ( yaw < 0 ) {
|
|
yaw += 360;
|
|
}
|
|
|
|
forward = sqrtf ( value1[0]*value1[0] + value1[1]*value1[1] );
|
|
pitch = ( atan2f(value1[2], forward) * 180.0f / M_PI );
|
|
if ( pitch < 0.0f ) {
|
|
pitch += 360.0f;
|
|
}
|
|
}
|
|
|
|
angles[PITCH] = -pitch;
|
|
angles[YAW] = yaw;
|
|
angles[ROLL] = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AnglesToAxis
|
|
=================
|
|
*/
|
|
void AnglesToAxis( const vec3_t angles, vec3_t axis[3] ) {
|
|
vec3_t right;
|
|
|
|
// angle vectors returns "right" instead of "y axis"
|
|
AngleVectors( angles, axis[0], right, axis[2] );
|
|
VectorSubtract( vec3_origin, right, axis[1] );
|
|
}
|
|
|
|
void AxisClear( vec3_t axis[3] ) {
|
|
axis[0][0] = 1;
|
|
axis[0][1] = 0;
|
|
axis[0][2] = 0;
|
|
axis[1][0] = 0;
|
|
axis[1][1] = 1;
|
|
axis[1][2] = 0;
|
|
axis[2][0] = 0;
|
|
axis[2][1] = 0;
|
|
axis[2][2] = 1;
|
|
}
|
|
|
|
void AxisCopy( vec3_t in[3], vec3_t out[3] ) {
|
|
VectorCopy( in[0], out[0] );
|
|
VectorCopy( in[1], out[1] );
|
|
VectorCopy( in[2], out[2] );
|
|
}
|
|
|
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = DotProduct( normal, normal );
|
|
#ifndef Q3_VM
|
|
assert( Q_fabs(inv_denom) != 0.0f ); // bk010122 - zero vectors get here
|
|
#endif
|
|
inv_denom = 1.0f / inv_denom;
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
================
|
|
MakeNormalVectors
|
|
|
|
Given a normalized forward vector, create two
|
|
other perpendicular vectors
|
|
================
|
|
*/
|
|
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
|
|
float d;
|
|
|
|
// this rotate and negate guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|
|
|
|
void VectorRotate( vec3_t in, vec3_t matrix[3], vec3_t out )
|
|
{
|
|
out[0] = DotProduct( in, matrix[0] );
|
|
out[1] = DotProduct( in, matrix[1] );
|
|
out[2] = DotProduct( in, matrix[2] );
|
|
}
|
|
|
|
//============================================================================
|
|
|
|
#if !idppc
|
|
/*
|
|
** float q_rsqrt( float number )
|
|
*/
|
|
float Q_rsqrt( float number )
|
|
{
|
|
fi_t t;
|
|
float x2, y;
|
|
const float threehalfs = 1.5F;
|
|
|
|
x2 = number * 0.5F;
|
|
t.f = number;
|
|
t.i = 0x5f3759dF - (t.i >> 1);
|
|
y = t.f;
|
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
|
|
|
//assert( !isnan(y) ); // bk010122 - FPE?
|
|
return y;
|
|
}
|
|
|
|
float Q_fabs( float f ) {
|
|
fi_t t;
|
|
t.f = f;
|
|
t.i &= 0x7FFFFFFF;
|
|
return t.f;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
=====================
|
|
Q_acos
|
|
|
|
the msvc acos doesn't always return a value between -PI and PI:
|
|
|
|
int i;
|
|
i = 1065353246;
|
|
acos(*(float*) &i) == -1.#IND0
|
|
=====================
|
|
*/
|
|
float Q_acos(float c) {
|
|
float angle;
|
|
|
|
angle = acos(c);
|
|
|
|
if (angle > M_PI) {
|
|
return (float)M_PI;
|
|
}
|
|
if (angle < -M_PI) {
|
|
return (float)M_PI;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
|
|
//============================================================
|
|
|
|
/*
|
|
===============
|
|
LerpAngle
|
|
|
|
===============
|
|
*/
|
|
float LerpAngle (float from, float to, float frac) {
|
|
float a;
|
|
|
|
if ( to - from > 180 ) {
|
|
to -= 360;
|
|
}
|
|
if ( to - from < -180 ) {
|
|
to += 360;
|
|
}
|
|
a = from + frac * (to - from);
|
|
|
|
return a;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleSubtract
|
|
|
|
Always returns a value from -180 to 180
