Overhaul for new collection class scheme to improve distributed objects and NeXT-compatibility.

git-svn-id: svn+ssh://svn.gna.org/svn/gnustep/libs/base/trunk@940 72102866-910b-0410-8b05-ffd578937521
This commit is contained in:
Andrew McCallum 1996-02-22 15:11:43 +00:00
parent bbef3e0b35
commit 8b1ddb9758
52 changed files with 1839 additions and 2931 deletions

View file

@ -1,5 +1,5 @@
/* Implementation for Objective-C BinaryTree collection object
Copyright (C) 1993,1994, 1995, 1996 Free Software Foundation, Inc.
Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
Written by: R. Andrew McCallum <mccallum@gnu.ai.mit.edu>
Date: May 1993
@ -24,11 +24,9 @@
#include <objects/BinaryTree.h>
#include <objects/IndexedCollectionPrivate.h>
#include <objects/BinaryTreeNode.h>
#include <objects/NSString.h>
// do safety checks;
#define SAFE_BinaryTree 1
/* sentinal */
/* the sentinal */
static id nilBinaryTreeNode;
@implementation BinaryTree
@ -37,7 +35,6 @@ static id nilBinaryTreeNode;
{
if (self == [BinaryTree class])
{
[self setVersion:0]; /* beta release */
nilBinaryTreeNode = [[BinaryTreeNode alloc] init];
}
}
@ -45,7 +42,6 @@ static id nilBinaryTreeNode;
/* This is the designated initializer of this class */
- init
{
[super initWithType:@encode(id)];
_count = 0;
_contents_root = [self nilNode];
return self;
@ -80,39 +76,6 @@ static id nilBinaryTreeNode;
[aCoder finishDecodingInterconnectedObjects];
}
- _readInit: (TypedStream*)aStream
{
[super _readInit:aStream];
_count = 0;
_contents_root = [self nilNode];
return self;
}
- _writeContents: (TypedStream*)aStream
{
void archiveElement(elt e)
{
objc_write_object(aStream, e.id_u);
}
objc_write_type(aStream, @encode(unsigned int), &_count);
[self withElementsCall:archiveElement];
// We rely on the nodes to archive their children and parent ptrs;
objc_write_object_reference(aStream, _contents_root);
return self;
}
- _readContents: (TypedStream*)aStream
{
int i;
objc_read_type(aStream, @encode(unsigned int), &_count);
for (i = 0; i < _count; i++)
objc_read_object(aStream, &_contents_root);
// We rely on the nodes to have archived their children and parent ptrs;
objc_read_object(aStream, &_contents_root);
return self;
}
/* Empty copy must empty an allocCopy'ed version of self */
- emptyCopy
{
@ -123,20 +86,10 @@ static id nilBinaryTreeNode;
}
/* This must work without sending any messages to content objects */
- _empty
- (void) _empty
{
_count = 0;
_contents_root = [self nilNode];
return self;
}
/* Override the designated initializer for our superclass IndexedCollection
to make sure we have object contents */
- initWithType: (const char *)contentEncoding
{
if (!ENCODING_IS_OBJECT(contentEncoding))
[self error:"BinaryTree contents must be objects."];
return [self init];
}
- nilNode
@ -173,64 +126,72 @@ static id nilBinaryTreeNode;
return aNode;
}
- (elt) firstElement
- firstObject
{
return [self leftmostNodeFromNode:_contents_root];
return [self leftmostNodeFromNode: _contents_root];
}
- (elt) lastElement
- lastObject
{
return [self rightmostNodeFromNode:_contents_root];
return [self rightmostNodeFromNode: _contents_root];
}
/* This is correct only if the tree is sorted. How to deal with this? */
- maxObject
{
return [self rightmostNodeFromNode: _contents_root];
}
/* This is correct only is the tree is sorted. How to deal with this? */
- (elt) maxElement
- minObject
{
return [self rightmostNodeFromNode:_contents_root];
return [self leftmostNodeFromNode: _contents_root];
}
/* This is correct only is the tree is sorted. How to deal with this? */
- (elt) minElement
{
return [self leftmostNodeFromNode:_contents_root];
