fteqw/engine/client/r_part.c
Spoike a38a933fdd be more verbose about the port that we're redirected to when acting as an nq client.
add r_coronas_occlusion cvar. when set to 1, coronas are occluded by mdl geometry rather than just physical stuff. fix hitmodel stuff slightly.
rewrote if command handling. now properly supports operator precedence.
x11: try to fix XIM on ubuntu.
qcc: Add -frootconstructor


git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@4986 fc73d0e0-1445-4013-8a0c-d673dee63da5
2015-09-10 10:16:26 +00:00

1134 lines
32 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the included (GNU.txt) GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "quakedef.h"
#define NUMVERTEXNORMALS 162
float r_avertexnormals[NUMVERTEXNORMALS][3] = {
#include "anorms.h"
};
#include "shader.h"
#include "com_mesh.h"
//FIXME: we're likely going to want to thread the building routine at some point.
//the alias mesh stuff will need some rework as it uses statics inside.
#define DESCSPERSHADER 8
typedef struct
{
int x, y, z; //rebuilt if changed
int key;
model_t *loadingmodel; //needs rebuilding, but wait till this is loaded.
struct
{
shader_t *shader;
mesh_t mesh;
mesh_t *pmesh;
vbo_t vbo;
} soups[64];
size_t numsoups;
} cluttersector_t;
static cluttersector_t cluttersector[3*3*3];
cvar_t r_clutter_density = CVARD("r_clutter_density", "0", "Scaler for clutter counts. 0 disables clutter completely.\nClutter requires shaders with 'fte_clutter MODEL SPACING SCALEMIN SCALEMAX ZOFS ANGLEMIN ANGLEMAX' terms");
cvar_t r_clutter_distance = CVARD("r_clutter_distance", "1024", "Distance at which clutter will become invisible."); //should be used by various shaders to fade it out by here
void R_Clutter_Init(void)
{
Cvar_Register(&r_clutter_density, "Ground Clutter");
Cvar_Register(&r_clutter_distance, "Ground Clutter");
}
typedef struct
{
model_t *loadingmodel;
struct clutter_build_ctx_soup_s
{
shader_t *shader;
vecV_t *coord;
vec2_t *texcoord;
vec4_t *colour;
vec3_t *normal;
vec3_t *sdir;
vec3_t *tdir;
index_t *idx;
size_t numverts;
size_t numidx;
size_t maxverts;
size_t maxidx;
} soups[64];
unsigned int numsoups;
float area[DESCSPERSHADER]; //here so it can overflow, so large values with small surfaces actually does something. not evenly perhaps, but not much else we can do
unsigned int x, y, z, w;
} clutter_build_ctx_t;
//to make things repeatable so that people can depend upon placement.
unsigned int R_Clutter_Random(clutter_build_ctx_t *ctx)
{ //ripped from wikipedia (originally called xorshift128)
unsigned int t = ctx->x ^ (ctx->x << 11);
ctx->x = ctx->y; ctx->y = ctx->z; ctx->z = ctx->w;
return ctx->w = ctx->w ^ (ctx->w >> 19) ^ t ^ (t >> 8);
}
float R_Clutter_FRandom(clutter_build_ctx_t *ctx)
{
unsigned int r = R_Clutter_Random(ctx);
return (r & 0xffffff) / (float)0xffffff;
}
static void R_Clutter_Insert_Soup(clutter_build_ctx_t *ctx, shader_t *shader, vecV_t *fte_restrict coord, vec2_t *fte_restrict texcoord, vec3_t *fte_restrict normal, vec3_t *fte_restrict sdir, vec3_t *fte_restrict tdir, vec4_t *fte_restrict colours, size_t numverts, index_t *fte_restrict index, size_t numidx, float scale, vec3_t origin, vec3_t axis[])
{
vec3_t diffuse, ambient, ldir;
float dot;
struct clutter_build_ctx_soup_s *soup = NULL;
size_t i;
shader_t *os = shader;
shader = R_RegisterShader(va("clutter#replace=%s", os->name), SUF_NONE,
"{\n"
"program defaultsprite#MASK=0.666\n"
// "surfaceparm nodlight\n"
"surfaceparm noshadows\n"
// "cull disable\n"
"{\n"
"map $diffuse\n"
"rgbgen vertex\n"
"alphagen vertex\n"
// "alphafunc ge128\n"
"}\n"
"}\n"
);
*shader->defaulttextures = *os->defaulttextures;
for (i = 0, soup = ctx->soups; i < ctx->numsoups; i++, soup++)
{
if (soup->shader == shader)
if (soup->numverts + numverts <= MAX_INDICIES)
break;
}
if (i == ctx->numsoups)
{
if (i == sizeof(ctx->soups)/sizeof(ctx->soups[0]))
return; //too many different shaders or something
soup->shader = shader;
ctx->numsoups++;
}
//inject the indicies
if (soup->numidx + numidx > soup->maxidx)