|
|
=================
|
|
*/
|
|
float AngleSubtract( float a1, float a2 ) {
|
|
float a;
|
|
|
|
a = a1 - a2;
|
|
while ( a > 180 ) {
|
|
a -= 360;
|
|
}
|
|
while ( a < -180 ) {
|
|
a += 360;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) {
|
|
v3[0] = AngleSubtract( v1[0], v2[0] );
|
|
v3[1] = AngleSubtract( v1[1], v2[1] );
|
|
v3[2] = AngleSubtract( v1[2], v2[2] );
|
|
}
|
|
|
|
|
|
float AngleMod(float a) {
|
|
a = (360.0f/65536.0f) * ((int)(a*(65536.0f/360.0f)) & 65535);
|
|
return a;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleNormalize360
|
|
|
|
returns angle normalized to the range [0 <= angle < 360]
|
|
=================
|
|
*/
|
|
float AngleNormalize360 ( float angle ) {
|
|
return (360.0f / 65536) * ((int)(angle * (65536 / 360.0f)) & 65535);
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleNormalize180
|
|
|
|
returns angle normalized to the range [-180 < angle <= 180]
|
|
=================
|
|
*/
|
|
float AngleNormalize180 ( float angle ) {
|
|
angle = AngleNormalize360( angle );
|
|
if ( angle > 180.0 ) {
|
|
angle -= 360.0;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleDelta
|
|
|
|
returns the normalized delta from angle1 to angle2
|
|
=================
|
|
*/
|
|
float AngleDelta ( float angle1, float angle2 ) {
|
|
return AngleNormalize180( angle1 - angle2 );
|
|
}
|
|
|
|
|
|
//============================================================
|
|
|
|
|
|
/*
|
|
=================
|
|
SetPlaneSignbits
|
|
=================
|
|
*/
|
|
void SetPlaneSignbits( cplane_t *out )
|
|
{
|
|
int bits, j;
|
|
|
|
// for fast box on planeside test
|
|
bits = 0;
|
|
for( j = 0; j < 3; j++ )
|
|
if( out->normal[j] < 0 )
|
|
bits |= 1 << j;
|
|
|
|
out->signbits = (byte)bits;
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
BoxOnPlaneSide
|
|
|
|
Returns 1, 2, or 1 + 2
|
|
|
|
// this is the slow, general version
|
|
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
int i;
|
|
float dist1, dist2;
|
|
int sides;
|
|
vec3_t corners[2];
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (p->normal[i] < 0)
|
|
{
|
|
corners[0][i] = emins[i];
|
|
corners[1][i] = emaxs[i];
|
|
}
|
|
else
|
|
{
|
|
corners[1][i] = emins[i];
|
|
corners[0][i] = emaxs[i];
|
|
}
|
|
}
|
|
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
|
|
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
|
|
sides = 0;
|
|
if (dist1 >= 0)
|
|
sides = 1;
|
|
if (dist2 < 0)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
|
|
==================
|
|
*/
|
|
|
|
#if !id386
|
|
|
|
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
float dist1, dist2;
|
|
int sides;
|
|
|
|
// fast axial cases
|
|
if (p->type < 3)
|
|
{
|
|
if (p->dist <= emins[p->type])
|
|
return 1;
|
|
if (p->dist >= emaxs[p->type])
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
// general case
|
|
switch (p->signbits)
|
|
{
|
|
case 0:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 1:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 2:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 3:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 4:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 5:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 6:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 7:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
default:
|
|
dist1 = dist2 = 0; // shut up compiler
|
|