}
// returns [self nilNode] is there is no successor;
- (elt) successorOfElement: (elt)anElement
- successorOfObject: anObject
{
id tmp;
/* Make sure we actually own the anObject. */
assert ([anObject binaryTree] == self);
// here tmp is the right node;
if ((tmp = [anElement.id_u rightNode]) != [self nilNode])
return [self leftmostNodeFromNode:tmp];
if ((tmp = [anObject rightNode]) != [self nilNode])
return [self leftmostNodeFromNode: tmp];
// here tmp is the parent;
tmp = [anElement.id_u parentNode];
while (tmp != [self nilNode] && anElement.id_u == [tmp rightNode])
tmp = [anObject parentNode];
while (tmp != [self nilNode] && anObject == [tmp rightNode])
{
anElement.id_u = tmp;
anObject = tmp;
tmp = [tmp parentNode];
}
if (tmp == [self nilNode])
return NO_OBJECT;
return tmp;
}
// I should make sure that [_contents_root parentNode] == [self nilNode];
// Perhaps I should make [_contents_root parentNode] == binaryTreeObj ??;
// returns [self nilNode] is there is no predecessor;
- (elt) predecessorElement: (elt)anElement
- predecessorObject: anObject
{
id tmp;
/* Make sure we actually own the anObject. */
assert ([anObject binaryTree] == self);
// here tmp is the left node;
if ((tmp = [anElement.id_u leftNode]) != [self nilNode])
if ((tmp = [anObject leftNode]) != [self nilNode])
return [self rightmostNodeFromNode:tmp];
// here tmp is the parent;
tmp = [anElement.id_u parentNode];
while (tmp != [self nilNode] && anElement.id_u == [tmp leftNode])
tmp = [anObject parentNode];
while (tmp != [self nilNode] && anObject == [tmp leftNode])
{
anElement.id_u = tmp;
anObject = tmp;
tmp = [tmp parentNode];
}
if (tmp == [self nilNode])
return NO_OBJECT;
return tmp;
}
@ -238,6 +199,10 @@ static id nilBinaryTreeNode;
- rootFromNode: aNode
{
id parentNode;
/* Make sure we actually own the aNode. */
assert ([aNode binaryTree] == self);
while ((parentNode = [aNode parentNode]) != [self nilNode])
aNode = parentNode;
return aNode;
@ -248,6 +213,9 @@ static id nilBinaryTreeNode;
{
unsigned count = 0;
/* Make sure we actually own the aNode. */
assert ([aNode binaryTree] == self);
if (aNode == nil || aNode == [self nilNode])
[self error:"in %s, Can't find depth of nil node", sel_get_name(_cmd)];
do
@ -264,6 +232,9 @@ static id nilBinaryTreeNode;
unsigned leftHeight, rightHeight;
id tmpNode;
/* Make sure we actually own the aNode. */
assert ([aNode binaryTree] == self);
if (aNode == nil || aNode == [self nilNode])
{
[self error:"in %s, Can't find height of nil node", sel_get_name(_cmd)];
@ -288,6 +259,10 @@ static id nilBinaryTreeNode;
- (unsigned) nodeCountUnderNode: aNode
{
unsigned count = 0;
/* Make sure we actually own the aNode. */
assert ([aNode binaryTree] == self);
if ([aNode leftNode] != [self nilNode])
count += 1 + [self nodeCountUnderNode:[aNode leftNode]];
if ([aNode rightNode] != [self nilNode])
@ -299,6 +274,9 @@ static id nilBinaryTreeNode;
{
id y;
/* Make sure we actually own the aNode. */
assert ([aNode binaryTree] == self);
y = [aNode rightNode];
if (y == [self nilNode])
return self;
@ -324,6 +302,9 @@ static id nilBinaryTreeNode;
{
id y;
/* Make sure we actually own the aNode. */
assert ([aNode binaryTree] == self);
y = [aNode leftNode];
if (y == [self nilNode])
return self;
@ -345,156 +326,73 @@ static id nilBinaryTreeNode;
return self;
}
- (elt) elementAtIndex: (unsigned)index
- objectAtIndex: (unsigned)index
{
elt ret;
id ret;
CHECK_INDEX_RANGE_ERROR(index, _count);
ret = [self firstElement];
ret = [self firstObject];
// Not very efficient; Should be rewritten;
while (index--)
ret = [self successorOfElement:ret];
