mirror of
https://github.com/gnustep/libs-base.git
synced 2025-05-29 16:01:38 +00:00
Initial revision
git-svn-id: svn+ssh://svn.gna.org/svn/gnustep/libs/base/trunk@1 72102866-910b-0410-8b05-ffd578937521
This commit is contained in:
commit
3a43130da6
248 changed files with 40027 additions and 0 deletions
307
Source/Random.m
Normal file
307
Source/Random.m
Normal file
|
@ -0,0 +1,307 @@
|
|||
/* Implementation Objective-C object providing randoms in uniform distribution
|
||||
Copyright (C) 1994 Free Software Foundation, Inc.
|
||||
|
||||
Written by: R. Andrew McCallum <mccallum@gnu.ai.mit.edu>
|
||||
Date: July 1994
|
||||
|
||||
This file is part of the GNU Objective C Class Library.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Library General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Library General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Library General Public
|
||||
License along with this library; if not, write to the Free
|
||||
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
/* TODO:
|
||||
RNGBerkeley nextRandom returns only positive numbers
|
||||
RNGAdditiveCongruential nextRandom returns positive and negative numbers
|
||||
*/
|
||||
|
||||
#include <objects/Random.h>
|
||||
#include <objects/RNGBerkeley.h>
|
||||
#include <objects/Time.h>
|
||||
#include <objects/Coder.h>
|
||||
#include <limits.h>
|
||||
#include <assert.h>
|
||||
|
||||
#define ABS(x) ((x) < 0 ? -x : x)
|
||||
|
||||
typedef union {
|
||||
float f;
|
||||
unsigned long u;
|
||||
} float_and_long_u;
|
||||
|
||||
typedef union {
|
||||
double d;
|
||||
unsigned long u[2];
|
||||
} double_and_long_u;
|
||||
|
||||
static float_and_long_u singleMantissa;
|
||||
static double_and_long_u doubleMantissa;
|
||||
|
||||
static id defaultRNG = nil;
|
||||
@class RNGBerkeley;
|
||||
|
||||
@implementation Random
|
||||
|
||||
+ initialize
|
||||
{
|
||||
if (self == [Random class])
|
||||
{
|
||||
defaultRNG = [RNGBerkeley class];
|
||||
assert(sizeof(double) == 2 * sizeof(long));
|
||||
assert(sizeof(float) == sizeof(long));
|
||||
|
||||
/* Following taken from libg++ */
|
||||
|
||||
/*
|
||||
The following is a hack that I attribute to
|
||||
Andres Nowatzyk at CMU. The intent of the loop
|
||||
is to form the smallest number 0 <= x < 1.0,
|
||||
which is then used as a mask for two longwords.
|
||||
this gives us a fast way way to produce double
|
||||
precision numbers from longwords.
|
||||
|
||||
I know that this works for IEEE and VAX floating
|
||||
point representations.
|
||||
|
||||
A further complication is that gnu C will blow
|
||||
the following loop, unless compiled with -ffloat-store,
|
||||
because it uses extended representations for some of
|
||||
of the comparisons. Thus, we have the following hack.
|
||||
If we could specify #pragma optimize, we wouldn't need this.
|
||||
*/
|
||||
{
|
||||
double_and_long_u t;
|
||||
float_and_long_u s;
|
||||
|
||||
#if _IEEE == 1
|
||||
|
||||
t.d = 1.5;
|
||||
if ( t.u[1] == 0 ) { // sun word order?
|
||||
t.u[0] = 0x3fffffff;
|
||||
t.u[1] = 0xffffffff;
|
||||
}
|
||||
else {
|
||||
t.u[0] = 0xffffffff; // encore word order?
|
||||
t.u[1] = 0x3fffffff;
|
||||
}
|
||||
|
||||
s.u = 0x3fffffff;
|
||||
#else
|
||||
volatile double x = 1.0; /* volatile needed when fp hardware used,
|
||||
and has greater precision than memory
|
||||
doubles */
|
||||
double y = 0.5;
|
||||
volatile float xx = 1.0; /* volatile needed when fp hardware used,
|
||||
and has greater precision than memory
|
||||
floats */
|
||||
float yy = 0.5;
|
||||
do { /* find largest fp-number < 2.0 */
|
||||
t.d = x;
|
||||
x += y;
|
||||
y *= 0.5;
|
||||
} while (x != t.d && x < 2.0);
|
||||
|
||||
do { /*find largest fp-number < 2.0 */
|
||||
s.f = xx;
|
||||
xx += yy;
|
||||
yy *= 0.5;
|
||||
} while (xx != s.f && xx < 2.0);
|
||||
#endif
|
||||
// set doubleMantissa to 1 for each doubleMantissa bit;
|
||||
doubleMantissa.d = 1.0;
|
||||
doubleMantissa.u[0] ^= t.u[0];
|
||||
doubleMantissa.u[1] ^= t.u[1];
|
||||
|
||||
// set singleMantissa to 1 for each singleMantissa bit;
|
||||
singleMantissa.f = 1.0;
|
||||
singleMantissa.u ^= s.u;
|
||||
}
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
+ setDefaultRandomGeneratorClass: (id <RandomGenerating>)aRNG
|
||||
{
|
||||
defaultRNG = aRNG;
|
||||
return self;
|
||||
}
|
||||
|
||||
+ (id <RandomGenerating>) defaultRandomGeneratorClass
|
||||
{
|
||||
return defaultRNG;
|
||||
}
|
||||
|
||||
/* For testing randomness of a random generator,
|
||||
the closer to r the returned value is, the better the randomness. */
|
||||
|
||||
+ (float) chiSquareOfRandomGenerator: (id <RandomGenerating>)aRNG
|
||||
iterations: (int)n
|
||||
range: (long)r
|
||||
{
|
||||
long table[r];
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < r; i++)
|
||||
table[i] = 0;
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
j = ABS([aRNG nextRandom]) % r;
|
||||
table[j]++;
|
||||
}
|
||||
j = 0;
|
||||
for (i = 0; i < r; i++)
|
||||
j += table[i] * table[i];
|
||||
return ((((float)r * j) / n) - n);
|
||||
}
|
||||
|
||||
/* For testing randomness of a random generator,
|
||||
the closer to 1.0 the returned value is, the better the randomness. */
|
||||
|
||||
+ (float) chiSquareOfRandomGenerator: (id <RandomGenerating>)aRNG
|
||||
{
|
||||
return [self chiSquareOfRandomGenerator:aRNG
|
||||
iterations:1000
|
||||
range:100] / 100.0;
|
||||
}
|
||||
|
||||
- initWithRandomGenerator: (id <RandomGenerating>)aRNG
|
||||
{
|
||||
[super init];
|
||||
rng = aRNG;
|
||||
return self;
|
||||
}
|
||||
|
||||
- init
|
||||
{
|
||||
/* Without the (id) we get:
|
||||
Random.m: In function `_i_Random__init':
|
||||
Random.m:172: warning: method `alloc' not implemented by protocol.