break;
|
|
}
|
|
|
|
sides = 0;
|
|
if (dist1 >= p->dist)
|
|
sides = 1;
|
|
if (dist2 < p->dist)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
#elif __GNUC__
|
|
#ifdef MACOS_X
|
|
#ifndef id386
|
|
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
float dist1, dist2;
|
|
int sides;
|
|
|
|
// fast axial cases
|
|
if (p->type < 3)
|
|
{
|
|
if (p->dist <= emins[p->type])
|
|
return 1;
|
|
if (p->dist >= emaxs[p->type])
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
// general case
|
|
switch (p->signbits)
|
|
{
|
|
case 0:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 1:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 2:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 3:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 4:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 5:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 6:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 7:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
default:
|
|
dist1 = dist2 = 0; // shut up compiler
|
|
break;
|
|
}
|
|
|
|
sides = 0;
|
|
if (dist1 >= p->dist)
|
|
sides = 1;
|
|
if (dist2 < p->dist)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
#endif
|
|
#endif
|
|
// use matha.s
|
|
#else
|
|
|
|
__declspec( naked ) int QDECL BoxOnPlaneSide( vec3_t emins, vec3_t emaxs, struct cplane_s * p )
|
|
{
|
|
//shut up unreferenced param warnings as these are accessed by asm names
|
|
static int bops_initialized;
|
|
static int Ljmptab[8];
|
|
|
|
emins; emaxs; p;
|
|
|
|
__asm
|
|
{
|
|
push ebx
|
|
|
|
cmp bops_initialized, 1
|
|
je initialized
|
|
mov bops_initialized, 1
|
|
|
|
mov Ljmptab[0*4], offset Lcase0
|
|
mov Ljmptab[1*4], offset Lcase1
|
|
mov Ljmptab[2*4], offset Lcase2
|
|
mov Ljmptab[3*4], offset Lcase3
|
|
mov Ljmptab[4*4], offset Lcase4
|
|
mov Ljmptab[5*4], offset Lcase5
|
|
mov Ljmptab[6*4], offset Lcase6
|
|
mov Ljmptab[7*4], offset Lcase7
|
|
|
|
initialized:
|
|
|
|
mov edx,dword ptr[4+12+esp]
|
|
mov ecx,dword ptr[4+4+esp]
|
|
xor eax,eax
|
|
mov ebx,dword ptr[4+8+esp]
|
|
mov al,byte ptr[17+edx]
|
|
cmp al,8
|
|
jge Lerror
|
|
fld dword ptr[0+edx]
|
|
fld st(0)
|
|
jmp dword ptr[Ljmptab+eax*4]
|
|
Lcase0:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase1:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase2:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase3:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase4:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase5:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase6:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase7:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
LSetSides:
|
|
faddp st(2),st(0)
|
|
fcomp dword ptr[12+edx]
|
|
xor ecx,ecx
|
|
fnstsw ax
|
|
fcomp dword ptr[12+edx]
|
|
and ah,1
|
|
xor ah,1
|
|
add cl,ah
|
|
fnstsw ax
|
|
and ah,1
|
|
add ah,ah
|
|
add cl,ah
|
|
pop ebx
|
|
mov eax,ecx
|
|
ret
|
|
Lerror:
|
|
int 3
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
=================
|
|
RadiusFromBounds
|
|
=================
|
|
*/
|
|
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
|
|
int i;
|
|
vec3_t corner;
|
|
float a, b;
|
|
|
|
for (i=0 ; i<3 ; i++) {
|
|
a = fabsf( mins[i] );
|
|
b = fabsf( maxs[i] );
|
|
corner[i] = a > b ? a : b;
|
|
}
|
|
|
|
return VectorLength (corner);
|
|
}
|
|
|
|
|
|
void ClearBounds( vec3_t mins, vec3_t maxs ) {