{
soup->maxidx = (soup->numidx + numidx) * 2;
soup->idx = BZ_Realloc(soup->idx, sizeof(*soup->idx) * soup->maxidx);
}
for (i = 0; i < numidx; i++)
soup->idx[soup->numidx++] = soup->numverts+*index++;
cl.worldmodel->funcs.LightPointValues(cl.worldmodel, origin, diffuse, ambient, ldir);
VectorScale(ambient, 1/255.0, ambient);
VectorScale(diffuse, 1/255.0, diffuse);
//inject the verts
if (soup->numverts + numverts > soup->maxverts)
{
soup->maxverts = (soup->numverts + numverts) * 2;
soup->coord = BZ_Realloc(soup->coord, sizeof(*soup->coord) * soup->maxverts);
soup->texcoord = BZ_Realloc(soup->texcoord, sizeof(*soup->texcoord) * soup->maxverts);
soup->colour = BZ_Realloc(soup->colour, sizeof(*soup->colour) * soup->maxverts);
soup->normal = BZ_Realloc(soup->normal, sizeof(*soup->normal) * soup->maxverts);
soup->sdir = BZ_Realloc(soup->sdir, sizeof(*soup->sdir) * soup->maxverts);
soup->tdir = BZ_Realloc(soup->tdir, sizeof(*soup->tdir) * soup->maxverts);
}
for (i = 0; i < numverts; i++)
{
VectorMA(origin, scale*coord[i][0], axis[0], soup->coord[soup->numverts]);
VectorMA(soup->coord[soup->numverts], scale*coord[i][1], axis[1], soup->coord[soup->numverts]);
VectorMA(soup->coord[soup->numverts], scale*coord[i][2], axis[2], soup->coord[soup->numverts]);
Vector2Copy(texcoord[i], soup->texcoord[soup->numverts]);
VectorMA(vec3_origin, normal[i][0], axis[0], soup->normal[soup->numverts]);
VectorMA(soup->normal[soup->numverts], normal[i][1], axis[1], soup->normal[soup->numverts]);
VectorMA(soup->normal[soup->numverts], normal[i][2], axis[2], soup->normal[soup->numverts]);
VectorMA(vec3_origin, sdir[i][0], axis[0], soup->sdir[soup->numverts]);
VectorMA(soup->sdir[soup->numverts], sdir[i][1], axis[1], soup->sdir[soup->numverts]);
VectorMA(soup->sdir[soup->numverts], sdir[i][2], axis[2], soup->sdir[soup->numverts]);
VectorMA(vec3_origin, tdir[i][0], axis[0], soup->tdir[soup->numverts]);
VectorMA(soup->tdir[soup->numverts], tdir[i][1], axis[1], soup->tdir[soup->numverts]);
VectorMA(soup->tdir[soup->numverts], tdir[i][2], axis[2], soup->tdir[soup->numverts]);
// VectorCopy(ambient, soup->colour[soup->numverts]);
dot = DotProduct(ldir, soup->normal[soup->numverts]);
if (dot < 0)
dot = 0;
VectorMA(ambient, dot, diffuse, soup->colour[soup->numverts]);
if (colours) //most model formats don't have vertex colours
soup->colour[soup->numverts][3] = colours[i][3];
else
soup->colour[soup->numverts][3] = 1;
soup->numverts++;
}
}
static void R_Clutter_Insert_Mesh(clutter_build_ctx_t *ctx, model_t *mod, float scale, vec3_t origin, vec3_t axis[3])
{
mesh_t mesh;
galiasinfo_t *inf;
unsigned int surfnum = 0;
entity_t re;
unsigned int randanim = R_Clutter_Random(ctx);
unsigned int randskin = R_Clutter_Random(ctx);
if (!mod)
return;
if (mod->type == mod_alias)
{
//fill in the parts of the entity_t that Alias_GAliasBuildMesh needs.
memset(&re, 0, sizeof(re));
re.framestate.g[FS_REG].lerpweight[0] = 1;
re.model = mod;
inf = (galiasinfo_t*)Mod_Extradata (mod);
while(inf)
{
galiasskin_t *skins = inf->ofsskins;
re.framestate.g[FS_REG].frame[0] = randanim%inf->numanimations;
if (skins->numframes)
{
unsigned int frame = randskin%skins->numframes;
Alias_GAliasBuildMesh(&mesh, NULL, inf, surfnum, &re, false);
surfnum++;
//fixme: if shares verts, rewind the verts and don't add more somehow, while being careful with shaders
R_Clutter_Insert_Soup(ctx, skins->frame[frame].shader, mesh.xyz_array, mesh.st_array, mesh.normals_array, mesh.snormals_array, mesh.tnormals_array, mesh.colors4f_array[0], mesh.numvertexes, mesh.indexes, mesh.numindexes, scale, origin, axis);
}
inf = inf->nextsurf;
}
Alias_FlushCache(); //it got built using an entity on the stack, make sure other stuff doesn't get hurt.
}
}
static void R_Clutter_Insert(void *vctx, vec3_t *fte_restrict points, size_t numtris, shader_t *surface)
{
struct shader_clutter_s *clut;
unsigned int obj;
clutter_build_ctx_t *ctx = vctx;
model_t *mod[DESCSPERSHADER];
if (!surface || !surface->clutter)
return; //nothing to do.