|
||||
This is a bug in gcc.
|
||||
*/
|
||||
return [self initWithRandomGenerator:
|
||||
[[(id)[[self class] defaultRandomGeneratorClass] alloc] init]];
|
||||
}
|
||||
|
||||
- setRandomSeedFromClock
|
||||
{
|
||||
[self setRandomSeed:[Time secondClockValue]];
|
||||
return self;
|
||||
}
|
||||
|
||||
- setRandomSeed: (long)seed
|
||||
{
|
||||
[rng setRandomSeed:seed];
|
||||
return self;
|
||||
}
|
||||
|
||||
- (long) randomInt
|
||||
{
|
||||
return [rng nextRandom];
|
||||
}
|
||||
|
||||
- (long) randomIntBetween: (long)lowBound and: (long)highBound
|
||||
{
|
||||
return ([rng nextRandom] % (highBound - lowBound + 1) + lowBound);
|
||||
}
|
||||
|
||||
/* return between 0 and numSides-1 */
|
||||
- (long) randomDie: (long)numSides
|
||||
{
|
||||
return ([rng nextRandom] % (numSides+1) - 1);
|
||||
}
|
||||
|
||||
- (BOOL) randomCoin
|
||||
{
|
||||
return ([rng nextRandom] % 2);
|
||||
}
|
||||
|
||||
- (BOOL) randomCoinWithProbability: (double)p
|
||||
{
|
||||
return (p >= [self randomDoubleProbability]);
|
||||
}
|
||||
|
||||
/* Returns 0.0 <= r < 1.0. Is this what people want?
|
||||
I'd like it to return 1.0 also. */
|
||||
- (float) randomFloat
|
||||
{
|
||||
union {long i; float f;} result;
|
||||
result.f = 1.0;
|
||||
result.i |= ([rng nextRandom] & singleMantissa.u);
|
||||
result.f -= 1.0;
|
||||
assert(result.f < 1.0 && result.f >= 0);
|
||||
return result.f;
|
||||
}
|
||||
|
||||
- (float) randomFloatBetween: (float)lowBound and: (float)highBound
|
||||
{
|
||||
return [self randomFloat] * (highBound - lowBound);
|
||||
}
|
||||
|
||||
- (float) randomFloatProbability
|
||||
{
|
||||
return [self randomFloat];
|
||||
}
|
||||
|
||||
/* Returns 0.0 <= r < 1.0. Is this what people want?
|
||||
I'd like it to return 1.0 also. */
|
||||
- (double) randomDouble
|
||||
{
|
||||
union {unsigned long u[2]; double d;} result;
|
||||
|
||||
result.d = 1.0;
|
||||
result.u[0] |= ([rng nextRandom] & doubleMantissa.u[0]);
|
||||
result.u[1] |= ([rng nextRandom] & doubleMantissa.u[1]);
|
||||
result.d -= 1.0;
|
||||
assert(result.d < 1.0 && result.d >= 0);
|
||||
return result.d;
|
||||
}
|
||||
|
||||
- (double) randomDoubleBetween: (double)lowBound and: (double)highBound
|
||||
{
|
||||
return [self randomDouble] * (highBound - lowBound);
|
||||
}
|
||||
|
||||
- (double) randomDoubleProbability
|
||||
{
|
||||
return [self randomDouble];
|
||||
}
|
||||
|
||||
- (void) encodeWithCoder: (Coder*)anEncoder
|
||||
{
|
||||
[self notImplemented:_cmd];
|
||||
}
|
||||
|
||||
+ newWithCoder: (Coder*)aDecoder
|
||||
{
|
||||
[self notImplemented:_cmd];
|
||||
return self;
|
||||
}
|
||||
|
||||
- write: (TypedStream*)aStream
|
||||
{
|
||||
[super write:aStream];
|
||||
// [rng read:aStream];
|
||||
[self notImplemented:_cmd];
|
||||
return self;
|
||||
}
|
||||
|
||||
- read: (TypedStream*)aStream
|
||||
{
|
||||
[super read:aStream];
|
||||
// [rng read:aStream];
|
||||
[self notImplemented:_cmd];
|
||||
return self;
|
||||
}
|
||||
|
||||
@end
|
Loading…
Add table
Add a link
Reference in a new issue