ret = [self successorOfObject: ret];
return ret;
}
- sortAddElement: (elt)newElement byCalling: (int(*)(elt,elt))aFunc
- (void) sortAddObject: newObject
{
id theParent, tmpChild;
[newElement.id_u setLeftNode:[self nilNode]];
[newElement.id_u setRightNode:[self nilNode]];
/* Make sure no one else already owns the newObject. */
assert ([newObject binaryTree] == NO_OBJECT);
/* Claim ownership of the newObject. */
[newObject retain];
[newObject setBinaryTree: self];
[newObject setLeftNode:[self nilNode]];
[newObject setRightNode:[self nilNode]];
theParent = [self nilNode];
tmpChild = _contents_root;
while (tmpChild != [self nilNode])
{
theParent = tmpChild;
if ((*aFunc)(newElement,theParent) < 0)
if ([newObject compare: theParent] < 0)
tmpChild = [tmpChild leftNode];
else
tmpChild = [tmpChild rightNode];
}
[newElement.id_u setParentNode:theParent];
[newObject setParentNode:theParent];
if (theParent == [self nilNode])
_contents_root = newElement.id_u;
_contents_root = newObject;
else
{
if (COMPARE_ELEMENTS(newElement, theParent) < 0)
[theParent setLeftNode:newElement.id_u];
if ([newObject compare: theParent] < 0)
[theParent setLeftNode:newObject];
else
[theParent setRightNode:newElement.id_u];
[theParent setRightNode:newObject];
}
_count++;
RETAIN_ELT(newElement);
return self;
}
- addElement: (elt)newElement
- (void) addObject: newObject
{
// By default insert in sorted order. Is this what we want?;
[self sortAddElement:newElement];
return self;
// By default insert in sorted order.
[self sortAddObject: newObject];
}
// NOTE: This gives you the power to put elements in unsorted order;
- insertElement: (elt)newElement before: (elt)oldElement
{
id tmp;
#if SAFE_BinaryTree
if ([self rootFromNode:oldElement.id_u] != _contents_root)
[self error:"in %s, oldElement not in tree!!", sel_get_name(_cmd)];
#endif
[newElement.id_u setRightNode:[self nilNode]];
[newElement.id_u setLeftNode:[self nilNode]];
if ((tmp = [oldElement.id_u leftNode]) != [self nilNode])
{
[(tmp = [self rightmostNodeFromNode:tmp]) setRightNode:newElement.id_u];
[newElement.id_u setParentNode:tmp];
}
else if (newElement.id_u != [self nilNode])
{
[oldElement.id_u setLeftNode:newElement.id_u];
[newElement.id_u setParentNode:oldElement.id_u];
}
else
{
_contents_root = newElement.id_u;
[newElement.id_u setParentNode:[self nilNode]];
}
_count++;
RETAIN_ELT(newElement);
return self;
}
// NOTE: This gives you the power to put elements in unsorted order;
- insertElement: (elt)newElement after: (elt)oldElement
{
id tmp;
#if SAFE_BinaryTree
if ([self rootFromNode:oldElement.id_u] != _contents_root)
[self error:"in %s, !!!!!!!!", sel_get_name(_cmd)];
#endif
[newElement.id_u setRightNode:[self nilNode]];
[newElement.id_u setLeftNode:[self nilNode]];
if ((tmp = [oldElement.id_u rightNode]) != [self nilNode])
{
[(tmp = [self leftmostNodeFromNode:tmp]) setLeftNode:newElement.id_u];
[newElement.id_u setParentNode:tmp];
}
else if (newElement.id_u != [self nilNode])
{
[oldElement.id_u setRightNode:newElement.id_u];
[newElement.id_u setParentNode:oldElement.id_u];
}
else
{
_contents_root = newElement.id_u;
[newElement.id_u setParentNode:[self nilNode]];
}
_count++;
RETAIN_ELT(newElement);
return self;
}
// NOTE: This gives you the power to put elements in unsorted order;
- insertElement: (elt)newElement atIndex: (unsigned)index
{
CHECK_INDEX_RANGE_ERROR(index, _count+1);
if (index == _count)
[self appendElement:newElement];
else
[self insertElement:newElement before:[self elementAtIndex:index]];
return self;
}
// NOTE: This gives you the power to put elements in unsorted order;