//avoid returning on error, so the randomization is dependable when content is still loading.
for (clut = surface->clutter, obj = 0; clut && obj <= DESCSPERSHADER; clut = clut->next, obj++)
{
mod[obj] = Mod_ForName(clut->modelname, MLV_WARN);
if (mod[obj]->loadstate == MLS_LOADING)
{
if (!ctx->loadingmodel)
ctx->loadingmodel = mod[obj];
mod[obj] = NULL;
}
else if (mod[obj]->type != mod_alias)
mod[obj] = NULL;
}
while(numtris-->0)
{
vec3_t xd;
vec3_t yd;
vec3_t zd;
vec3_t norm;
vec3_t axis[3];
vec3_t org, dir;
float dot;
float triarea;
// vec3_t discard;
// unsigned int subimage;
vec_t xm, ym, zm, s;
VectorSubtract(points[1], points[0], xd);
VectorSubtract(points[2], points[0], yd);
VectorSubtract(points[2], points[1], zd);
CrossProduct(yd, xd, norm);
VectorNormalize(norm);
if (norm[2] >= 0.7)
{
//determine area of triangle
xm = Length(xd);
ym = Length(yd);
zm = Length(zd);
s = (xm+ym+zm)/2;
triarea = sqrt(s*(s-xm)*(s-ym)*(s-zm));
for (clut = surface->clutter, obj = 0; clut && obj <= DESCSPERSHADER; clut = clut->next, obj++)
{
float spacing = clut->spacing / r_clutter_density.value;
if (spacing < 1)
spacing = 1;
ctx->area[obj] += triarea;
while (ctx->area[obj] >= spacing)
{
float scale = clut->scalemin + R_Clutter_FRandom(ctx) * (clut->scalemax-clut->scalemin);
ctx->area[obj] -= spacing;
//pick a random spot
xm = R_Clutter_FRandom(ctx)*R_Clutter_FRandom(ctx);
ym = R_Clutter_FRandom(ctx) * (1-xm);
VectorMA(points[0], xm, xd, org);
VectorMA(org, ym, yd, org);
//randomize the direction
dot = clut->anglemin + R_Clutter_FRandom(ctx) * (clut->anglemax-clut->anglemin);
dir[0] = cos(dot);
dir[1] = sin(dot);
dir[2] = 0;
//figure out various directions
dot = -DotProduct(dir, norm);
VectorMA(dir, dot, norm, dir);
VectorNormalize(dir);
VectorCopy(norm, axis[2]);
CrossProduct(axis[2], dir, axis[1]);
CrossProduct(axis[1], axis[2], axis[0]);
VectorMA(org, clut->zofs*scale, axis[2], org);
R_Clutter_Insert_Mesh(ctx, mod[obj], scale, org, axis);
/*
VectorMA(org, r_clutter_size.value/2, dir, vertcoord[numverts]);
VectorMA(org, -(r_clutter_size.value/2), dir, vertcoord[numverts+1]);
VectorMA(vertcoord[numverts], r_clutter_height.value, norm, vertcoord[numverts+2]);
VectorMA(vertcoord[numverts+1], r_clutter_height.value, norm, vertcoord[numverts+3]);
subimage = R_Clutter_Random(ctx);
Vector2Set(texcoord[numverts], subimage%r_clutter_atlaswidth.ival, (subimage/r_clutter_atlaswidth.ival)%r_clutter_atlasheight.ival);
texcoord[numverts][0] *= 1/r_clutter_atlaswidth.value;
texcoord[numverts][1] *= 1/r_clutter_atlasheight.value;
Vector2Set(texcoord[numverts+1], texcoord[numverts][0]+(1/r_clutter_atlaswidth.value), texcoord[numverts][1]);
Vector2Set(texcoord[numverts+2], texcoord[numverts][0] , texcoord[numverts][1]);
Vector2Set(texcoord[numverts+3], texcoord[numverts][0]+(1/r_clutter_atlaswidth.value), texcoord[numverts][1]);
texcoord[numverts+0][1]+=(1/r_clutter_atlasheight.value);
texcoord[numverts+1][1]+=(1/r_clutter_atlasheight.value);
Vector4Set(colours[numverts+0], 1, 1, 1, 1);
VectorMA(org, 1/8.0, norm, org);//push away from the surface to avoid precision issues with lighting on slopes
cl.worldmodel->funcs.LightPointValues(cl.worldmodel, org, colours[numverts+0], discard, discard);
VectorScale(colours[numverts+0], 1/512.0, colours[numverts+0]);
Vector4Copy(colours[numverts+0], colours[numverts+1]);
Vector4Copy(colours[numverts+0], colours[numverts+2]);
Vector4Copy(colours[numverts+1], colours[numverts+3]);
indexes[numidx+0] = numverts+0;
indexes[numidx+1] = numverts+2;
indexes[numidx+2] = numverts+1;
indexes[numidx+3] = numverts+2;
indexes[numidx+4] = numverts+3;
indexes[numidx+5] = numverts+1;
numverts += 4;
numidx += 6;
*/
}
}
}
points += 3;
}
}
void R_Clutter_Emit(batch_t **batches)
{
const float cluttersize = r_clutter_distance.value;
int vx, vy, vz;
int x, y, z, key, i, j;
cluttersector_t *sect;
batch_t *b;
qboolean rebuildlimit = false;
if (!cl.worldmodel || cl.worldmodel->loadstate != MLS_LOADED || r_clutter_density.value <= 0 || (r_refdef.flags & RDF_NOWORLDMODEL))
return;
if (qrenderer != QR_OPENGL) //vbo only!