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
}
|
|
|
|
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
|
|
if ( v[0] < mins[0] ) {
|
|
mins[0] = v[0];
|
|
}
|
|
if ( v[0] > maxs[0]) {
|
|
maxs[0] = v[0];
|
|
}
|
|
|
|
if ( v[1] < mins[1] ) {
|
|
mins[1] = v[1];
|
|
}
|
|
if ( v[1] > maxs[1]) {
|
|
maxs[1] = v[1];
|
|
}
|
|
|
|
if ( v[2] < mins[2] ) {
|
|
mins[2] = v[2];
|
|
}
|
|
if ( v[2] > maxs[2]) {
|
|
maxs[2] = v[2];
|
|
}
|
|
}
|
|
|
|
|
|
vec_t VectorNormalize( vec3_t v ) {
|
|
// NOTE: TTimo - Apple G4 altivec source uses double?
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrtf (length);
|
|
|
|
if ( length ) {
|
|
ilength = 1/length;
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
vec_t VectorNormalize2( const vec3_t v, vec3_t out) {
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrtf (length);
|
|
|
|
if (length)
|
|
{
|
|
#ifndef Q3_VM // bk0101022 - FPE related
|
|
// assert( ((Q_fabs(v[0])!=0.0f) || (Q_fabs(v[1])!=0.0f) || (Q_fabs(v[2])!=0.0f)) );
|
|
#endif
|
|
ilength = 1/length;
|
|
out[0] = v[0]*ilength;
|
|
out[1] = v[1]*ilength;
|
|
out[2] = v[2]*ilength;
|
|
} else {
|
|
#ifndef Q3_VM // bk0101022 - FPE related
|
|
// assert( ((Q_fabs(v[0])==0.0f) && (Q_fabs(v[1])==0.0f) && (Q_fabs(v[2])==0.0f)) );
|
|
#endif
|
|
VectorClear( out );
|
|
}
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) {
|
|
vecc[0] = veca[0] + scale*vecb[0];
|
|
vecc[1] = veca[1] + scale*vecb[1];
|
|
vecc[2] = veca[2] + scale*vecb[2];
|
|
}
|
|
|
|
|
|
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) {
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]-vecb[0];
|
|
out[1] = veca[1]-vecb[1];
|
|
out[2] = veca[2]-vecb[2];
|
|
}
|
|
|
|
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]+vecb[0];
|
|
out[1] = veca[1]+vecb[1];
|
|
out[2] = veca[2]+vecb[2];
|
|
}
|
|
|
|
void _VectorCopy( const vec3_t in, vec3_t out ) {
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) {
|
|
out[0] = in[0]*scale;
|
|
out[1] = in[1]*scale;
|
|
out[2] = in[2]*scale;
|
|
}
|
|
|
|
void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) {
|
|
out[0] = in[0]*scale;
|
|
out[1] = in[1]*scale;
|
|
out[2] = in[2]*scale;
|
|
out[3] = in[3]*scale;
|
|
}
|
|
|
|
|
|
int Q_log2( int val ) {
|
|
int answer;
|
|
|
|
answer = 0;
|
|
while ( ( val>>=1 ) != 0 ) {
|
|
answer++;
|
|
}
|
|
return answer;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
=================
|
|
PlaneTypeForNormal
|
|
=================
|
|
*/
|
|
/*
|
|
int PlaneTypeForNormal (vec3_t normal) {
|
|
if ( normal[0] == 1.0 )
|
|
return PLANE_X;
|
|
if ( normal[1] == 1.0 )
|
|
return PLANE_Y;
|
|
if ( normal[2] == 1.0 )
|
|
return PLANE_Z;
|
|
|
|
return PLANE_NON_AXIAL;
|
|
}
|
|
*/
|
|
|
|
|
|
/*
|
|
================
|
|
MatrixMultiply
|
|
================
|
|
*/
|
|
void MatrixMultiply( float in1[3][3], float in2[3][3], float out[3][3] )
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
|
|
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sy = sinf(angle);
|
|
cy = cosf(angle);
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sp = sinf(angle);
|
|
cp = cosf(angle);
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
sr = sinf(angle);
|
|
cr = cosf(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward[0] = cp*cy;
|
|
forward[1] = cp*sy;
|
|
forward[2] = -sp;
|
|
}
|
|
if (right)
|
|
{
|
|
right[0] = (-sr*sp*cy+cr*sy);
|
|