- appendElement: (elt)newElement
{
if (_count == 0)
{
_contents_root = newElement.id_u;
_count = 1;
[newElement.id_u setLeftNode:[self nilNode]];
[newElement.id_u setRightNode:[self nilNode]];
[newElement.id_u setParentNode:[self nilNode]];
}
else
[self insertElement:newElement after:[self lastElement]];
return self;
}
- (elt) removeElement: (elt)oldElement
- (void) removeObject: oldObject
{
id x, y;
if ([oldElement.id_u leftNode] == [self nilNode]
|| [oldElement.id_u rightNode] == [self nilNode])
y = oldElement.id_u;
/* Make sure we actually own the aNode. */
assert ([oldObject binaryTree] == self);
/* Extract the oldObject and sew up the cut. */
if ([oldObject leftNode] == [self nilNode]
|| [oldObject rightNode] == [self nilNode])
y = oldObject;
else
y = [self successorOfElement:oldElement].id_u;
y = [self successorOfObject: oldObject];
if ([y leftNode] != [self nilNode])
x = [y leftNode];
@ -502,88 +400,66 @@ static id nilBinaryTreeNode;
x = [y rightNode];
if (x != [self nilNode])
[x setParentNode:[y parentNode]];
[x setParentNode: [y parentNode]];
if ([y parentNode] == [self nilNode])
_contents_root = x;
else
{
if (y == [[y parentNode] leftNode])
[[y parentNode] setLeftNode:x];
[[y parentNode] setLeftNode: x];
else
[[y parentNode] setRightNode:x];
[[y parentNode] setRightNode: x];
}
if (y != oldElement.id_u)
if (y != oldObject)
{
/* put y in the place of oldElement.id_u */
[y setParentNode:[oldElement.id_u parentNode]];
[y setLeftNode:[oldElement.id_u leftNode]];
[y setRightNode:[oldElement.id_u rightNode]];
if (oldElement.id_u == [[oldElement.id_u parentNode] leftNode])
[[oldElement.id_u parentNode] setLeftNode:y];
/* put y in the place of oldObject */
[y setParentNode: [oldObject parentNode]];
[y setLeftNode: [oldObject leftNode]];
[y setRightNode: [oldObject rightNode]];
if (oldObject == [[oldObject parentNode] leftNode])
[[oldObject parentNode] setLeftNode: y];
else
[[oldElement.id_u parentNode] setRightNode:y];
[[oldElement.id_u leftNode] setParentNode:y];
[[oldElement.id_u rightNode] setParentNode:y];
[[oldObject parentNode] setRightNode: y];
[[oldObject leftNode] setParentNode: y];
[[oldObject rightNode] setParentNode: y];
}
[oldElement.id_u setRightNode:[self nilNode]];
[oldElement.id_u setLeftNode:[self nilNode]];
[oldElement.id_u setParentNode:[self nilNode]];
_count--;
return AUTORELEASE_ELT(oldElement);
/* Release ownership of the object. */
#if 0
[oldObject setRightNode: [self nilNode]];
[oldObject setLeftNode: [self nilNode]];
[oldObject setParentNode: [self nilNode]];
#else
[oldObject setLeftNode: NO_OBJECT];
[oldObject setRightNode: NO_OBJECT];
[oldObject setParentNode: NO_OBJECT];
#endif
[oldObject setBinaryTree: NO_OBJECT];
[oldObject release];
}
- withElementsCall: (void(*)(elt))aFunc whileTrue: (BOOL*)flag
{
void traverse(id aNode)
{
if (!(*flag) || aNode == [self nilNode] || !aNode)
return;
traverse([aNode leftNode]);
(*aFunc)(aNode);
traverse([aNode rightNode]);
}
traverse(_contents_root);
return self;
}
// ENUMERATING;
- withElementsInReverseCall: (void(*)(elt))aFunc whileTrue: (BOOL*)flag
{
void traverse(id aNode)
{
if (*flag || aNode == [self nilNode] || !aNode)
return;
traverse([aNode rightNode]);
(*aFunc)(aNode);
traverse([aNode leftNode]);
}
traverse(_contents_root);
return self;
}
- (BOOL) getNextElement:(elt *)anElementPtr withEnumState: (void**)enumState
- nextObjectWithEnumState: (void**)enumState
{
if (!(*enumState))
*enumState = [self leftmostNodeFromNode:_contents_root];
else
*enumState = [self successorOfElement:*enumState].id_u;
*anElementPtr = *enumState;
if (*enumState)
return YES;
return NO;