return;
//rebuild if any of the cvars changes.
key = r_clutter_density.modified + r_clutter_distance.modified;
vx = floor((r_refdef.vieworg[0] / cluttersize));
vy = floor((r_refdef.vieworg[1] / cluttersize));
vz = floor((r_refdef.vieworg[2] / cluttersize));
for (z = vz-1; z <= vz+1; z++)
for (y = vy-1; y <= vy+1; y++)
for (x = vx-1; x <= vx+1; x++)
{
int ix = x%3;
int iy = y%3;
int iz = z%3;
if (ix < 0)
ix += 3;
if (iy < 0)
iy += 3;
if (iz < 0)
iz += 3;
sect = &cluttersector[ix + (iy*3) + (iz*3*3)];
if (sect->loadingmodel && sect->loadingmodel->loadstate != MLS_LOADING)
{
sect->loadingmodel = NULL;
sect->key-=1; //rebuild even if failed, this covers multiple models.
}
if (sect->x != x || sect->y != y || sect->z != z || sect->key != key)
{
vbobctx_t vctx;
clutter_build_ctx_t cctx;
vec3_t org = {x*cluttersize+(cluttersize/2),y*cluttersize+(cluttersize/2),z*cluttersize+(cluttersize/2)};
vec3_t down = {0, 0, -1};
vec3_t forward = {1, 0, 0};
vec3_t right = {0, 1, 0};
if (r_refdef.recurse) //FIXME
continue;
if (rebuildlimit)
continue;
rebuildlimit = true;
sect->x = x;
sect->y = y;
sect->z = z;
sect->key = key;
//make sure any old state is gone
for (i = 0; i < sect->numsoups; i++)
{
BE_VBO_Destroy(&sect->soups[i].vbo.coord);
BE_VBO_Destroy(&sect->soups[i].vbo.indicies);
}
sect->numsoups = 0;
memset(&cctx, 0, sizeof(cctx));
cctx.x = x;
cctx.y = y;
cctx.z = z;
cctx.w = (sect-cluttersector)+1;
Mod_ClipDecal(cl.worldmodel, org, down, forward, right, cluttersize, R_Clutter_Insert, &cctx);
sect->loadingmodel = cctx.loadingmodel;
for (i = 0; i < cctx.numsoups; i++)
{
if (cctx.soups[i].numverts)
{
sect->soups[sect->numsoups].shader = cctx.soups[i].shader;
sect->soups[sect->numsoups].pmesh = &sect->soups[sect->numsoups].mesh;
BE_VBO_Begin(&vctx, (sizeof(cctx.soups[i].coord[0]) + sizeof(cctx.soups[i].texcoord[0]) + sizeof(cctx.soups[i].colour[0]) + 3*sizeof(vec3_t))*cctx.soups[i].numverts);
BE_VBO_Data(&vctx, cctx.soups[i].coord, sizeof(cctx.soups[i].coord[0])*cctx.soups[i].numverts, &sect->soups[sect->numsoups].vbo.coord);
BE_VBO_Data(&vctx, cctx.soups[i].texcoord, sizeof(cctx.soups[i].texcoord[0])*cctx.soups[i].numverts, &sect->soups[sect->numsoups].vbo.texcoord);
BE_VBO_Data(&vctx, cctx.soups[i].colour, sizeof(cctx.soups[i].colour[0])*cctx.soups[i].numverts, &sect->soups[sect->numsoups].vbo.colours[0]);
BE_VBO_Data(&vctx, cctx.soups[i].normal, sizeof(cctx.soups[i].normal[0])*cctx.soups[i].numverts, &sect->soups[sect->numsoups].vbo.normals);
BE_VBO_Data(&vctx, cctx.soups[i].sdir, sizeof(cctx.soups[i].sdir[0])*cctx.soups[i].numverts, &sect->soups[sect->numsoups].vbo.svector);
BE_VBO_Data(&vctx, cctx.soups[i].tdir, sizeof(cctx.soups[i].tdir[0])*cctx.soups[i].numverts, &sect->soups[sect->numsoups].vbo.tvector);
BE_VBO_Finish(&vctx, cctx.soups[i].idx, sizeof(cctx.soups[i].idx[0])*cctx.soups[i].numidx, &sect->soups[sect->numsoups].vbo.indicies);
sect->soups[sect->numsoups].vbo.colours_bytes = false;
sect->soups[sect->numsoups].mesh.numindexes = sect->soups[sect->numsoups].vbo.indexcount = cctx.soups[i].numidx;
sect->soups[sect->numsoups].mesh.numvertexes = sect->soups[sect->numsoups].vbo.vertcount = cctx.soups[i].numverts;
sect->numsoups++;
}
BZ_Free(cctx.soups[i].coord);
BZ_Free(cctx.soups[i].texcoord);
BZ_Free(cctx.soups[i].colour);
BZ_Free(cctx.soups[i].normal);
BZ_Free(cctx.soups[i].sdir);
BZ_Free(cctx.soups[i].tdir);
BZ_Free(cctx.soups[i].idx);
}
}
//emit a batch if we have grassy surfaces in this block
for (i = 0; i < sect->numsoups; i++)
{
b = BE_GetTempBatch();
if (!b)
return;
memset(b, 0, sizeof(*b));
for (j = 0; j < MAXRLIGHTMAPS; j++)