right[1] = (-sr*sp*sy-cr*cy);
|
|
right[2] = -sr*cp;
|
|
}
|
|
if (up)
|
|
{
|
|
up[0] = (cr*sp*cy+sr*sy);
|
|
up[1] = (cr*sp*sy-sr*cy);
|
|
up[2] = cr*cp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for ( pos = 0, i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = fabsf( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst );
|
|
}
|
|
|
|
/*
|
|
================
|
|
Q_isnan
|
|
|
|
Don't pass doubles to this
|
|
================
|
|
*/
|
|
int Q_isnan( float x )
|
|
{
|
|
union
|
|
{
|
|
float f;
|
|
unsigned int i;
|
|
} t;
|
|
|
|
t.f = x;
|
|
t.i &= 0x7FFFFFFF;
|
|
t.i = 0x7F800000 - t.i;
|
|
|
|
return (int)( (unsigned int)t.i >> 31 );
|
|
}
|
|
|
|
/*
|
|
* Some matrix math stuff.
|
|
*
|
|
* Matrices are taken in column-major format.
|
|
*
|
|
* Note: if it says "affine" in its name it *assumes* that the input is affine.
|
|
* If the input isn't affine, then there's no telling what you'll get out.
|
|
*
|
|
*/
|
|
|
|
void Normalize3x3( float m[3][3] )
|
|
{
|
|
int i;
|
|
for( i = 0; i < 3; i++ )
|
|
{
|
|
float l = 1.0F / DotProduct( m[i], m[i] );
|
|
VectorScale( m[i], l, m[i] );
|
|
}
|
|
}
|
|
|
|
NOGLOBALALIAS void Affine_Inv( affine_t * RESTRICT o, const affine_t *or )
|
|
{
|
|
int i, j;
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
for( j = 0; j < 3; j++ )
|
|
o->axis[i][j] = or->axis[j][i];
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
o->origin[i] = -DotProduct( or->origin, or->axis[i] );
|
|
}
|
|
|
|
NOGLOBALALIAS void Affine_Mul( affine_t * RESTRICT o, const affine_t *a, const affine_t *b )
|
|
{
|
|
int c, r;
|
|
for( c = 0; c < 3; c++ )
|
|
for( r = 0; r < 3; r++ )
|
|
o->axis[c][r] =
|
|
a->axis[0][r] * b->axis[c][0] +
|
|
a->axis[1][r] * b->axis[c][1] +
|
|
a->axis[2][r] * b->axis[c][2];
|
|
|
|
for( r = 0; r < 3; r++ )
|
|
o->origin[r] =
|
|
a->axis[0][r] * b->origin[0] +
|
|
a->axis[1][r] * b->origin[1] +
|
|
a->axis[2][r] * b->origin[2] +
|
|
a->origin[r];
|
|
}
|
|
|
|
NOGLOBALALIAS void Affine_MulVec( vec3_t o, const affine_t *m, const vec3_t v )
|
|
{
|
|
int i;
|
|
vec3_t t;
|
|
|
|
if ( v == o ) {
|
|
t[ 0 ] = v[ 0 ];
|
|
t[ 1 ] = v[ 1 ];
|
|
t[ 2 ] = v[ 2 ];
|
|
v = t;
|
|
}
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
o[i] =
|
|
m->axis[0][i] * v[0] +
|
|
m->axis[1][i] * v[1] +
|
|
m->axis[2][i] * v[2];
|
|
}
|
|
|
|
NOGLOBALALIAS void Affine_MulPos( vec3_t o, const affine_t *m, const vec3_t p )
|
|
{
|
|
int i;
|
|
|
|
Affine_MulVec( o, m, p );
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
o[i] += m->origin[i];
|
|
}
|
|
|
|
NOGLOBALALIAS void Affine_SetFromMatrix( affine_t * RESTRICT o, const float *m )
|
|
{
|
|
if( m )
|
|
{
|
|
memcpy( o->axis + 0, m + 0, sizeof( float ) * 3 );
|
|
memcpy( o->axis + 1, m + 4, sizeof( float ) * 3 );
|
|
memcpy( o->axis + 2, m + 8, sizeof( float ) * 3 );
|
|
|
|
memcpy( o->origin, m + 12, sizeof( float ) * 3 );
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
|
|
memset( o, 0, sizeof( affine_t ) );
|
|
for( i = 0; i < 3; i++ )
|
|
o->axis[i][i] = 1;
|
|
}
|
|
}
|
|
|
|
NOGLOBALALIAS void Affine_Set( affine_t * RESTRICT o, const vec3_t axis[3], const vec3_t origin )
|
|
{
|
|
int i;
|
|
|
|
if( axis )
|
|
{
|
|
for( i = 0; i < 3; i++ )
|
|
VectorCopy( axis[i], o->axis[i] );
|
|
}
|
|
else
|
|
{
|
|
memset( o->axis, 0, sizeof( o->axis ) );
|
|
for( i = 0; i < 3; i++ )
|
|
o->axis[i][i] = 1;
|
|
}
|
|
|
|