*enumState = [self successorOfObject:*enumState];
return (id) *enumState;
}
- (BOOL) getPrevElement:(elt *)anElementPtr withEnumState: (void**)enumState
- prevObjectWithEnumState: (void**)enumState
{
if (!(*enumState))
*enumState = [self rightmostNodeFromNode:_contents_root];
else
*enumState = [self predecessorElement:*enumState].id_u;
*anElementPtr = *enumState;
if (*enumState)
return YES;
return NO;
*enumState = [self predecessorObject:*enumState];
return (id) *enumState;
}
- (unsigned) count
@ -591,14 +467,12 @@ static id nilBinaryTreeNode;
return _count;
}
/* replace this with something better eventually */
- _tmpPrintFromNode: aNode indent: (int)count
{
printf("%-*s", count, "");
if ([aNode respondsTo:@selector(printForDebugger)])
[aNode printForDebugger];
else
printf("?\n");
printf("%s\n", [[aNode description] cStringNoCopy]);
printf("%-*s.", count, "");
if ([aNode leftNode] != [self nilNode])
[self _tmpPrintFromNode:[aNode leftNode] indent:count+2];
@ -621,3 +495,112 @@ static id nilBinaryTreeNode;
@end
/* These methods removed because they belong to an
OrderedCollection implementation, not an IndexedCollection
implementation. */
#if 0
// NOTE: This gives you the power to put elements in unsorted order;
- insertObject: newObject before: oldObject
{
id tmp;
/* Make sure no one else already owns the newObject. */
assert ([newObject linkedList] == NO_OBJECT);
/* Claim ownership of the newObject. */
[newObject retain];
[newObject setBinaryTree: self];
[newObject setRightNode:[self nilNode]];
[newObject setLeftNode:[self nilNode]];
if ((tmp = [oldObject leftNode]) != [self nilNode])
{
[(tmp = [self rightmostNodeFromNode:tmp]) setRightNode:newObject];
[newObject setParentNode:tmp];
}
else if (newObject != [self nilNode])
{
[oldObject setLeftNode:newObject];
[newObject setParentNode:oldObject];
}
else
{
_contents_root = newObject;
[newObject setParentNode:[self nilNode]];
}
_count++;
RETAIN_ELT(newObject);
return self;
}
// NOTE: This gives you the power to put elements in unsorted order;
- insertObject: newObject after: oldObject
{
id tmp;
/* Make sure no one else already owns the newObject. */
assert ([newObject linkedList] == NO_OBJECT);
/* Claim ownership of the newObject. */
[newObject retain];
[newObject setBinaryTree: self];
[newObject setRightNode:[self nilNode]];
[newObject setLeftNode:[self nilNode]];
if ((tmp = [oldObject rightNode]) != [self nilNode])
{
[(tmp = [self leftmostNodeFromNode:tmp]) setLeftNode:newObject];
[newObject setParentNode:tmp];
}
else if (newObject != [self nilNode])
{
[oldObject setRightNode:newObject];
[newObject setParentNode:oldObject];
}
else
{
_contents_root = newObject;
[newObject setParentNode:[self nilNode]];
}
_count++;
RETAIN_ELT(newObject);
return self;
}
// NOTE: This gives you the power to put elements in unsorted order;
- insertObject: newObject atIndex: (unsigned)index
{
CHECK_INDEX_RANGE_ERROR(index, _count+1);
if (index == _count)
[self appendObject:newObject];
else
[self insertObject:newObject before:[self ObjectAtIndex:index]];
return self;
}
// NOTE: This gives you the power to put elements in unsorted order;
- appendObject: newObject
{
if (_count == 0)
{
/* Make sure no one else already owns the newObject. */
assert ([newObject linkedList] == NO_OBJECT);
/* Claim ownership of the newObject. */
[newObject retain];
[newObject setBinaryTree: self];
_contents_root = newObject;
_count = 1;
[newObject setLeftNode:[self nilNode]];
[newObject setRightNode:[self nilNode]];
[newObject setParentNode:[self nilNode]];
}
else
[self insertObject:newObject after:[self lastObject]];
return self;
}
#endif