b->lightmap[j] = -1;
b->ent = &r_worldentity;
b->meshes = 1;
b->mesh = &sect->soups[i].pmesh;
b->vbo = &sect->soups[i].vbo;
b->shader = sect->soups[i].shader;
b->next = batches[b->shader->sort];
batches[b->shader->sort] = b;
}
}
}
void R_Clutter_Purge(void)
{
size_t i, j;
cluttersector_t *sect;
if (!qrenderer)
return;
for (i = 0; i < sizeof(cluttersector)/sizeof(cluttersector[0]); i++)
{
sect = &cluttersector[i];
for (j = 0; j < sect->numsoups; j++)
{
BE_VBO_Destroy(&sect->soups[j].vbo.coord);
BE_VBO_Destroy(&sect->soups[j].vbo.indicies);
}
memset(sect, 0, sizeof(*sect));
}
}
static void QDECL R_Rockettrail_Callback(struct cvar_s *var, char *oldvalue)
{
int i;
model_t *mod;
extern model_t *mod_known;
extern int mod_numknown;
if (cls.state == ca_disconnected)
return; // don't bother parsing while disconnected
for (i=0 , mod=mod_known ; i<mod_numknown ; i++, mod++)
{
if (mod->loadstate == MLS_LOADED)
if (mod->flags & MF_ROCKET)
P_LoadedModel(mod);
}
}
static void QDECL R_Grenadetrail_Callback(struct cvar_s *var, char *oldvalue)
{
int i;
model_t *mod;
extern model_t *mod_known;
extern int mod_numknown;
if (cls.state == ca_disconnected)
return; // don't bother parsing while disconnected
for (i=0 , mod=mod_known ; i<mod_numknown ; i++, mod++)
{
if (mod->loadstate == MLS_LOADED)
if (mod->flags & MF_GRENADE)
P_LoadedModel(mod);
}
}
extern particleengine_t pe_null;
#ifdef PSET_CLASSIC
extern particleengine_t pe_classic;
#endif
particleengine_t pe_darkplaces;
particleengine_t pe_qmb;
#ifdef PSET_SCRIPT
extern particleengine_t pe_script;
#endif
particleengine_t *particlesystem[] =
{
#ifdef PSET_SCRIPT
&pe_script,
#endif
&pe_darkplaces,
&pe_qmb,
#ifdef PSET_CLASSIC
&pe_classic,
#endif
&pe_null,
NULL,
};
static void QDECL R_ParticleSystem_Callback(struct cvar_s *var, char *oldvalue)
{
int i;
if (pe)
{
CL_ClearTEntParticleState();
CL_ClearLerpEntsParticleState();
#ifdef Q2CLIENT
CLQ2_ClearParticleState();
#endif
pe->ShutdownParticles();
}
if (!qrenderer)
{
pe = &pe_null;
}
else
{
pe = NULL;
for (i = 0; particlesystem[i]; i++)
{
if ( (particlesystem[i]->name1 && !stricmp(var->string, particlesystem[i]->name1))
|| (particlesystem[i]->name2 && !stricmp(var->string, particlesystem[i]->name2)))
{
pe = particlesystem[i];
break;
}
if (!pe)
if (particlesystem[i]->name1)
pe = particlesystem[i];
}
}
if (!pe)
Sys_Error("No particle system available. Please recompile.");
if (!pe->InitParticles())
{
Con_Printf("Particlesystem %s failed to init\n", pe->name1);
pe = &pe_null;
pe->InitParticles();
}
pe->ClearParticles();
CL_RegisterParticles();
}
cvar_t r_rockettrail = CVARFC("r_rockettrail", "1", CVAR_SEMICHEAT, R_Rockettrail_Callback);
cvar_t r_grenadetrail = CVARFC("r_grenadetrail", "1", CVAR_SEMICHEAT, R_Grenadetrail_Callback);
#ifdef NOLEGACY
cvar_t r_particlesystem = CVARFC("r_particlesystem", "script", CVAR_SEMICHEAT|CVAR_ARCHIVE|CVAR_NOSET, R_ParticleSystem_Callback);
cvar_t r_particledesc = CVARAF("r_particledesc", "", "r_particlesdesc", CVAR_SEMICHEAT|CVAR_ARCHIVE);
#else
cvar_t r_particlesystem = CVARFC("r_particlesystem", IFMINIMAL("classic", "script"), CVAR_SEMICHEAT|CVAR_ARCHIVE, R_ParticleSystem_Callback);
cvar_t r_particledesc = CVARAF("r_particledesc", "classic", "r_particlesdesc", CVAR_SEMICHEAT|CVAR_ARCHIVE);
#endif
extern cvar_t r_bouncysparks;
extern cvar_t r_part_rain;
extern cvar_t r_bloodstains;
extern cvar_t gl_part_flame;
cvar_t r_part_rain_quantity = CVARF("r_part_rain_quantity", "1", CVAR_ARCHIVE);
cvar_t r_particle_tracelimit = CVARFD("r_particle_tracelimit", "200", CVAR_ARCHIVE, "Number of traces to allow per frame for particle physics.");