if( origin )
|
|
VectorCopy( origin, o->origin );
|
|
else
|
|
memset( o->origin, 0, sizeof( o->origin ) );
|
|
}
|
|
|
|
NOGLOBALALIAS void Affine_Cpy( affine_t * RESTRICT d, const affine_t *s )
|
|
{
|
|
memcpy( d, s, sizeof( affine_t ) );
|
|
}
|
|
|
|
NOGLOBALALIAS void Affine_Scale( affine_t * RESTRICT o, const affine_t *m, float s )
|
|
{
|
|
int i, j;
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
for( j = 0; j < 3; j++ )
|
|
o->axis[i][j] = m->axis[i][j] * s;
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
o->origin[i] = m->origin[i] * s;
|
|
}
|
|
|
|
NOGLOBALALIAS void Affine_Mad( affine_t * RESTRICT o, const affine_t *m, float s, const affine_t *a )
|
|
{
|
|
int i, j;
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
for( j = 0; j < 3; j++ )
|
|
o->axis[i][j] = m->axis[i][j] * s + a->axis[i][j];
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
o->origin[i] = m->origin[i] * s + a->origin[i];
|
|
}
|
|
|
|
NOGLOBALALIAS void Matrix_Trp( float o[16], float m[16] )
|
|
{
|
|
o[0] = m[0]; o[1] = m[4]; o[2] = m[8]; o[3] = m[12];
|
|
o[4] = m[1]; o[5] = m[5]; o[6] = m[9]; o[7] = m[13];
|
|
o[8] = m[2]; o[9] = m[6]; o[10] = m[10]; o[11] = m[14];
|
|
o[12] = m[3]; o[13] = m[7]; o[14] = m[11]; o[15] = m[15];
|
|
}
|
|
|
|
NOGLOBALALIAS void Matrix_SetFromAffine( float * RESTRICT o, const affine_t *m )
|
|
{
|
|
o[0] = m->axis[0][0];
|
|
o[1] = m->axis[0][1];
|
|
o[2] = m->axis[0][2];
|
|
o[3] = 0;
|
|
|
|
o[4] = m->axis[1][0];
|
|
o[5] = m->axis[1][1];
|
|
o[6] = m->axis[1][2];
|
|
o[7] = 0;
|
|
|
|
o[8] = m->axis[2][0];
|
|
o[9] = m->axis[2][1];
|
|
o[10] = m->axis[2][2];
|
|
o[11] = 0;
|
|
|
|
o[12] = m->origin[0];
|
|
o[13] = m->origin[1];
|
|
o[14] = m->origin[2];
|
|
o[15] = 1;
|
|
}
|
|
|
|
NOGLOBALALIAS void Quat_Cpy( quat_t dest, const quat_t src )
|
|
{
|
|
dest[0] = src[0];
|
|
dest[1] = src[1];
|
|
dest[2] = src[2];
|
|
dest[3] = src[3];
|
|
}
|
|
|
|
NOGLOBALALIAS static ID_INLINE float rsqrt( float x )
|
|
{
|
|
long i;
|
|
float y, r;
|
|
|
|
y = x * 0.5F;
|
|
|
|
i = *(long*)(&x);
|
|
i = 0x5f3759dF - (i >> 1);
|
|
|
|
r = *(float*)(&i);
|
|
|
|
r = r * (1.5F - r * r * y);
|
|
r = r * (1.5F - r * r * y);
|
|
|
|
return r;
|
|
}
|
|
|
|
NOGLOBALALIAS static ID_INLINE float sin_0_HalfPi( float a )
|
|
{
|
|
float s, t;
|
|
|
|
s = a * a;
|
|
|
|
t = -2.39e-08F;
|
|
t *= s;
|
|
|
|
t += 2.7526e-06F;
|
|
t *= s;
|
|
|
|
t += -1.98409e-04F;
|
|
t *= s;
|
|
|
|
t += 8.3333315e-03F;
|
|
t *= s;
|
|
|
|
t += -1.666666664e-01F;
|
|
t *= s;
|
|
|
|
t += 1.0f;
|
|
t *= a;
|
|
|
|
return t;
|
|
}
|
|
|
|
NOGLOBALALIAS static ID_INLINE float atan2_pos( float y, float x )
|
|
{
|
|
float a, d, s, t;
|
|
|
|
if( y > x )
|
|
{
|
|
a = -x / y;
|
|
d = ((float)M_PI / 2.0F);
|
|
}
|
|
else
|
|
{
|
|
a = y / x;
|
|
d = 0.0F;
|
|
}
|
|
|
|
s = a * a;
|
|
|
|
t = 0.0028662257F;
|
|
t *= s;
|
|
|
|
t += -0.0161657367F;
|
|
t *= s;
|
|
|
|
t += 0.0429096138F;
|
|
t *= s;
|
|
|
|
t += -0.0752896400F;
|
|
t *= s;
|
|
|
|
t += 0.1065626393F;
|
|
t *= s;
|
|
|
|
t += -0.1420889944F;
|
|
t *= s;
|
|
|
|
t += 0.1999355085F;
|
|
t *= s;
|
|
|
|
t += -0.3333314528F;
|
|
t *= s;
|
|
|
|
t += 1.0F;
|
|
t *= a;
|
|
|
|
t += d;
|
|
|
|
return t;
|
|
}
|
|
|
|
NOGLOBALALIAS void Quat_Slerp( quat_t o, const quat_t a, const quat_t b, float t )
|
|
{
|
|
float cosTheta;
|
|
float ta, tb;
|
|
qboolean neg;
|
|
|
|
cosTheta = a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
|
|
|
|
if( cosTheta < 0.0F )
|
|
{
|
|
cosTheta = -cosTheta;
|
|
neg = qtrue;
|
|
}
|
|
else
|
|
neg = qfalse;
|
|
|
|
if( cosTheta < 1.0F - 1e-5F )
|
|
{
|
|
float sinThetaSqr = 1.0F - (cosTheta * cosTheta);
|
|
float sinThetaInv = rsqrt( sinThetaSqr );
|
|
float theta = atan2_pos( sinThetaSqr * sinThetaInv, cosTheta );
|
|
|
|
//we're good to SLERP
|
|
ta = sin_0_HalfPi( (1.0F - t) * theta ) * sinThetaInv;
|
|
tb = sin_0_HalfPi( t * theta ) * sinThetaInv;
|
|
}
|
|
else
|
|
{
|
|
//quats are very close, just lerp to avoid the division by zero
|
|
ta = 1.0F - t;
|
|
tb = t;
|
|
}
|
|
|
|
if( neg )
|
|
tb = -tb;
|
|
|
|
o[0] = a[0] * ta + b[0] * tb;
|
|
o[1] = a[1] * ta + b[1] * tb;
|
|
o[2] = a[2] * ta + b[2] * tb;
|
|
o[3] = a[3] * ta + b[3] * tb;
|
|
}
|
|
|
|
NOGLOBALALIAS void Quat_SleprEx( quat_t o, const quat_t a, const quat_t b, float t, int direction )
|
|
{
|
|
float cosTheta;
|
|
float ta, tb;
|
|
qboolean neg;
|
|
|
|
cosTheta = a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
|
|
|
|
if( direction )
|
|
{
|
|
if( direction > 0 )
|
|
{
|
|
if( cosTheta < 0.0F )
|
|
{
|
|
cosTheta = -cosTheta;
|
|
neg = qtrue;
|
|
}
|
|
else
|
|
neg = qfalse;
|
|
}
|
|
else
|
|
{
|
|
if( cosTheta > 0.0F )
|
|
{
|
|
cosTheta = -cosTheta;
|
|
neg = qtrue;
|
|
}
|
|
else
|
|
neg = qfalse;
|
|
}
|
|
}
|
|
else
|
|
neg = qfalse;
|
|
|
|
if( cosTheta < 1.0F - 1e-5F )
|
|
{
|
|
float theta = acosf( cosTheta );
|
|
float sinTheta = sinf( theta );
|
|
float sinThetaInv = 1.0F / sinTheta;
|
|
|
|
//we're good to SLERP
|
|
ta = sinf( (1.0F - t) * theta ) * sinThetaInv;
|
|
tb = sinf( t * theta ) * sinThetaInv;
|
|
}
|
|
else
|
|
{
|
|
//quats are very close, just lerp to avoid the division by zero
|
|
ta = 1.0F - t;
|
|
tb = t;
|
|
}
|
|
|
|
if( neg )
|
|
tb = -tb;
|
|
|
|
o[0] = a[0] * ta + b[0] * tb;
|
|
o[1] = a[1] * ta + b[1] * tb;
|
|
o[2] = a[2] * ta + b[2] * tb;
|
|
o[3] = a[3] * ta + b[3] * tb;
|
|
}
|
|
|
|
NOGLOBALALIAS void Quat_AxisAngle( quat_t o, const vec3_t ax, float an )
|
|
{
|
|
float sa;
|
|
|
|
an *= 0.5F;
|
|
sa = sinf( an );
|
|
|
|
o[0] = sa * ax[0];
|
|
o[1] = sa * ax[1];
|
|
o[2] = sa * ax[2];
|
|
o[3] = cosf( an );
|
|
}
|
|
|
|
static vec3_t vec_i = { 1, 0, 0 };
|
|
static vec3_t vec_j = { 0, 1, 0 };
|
|
static vec3_t vec_k = { 0, 0, 1 };
|
|
|
|
NOGLOBALALIAS void Quat_FromEulerAngles( quat_t o, const vec3_t a )
|
|
{
|
|
quat_t y, p, r, tmp;
|
|
|
|
Quat_AxisAngle( y, vec_j, a[YAW] * (M_PI*2 / 360) );
|
|
Quat_AxisAngle( p, vec_i, a[PITCH] * (M_PI*2 / 360) );
|
|
Quat_AxisAngle( r, vec_k, a[ROLL] * (M_PI*2 / 360) );
|
|
|
|
Quat_Mul( tmp, y, p );
|
|
Quat_Mul( o, tmp, r );
|
|
}
|
|
|
|
NOGLOBALALIAS void Quat_Mul( quat_t o, const quat_t a, const quat_t b )
|
|
{
|
|
/*
|
|
From pretty much any math text you'll find that given:
|
|
|
|
p = a + bi + cj + dk
|
|
q = w + xi + yj + zk
|
|
|
|
You get the product:
|
|
|
|
pq = (aw - bx - cy - dz) +
|
|
(bw + ax + cz - dy)i +
|
|
(cw + ay + dx - bz)j +
|
|
(dw + az + by - cx)k
|
|
|
|
So, keeping in mind that p = a and q = b, and that we store
|
|
elements in (xi, yj, zk, w) order we have:
|
|
|
|
ab = (a[3] * b[3] - a[0] * b[0] - a[1] * b[1] - a[2] * b[2]) +
|
|
(a[0] * b[3] + a[3] * b[0] + a[1] * b[2] - a[2] * b[1])i +
|
|
(a[1] * b[3] + a[3] * b[1] + a[2] * b[0] - a[0] * b[2])j +
|
|