cvar_t r_part_sparks = CVAR("r_part_sparks", "1");
cvar_t r_part_sparks_trifan = CVAR("r_part_sparks_trifan", "1");
cvar_t r_part_sparks_textured = CVAR("r_part_sparks_textured", "1");
cvar_t r_part_beams = CVAR("r_part_beams", "1");
cvar_t r_part_contentswitch = CVARFD("r_part_contentswitch", "1", CVAR_ARCHIVE, "Enable particle effects to change based on content (ex. water).");
cvar_t r_part_density = CVARF("r_part_density", "1", CVAR_ARCHIVE);
cvar_t r_part_classic_expgrav = CVARFD("r_part_classic_expgrav", "10", CVAR_ARCHIVE, "Scaler for how fast classic explosion particles should accelerate due to gravity. 1 for like vanilla, 10 for like zquake.");
particleengine_t *pe;
void P_ParticleEffect_f(void);
static void P_ParticleEffectAlias_f(void);
void P_InitParticleSystem(void)
{
char *particlecvargroupname = "Particle effects";
Cvar_Register(&r_particlesystem, "Particles");
//particles
Cvar_Register(&r_particledesc, particlecvargroupname);
Cvar_Register(&r_bouncysparks, particlecvargroupname);
Cvar_Register(&r_part_rain, particlecvargroupname);
Cvar_Register(&r_part_rain_quantity, particlecvargroupname);
Cvar_Register(&r_particle_tracelimit, particlecvargroupname);
Cvar_Register(&r_part_sparks, particlecvargroupname);
Cvar_Register(&r_part_sparks_trifan, particlecvargroupname);
Cvar_Register(&r_part_sparks_textured, particlecvargroupname);
Cvar_Register(&r_part_beams, particlecvargroupname);
Cvar_Register(&r_part_contentswitch, particlecvargroupname);
Cvar_Register(&r_part_density, particlecvargroupname);
Cvar_Register(&r_part_classic_expgrav, particlecvargroupname);
Cvar_Register (&gl_part_flame, particlecvargroupname);
Cvar_Register (&r_rockettrail, particlecvargroupname);
Cvar_Register (&r_grenadetrail, particlecvargroupname);
//always registered to suck up stray r_part commands even when the scripted system is not active.
#ifdef PSET_SCRIPT
Cmd_AddCommand("r_part", P_ParticleEffect_f);
#endif
Cmd_AddCommand("r_partredirect", P_ParticleEffectAlias_f);
R_Clutter_Init();
}
static struct partalias_s
{
struct partalias_s *next;
const char *from;
const char *to;
} *partaliaslist;
static void P_ParticleEffectAlias_f(void)
{
struct partalias_s **link, *l;
char *from = Cmd_Argv(1);
char *to = Cmd_Argv(2);
//user wants to list all
if (!*from)
{
for (l = partaliaslist; l; l = l->next)
{
Con_Printf("%s -> %s\n", l->from, l->to);
}
return;
}
//unlink the current value
for (link = &partaliaslist; (l=*link); link = &(*link)->next)
{
if (!Q_strcasecmp(l->from, from))
{
//they didn't specify a to, so just print out this one effect without removing it.
if (Cmd_Argc() == 2)
{
Con_Printf("particle %s is currently remapped to %s\n", l->from, l->to);
return;
}
*link = l->next;
Z_Free(l);
break;
}
}
//create a new entry.
if (*to && Q_strcasecmp(from, to))
{
l = Z_Malloc(sizeof(*l) + strlen(from) + strlen(to) + 2);
l->from = (char*)(l + 1);
strcpy((char*)l->from, from);
l->to = l->from + strlen(l->from)+1;
strcpy((char*)l->to, to);
l->next = partaliaslist;
partaliaslist = l;
}
CL_RegisterParticles();
}
int P_FindParticleType(const char *efname)
{
struct partalias_s *l;
int recurselimit = 5;
if (!pe)
return P_INVALID;
for (l = partaliaslist; l; )
{
if (!Q_strcasecmp(l->from, efname))
{
efname = l->to;
if (recurselimit --> 0)
l = partaliaslist;
else
return P_INVALID;
}
else
l = l->next;
}
return pe->FindParticleType(efname);
}
void P_Shutdown(void)
{
if (pe)
{
CL_ClearTEntParticleState();
CL_ClearLerpEntsParticleState();
#ifdef Q2CLIENT
CLQ2_ClearParticleState();
#endif
pe->ShutdownParticles();
}
pe = NULL;
R_Clutter_Purge();
}
//0 says hit nothing.
//1 says hit world
//>1 says hit some entity
entity_t *TraceLineR (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal)
{
trace_t trace;
float len, bestlen;
int i, j;
vec3_t delta, ts, te;
entity_t *pe;
entity_t *result=NULL;
vec3_t axis[3];
vec3_t movemins, movemaxs;
memset (&trace, 0, sizeof(trace));
VectorSubtract(end, start, delta);
bestlen = Length(delta);
VectorCopy (end, impact);
for (i = 0; i < 3; i++)
{
if (start[i] > end[i])
{
movemins[i] = end[i];
movemaxs[i] = start[i];
}
else
{
movemins[i] = start[i];
movemaxs[i] = end[i];
}
}
for (i=-1 ; i<cl_numvisedicts ; i++)
{
if (i == -1)
pe = &r_worldentity;
else
pe = &cl_visedicts[i];
if (pe->rtype != RT_MODEL || pe->shaderRGBAf[3] < 1 || (pe->flags & (RF_ADDITIVE|RF_NODEPTHTEST|RF_TRANSLUCENT|RF_EXTERNALMODEL)))
continue;
if (pe->model && pe->model->funcs.NativeTrace && pe->model->loadstate == MLS_LOADED)
{
//try to trivially reject the mesh.
float ext = 0;
float t;
for (j = 0; j < 3; j++)
{
t = fabs(pe->model->maxs[j]);
ext = max(ext, t);
t = fabs(pe->model->mins[j]);
ext = max(ext, t);
}
if ( movemins[0] > pe->origin[0]+ext
|| movemins[1] > pe->origin[1]+ext
|| movemins[2] > pe->origin[2]+ext
|| movemaxs[0] < pe->origin[0]-ext
|| movemaxs[1] < pe->origin[1]-ext
|| movemaxs[2] < pe->origin[2]-ext )
continue;
VectorSubtract(start, pe->origin, ts);
VectorSubtract(end, pe->origin, te);
pe->model->funcs.NativeTrace(pe->model, 0, pe->framestate.g[FS_REG].frame[pe->framestate.g[FS_REG].lerpweight[1] > pe->framestate.g[FS_REG].lerpweight[0]], pe->axis, ts, te, vec3_origin, vec3_origin, false, MASK_WORLDSOLID, &trace);
if (trace.fraction<1)
{
VectorSubtract(trace.endpos, ts, delta);
len = Length(delta);
if (len < bestlen)
{
bestlen = len;
if (normal)
VectorCopy (trace.plane.normal, normal);
VectorAdd (pe->origin, trace.endpos, impact);
}
result = pe;
}
/*if (trace.startsolid)
{
VectorNormalize(delta);
if (normal)
{
normal[0] = -delta[0];
normal[1] = -delta[1];
normal[2] = -delta[2];
}
VectorCopy (end, impact);
return NULL;
}*/
}
}
return result;
}
//0 says hit nothing.
//1 says hit world
//>1 says hit some entity
unsigned int TraceLineN (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal)
{
trace_t trace;
float len, bestlen;
int i;
vec3_t delta, ts, te;
physent_t *pe;
int result=0;
vec3_t axis[3];
memset (&trace, 0, sizeof(trace));
VectorSubtract(end, start, delta);
bestlen = Length(delta);
VectorCopy (end, impact);
for (i=0 ; i < pmove.numphysent ; i++)
{
pe = &pmove.physents[i];
if (pe->nonsolid)
continue;
if (pe->model && pe->model->loadstate == MLS_LOADED)
{
VectorSubtract(start, pe->origin, ts);
VectorSubtract(end, pe->origin, te);
if (pe->angles[0] || pe->angles[1] || pe->angles[2])
{
AngleVectors(pe->angles, axis[0], axis[1], axis[2]);
VectorNegate(axis[1], axis[1]);
pe->model->funcs.NativeTrace(pe->model, 0, 0, axis, ts, te, vec3_origin, vec3_origin, false, MASK_WORLDSOLID, &trace);
}
else
pe->model->funcs.NativeTrace(pe->model, 0, 0, NULL, ts, te, vec3_origin, vec3_origin, false, MASK_WORLDSOLID, &trace);
if (trace.fraction<1)
{
VectorSubtract(trace.endpos, ts, delta);
len = Length(delta);
if (len < bestlen)
{
bestlen = len;
if (normal)
VectorCopy (trace.plane.normal, normal);
VectorAdd (pe->origin, trace.endpos, impact);
}
result = pe->info+1;
}
if (trace.startsolid)
{
VectorNormalize(delta);
if (normal)
{
normal[0] = -delta[0];
normal[1] = -delta[1];
normal[2] = -delta[2];
}
VectorCopy (end, impact);
return false;
}
}
}
return result;
}
//handy utility...