(a[2] * b[3] + a[3] * b[2] + a[0] * b[1] - a[1] * b[0])k
|
|
*/
|
|
|
|
o[0] = a[0] * b[3] + a[3] * b[0] + a[1] * b[2] - a[2] * b[1];
|
|
o[1] = a[1] * b[3] + a[3] * b[1] + a[2] * b[0] - a[0] * b[2];
|
|
o[2] = a[2] * b[3] + a[3] * b[2] + a[0] * b[1] - a[1] * b[0];
|
|
o[3] = a[3] * b[3] - a[0] * b[0] - a[1] * b[1] - a[2] * b[2];
|
|
}
|
|
|
|
NOGLOBALALIAS void QuatToAffine( affine_t *o, const quat_t q )
|
|
{
|
|
float xx = q[0] * q[0];
|
|
float yy = q[1] * q[1];
|
|
float zz = q[2] * q[2];
|
|
|
|
float xy = q[0] * q[1];
|
|
float xz = q[0] * q[2];
|
|
float xw = q[0] * q[3];
|
|
float yz = q[1] * q[2];
|
|
float yw = q[1] * q[3];
|
|
float zw = q[2] * q[3];
|
|
|
|
o->axis[0][0] = 1.0F - 2.0F * (yy + zz); o->axis[1][0] = 2.0F * (xy - zw); o->axis[2][0] = 2.0F * (xz + yw);
|
|
o->axis[0][1] = 2.0F * (xy + zw); o->axis[1][1] = 1.0F - 2.0F * (xx + zz); o->axis[2][1] = 2.0F * (yz - xw);
|
|
o->axis[0][2] = 2.0F * (xz - yw); o->axis[1][2] = 2.0F * (yz + xw); o->axis[2][2] = 1.0F - 2.0F * (xx + yy);
|
|
|
|
o->origin[0] = 0.0F;
|
|
o->origin[1] = 0.0F;
|
|
o->origin[2] = 0.0F;
|
|
}
|
|
|
|
NOGLOBALALIAS void QuatToAffine3x3( float o[3][3], const quat_t q )
|
|
{
|
|
float xx = q[0] * q[0];
|
|
float yy = q[1] * q[1];
|
|
float zz = q[2] * q[2];
|
|
|
|
float xy = q[0] * q[1];
|
|
float xz = q[0] * q[2];
|
|
float xw = q[0] * q[3];
|
|
float yz = q[1] * q[2];
|
|
float yw = q[1] * q[3];
|
|
float zw = q[2] * q[3];
|
|
|
|
o[0][0] = 1.0F - 2.0F * (yy + zz); o[1][0] = 2.0F * (xy - zw); o[2][0] = 2.0F * (xz + yw);
|
|
o[0][1] = 2.0F * (xy + zw); o[1][1] = 1.0F - 2.0F * (xx + zz); o[2][1] = 2.0F * (yz - xw);
|
|
o[0][2] = 2.0F * (xz - yw); o[1][2] = 2.0F * (yz + xw); o[2][2] = 1.0F - 2.0F * (xx + yy);
|
|
}
|
|
|
|
NOGLOBALALIAS void Quat_Ident( quat_t o ) { o[0] = 0; o[1] = 0; o[2] = 0; o[3] = 1; }
|
|
|
|
NOGLOBALALIAS void Vec2_Lrp( vec2_t o, const vec2_t a, const vec2_t b, float t )
|
|
{
|
|
int i;
|
|
float it = 1 - t;
|
|
|
|
for( i = 0; i < 2; i++ )
|
|
o[i] = a[i] * it + b[i] * t;
|
|
}
|
|
|
|
NOGLOBALALIAS void Vec3_Lrp( vec3_t o, const vec3_t a, const vec3_t b, float t )
|
|
{
|
|
int i;
|
|
float it = 1 - t;
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
o[i] = a[i] * it + b[i] * t;
|
|
}
|
|
|
|
NOGLOBALALIAS void Vec4_Lrp( vec4_t o, const vec4_t a, const vec4_t b, float t )
|
|
{
|
|
int i;
|
|
float it = 1 - t;
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
o[i] = a[i] * it + b[i] * t;
|
|
}
|
|
|
|
NOGLOBALALIAS vec_t Vec3_Dist( const vec3_t a, const vec3_t b )
|
|
{
|
|
vec3_t c;
|
|
VectorSubtract( a, b, c );
|
|
|
|
return sqrtf( c[0] * c[0] + c[1] * c[1] + c[2] * c[2] );
|
|
}
|
|
|
|
NOGLOBALALIAS void Vec3_Min( vec3_t o, const vec3_t a, const vec3_t b )
|
|
{
|
|
o[0] = (a[0] < b[0]) ? a[0] : b[0];
|
|
o[1] = (a[1] < b[1]) ? a[1] : b[1];
|
|
o[2] = (a[2] < b[2]) ? a[2] : b[2];
|
|
}
|
|
|
|
NOGLOBALALIAS void Vec3_Max( vec3_t o, const vec3_t a, const vec3_t b )
|
|
{
|
|
o[0] = (a[0] > b[0]) ? a[0] : b[0];
|
|
o[1] = (a[1] > b[1]) ? a[1] : b[1];
|
|
o[2] = (a[2] > b[2]) ? a[2] : b[2];
|
|
}
|
|
|
|
NOGLOBALALIAS void Vec3_Cross( vec3_t o, const vec3_t a, const vec3_t b )
|
|
{
|
|
o[0] = a[1] * b[2] - a[2] * b[1];
|
|
o[1] = a[2] * b[0] - a[0] * b[2];
|
|
o[2] = a[0] * b[1] - a[1] * b[0];
|
|
}
|
|
|
|
NOGLOBALALIAS void Vec4_Cpy( vec4_t o, const vec4_t i ) { o[0] = i[0]; o[1] = i[1]; o[2] = i[2]; o[3] = i[3]; }
|