void P_EmitEffect (vec3_t pos, int type, trailstate_t **tsk)
{
if (cl.paused)
return;
pe->RunParticleEffectState(pos, NULL, ((host_frametime>0.1)?0.1:host_frametime), type, tsk);
}
// P_SelectableTrail: given default/opposite effects, model pointer, and a user selection cvar
// changes model to the appropriate trail effect and default trail index
static void P_SelectableTrail(int *trailid, int *trailpalidx, cvar_t *selection, int mdleffect, int mdlcidx, int oppeffect, int oppcidx)
{
int select = (int)(selection->value);
switch (select)
{
case 0: // check for string, otherwise no trail
if (selection->string[0] == '0')
{
*trailid = P_INVALID;
*trailpalidx = -1;
break;
}
else
{
int effect = P_FindParticleType(selection->string);
if (effect >= 0)
{
*trailid = effect;
*trailpalidx = mdlcidx;
break;
}
}
// fall through to default (so semicheat will work properly)
case 1: // default model effect
default:
*trailid = mdleffect;
*trailpalidx = mdlcidx;
break;
case 2: // opposite effect
*trailid = oppeffect;
*trailpalidx= oppcidx;
break;
case 3: // alt rocket effect
*trailid = P_FindParticleType("TR_ALTROCKET");
*trailpalidx = 107;
break;
case 4: // gib
*trailid = P_FindParticleType("TR_BLOOD");
*trailpalidx = 70;
break;
case 5: // zombie gib
*trailid = P_FindParticleType("TR_SLIGHTBLOOD");
*trailpalidx = 70;
break;
case 6: // Scrag tracer
*trailid = P_FindParticleType("TR_WIZSPIKE");
*trailpalidx = 60;
break;
case 7: // Knight tracer
*trailid = P_FindParticleType("TR_KNIGHTSPIKE");
*trailpalidx = 238;
break;
case 8: // Vore tracer
*trailid = P_FindParticleType("TR_VORESPIKE");
*trailpalidx = 154;
break;
case 9: // rail trail
*trailid = P_FindParticleType("TE_RAILTRAIL");
*trailpalidx = 15;
break;
}
}
//figure out which particle trail to use for the given model, filling in its values as required.
void P_DefaultTrail (unsigned int entityeffects, unsigned int modelflags, int *trailid, int *trailpalidx)
{
// TODO: EF_BRIGHTFIELD should probably be handled in here somewhere
// TODO: make trail default color into RGB values instead of indexes
if (!pe)
return;
if (entityeffects & EF_BRIGHTFIELD)
{
*trailid = P_FindParticleType("EF_BRIGHTFIELD");
*trailpalidx = 70;
}
else if (entityeffects & DPEF_FLAME)
{
*trailid = P_FindParticleType("EF_FLAME");
*trailpalidx = 70;
}
else if (entityeffects & DPEF_STARDUST)
{
*trailid = P_FindParticleType("EF_STARDUST");
*trailpalidx = 70;
}
else if (modelflags & MF_ROCKET)
P_SelectableTrail(trailid, trailpalidx, &r_rockettrail, P_FindParticleType("TR_ROCKET"), 109, P_FindParticleType("TR_GRENADE"), 6);
else if (modelflags & MF_GRENADE)
P_SelectableTrail(trailid, trailpalidx, &r_grenadetrail, P_FindParticleType("TR_GRENADE"), 6, P_FindParticleType("TR_ROCKET"), 109);
else if (modelflags & MF_GIB)
{
*trailid = P_FindParticleType("TR_BLOOD");
*trailpalidx = 70;
}
else if (modelflags & MF_TRACER)
{
*trailid = P_FindParticleType("TR_WIZSPIKE");
*trailpalidx = 60;
}
else if (modelflags & MF_ZOMGIB)
{
*trailid = P_FindParticleType("TR_SLIGHTBLOOD");
*trailpalidx = 70;
}
else if (modelflags & MF_TRACER2)
{
*trailid = P_FindParticleType("TR_KNIGHTSPIKE");
*trailpalidx = 238;
}
else if (modelflags & MF_TRACER3)
{
*trailid = P_FindParticleType("TR_VORESPIKE");
*trailpalidx = 154;
}
#ifdef HEXEN2
else if (modelflags & MFH2_BLOODSHOT) //these are the hexen2 ones.
{
*trailid = P_FindParticleType("tr_bloodshot");
*trailpalidx = 136;
}
else if (modelflags & MFH2_FIREBALL)
{
*trailid = P_FindParticleType("tr_fireball");
*trailpalidx = 424;
}
else if (modelflags & MFH2_ACIDBALL)
{
*trailid = P_FindParticleType("tr_acidball");
*trailpalidx = 440;
}
else if (modelflags & MFH2_ICE)
{
*trailid = P_FindParticleType("tr_ice");
*trailpalidx = 408;
}
else if (modelflags & MFH2_SPIT)
{
*trailid = P_FindParticleType("tr_spit");
*trailpalidx = 260;
}
else if (modelflags & MFH2_SPELL)
{
*trailid = P_FindParticleType("tr_spell");
*trailpalidx = 260;
}
else if (modelflags & MFH2_VORP_MISSILE)
{
*trailid = P_FindParticleType("tr_vorpmissile");
*trailpalidx = 302;
}
else if (modelflags & MFH2_SET_STAFF)
{
*trailid = P_FindParticleType("tr_setstaff");
*trailpalidx = 424;
}
else if (modelflags & MFH2_MAGICMISSILE)
{
*trailid = P_FindParticleType("tr_magicmissile");
*trailpalidx = 149;
}
else if (modelflags & MFH2_BONESHARD)
{
*trailid = P_FindParticleType("tr_boneshard");
*trailpalidx = 384;
}
else if (modelflags & MFH2_SCARAB)
{
*trailid = P_FindParticleType("tr_scarab");
*trailpalidx = 254;
}
else if (modelflags & MFH2_ROCKET)
{
//spiders
*trailid = P_FindParticleType("TR_GREENBLOOD");
*trailpalidx = 70; //fixme
}
#endif
else
{
*trailid = P_INVALID;
*trailpalidx = -1;
}
}