fteqw/engine/sw/r_draw.c
TimeServ f375d5d6ac fixed software skybox rendering
git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@2293 fc73d0e0-1445-4013-8a0c-d673dee63da5
2006-05-20 04:14:18 +00:00

2320 lines
52 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_draw.c
#include "quakedef.h"
#include "r_local.h"
#include "d_local.h" // FIXME: shouldn't need to include this
#define MAXLEFTCLIPEDGES 100
// !!! if these are changed, they must be changed in asm_draw.h too !!!
#define FULLY_CLIPPED_CACHED 0x80000000
#define FRAMECOUNT_MASK 0x7FFFFFFF
unsigned int cacheoffset;
int c_faceclip; // number of faces clipped
zpointdesc_t r_zpointdesc;
polydesc_t r_polydesc;
clipplane_t *entity_clipplanes;
clipplane_t view_clipplanes[4];
clipplane_t world_clipplanes[16];
medge_t *r_pedge;
qboolean r_leftclipped, r_rightclipped;
static qboolean makeleftedge, makerightedge;
qboolean r_nearzionly;
int sintable[SINTABLESIZE];
int intsintable[SINTABLESIZE];
mvertex_t r_leftenter, r_leftexit;
mvertex_t r_rightenter, r_rightexit;
typedef struct
{
float u,v;
int ceilv;
} evert_t;
int r_emitted;
float r_nearzi;
float r_u1, r_v1, r_lzi1;
int r_ceilv1;
qboolean r_lastvertvalid;
msurface_t *r_alpha_surfaces;
int r_skyframe;
msurface_t *r_skyfaces;
mplane_t r_skyplanes[6];
mtexinfo_t r_skytexinfo[6];
mvertex_t *r_skyverts;
medge_t *r_skyedges;
int *r_skysurfedges;
// I just copied this code from q2...
int skybox_planes[12] = {2,-128, 0,-128, 2,128, 1,128, 0,128, 1,-128};
int box_surfedges[24] = { 1,2,3,4, -1,5,6,7, 8,9,-6,10, -2,-7,-9,11,
12,-3,-11,-8, -12,-10,-5,-4};
int box_edges[24] = { 1,2, 2,3, 3,4, 4,1, 1,5, 5,6, 6,2, 7,8, 8,6, 5,7, 8,3, 7,4};
int box_faces[6] = {0,0,2,2,2,0};
vec3_t box_vecs[6][2] = {
{ {0,-1,0}, {-1,0,0} },
{ {0,1,0}, {0,0,-1} },
{ {0,-1,0}, {1,0,0} },
{ {1,0,0}, {0,0,-1} },
{ {0,-1,0}, {0,0,-1} },
{ {-1,0,0}, {0,0,-1} }
};
float box_verts[8][3] = {
{-1,-1,-1},
{-1,1,-1},
{1,1,-1},
{1,-1,-1},
{-1,-1,1},
{-1,1,1},
{1,-1,1},
{1,1,1}
};
// down, west, up, north, east, south
// {"rt", "bk", "lf", "ft", "up", "dn"};
static char *suf[6] = {"rt", "bk", "lf", "ft", "up", "dn"};
int r_skysideimage[6] = {5, 2, 4, 1, 0, 3};
extern mtexinfo_t r_skytexinfo[6];
char skyname[64];
/*
================
R_LoadSkyBox
================
*/
void SWR_LoadSkyBox (void)
{
#ifdef Q2BSPS
void *Mod_LoadWall(char *name);
int i;
char pathname[MAX_QPATH];
for (i=0 ; i<6 ; i++)
{
snprintf (pathname, MAX_QPATH-1, "env/%s%s.tga", skyname, suf[r_skysideimage[i]]);
r_skytexinfo[i].texture = Mod_LoadWall (pathname); //preferable
if (!r_skytexinfo[i].texture)
{
snprintf (pathname, MAX_QPATH-1, "env/%s%s.pcx", skyname, suf[r_skysideimage[i]]);
r_skytexinfo[i].texture = Mod_LoadWall (pathname); //q2 fall back
}
if (!r_skytexinfo[i].texture)
{
// break out and erase skyname so renderer won't render it
skyname[0] = '\0';
return;
}
}
#endif
}
void SWR_SetSky (char *name, float rotate, vec3_t axis)
{
int i;
Q_strncpyz (skyname, name, sizeof(skyname));
// skyrotate = rotate;
// VectorCopy (axis, skyaxis);
for (i=0 ; i<6 ; i++)
{
r_skytexinfo[i].texture = NULL;
}
SWR_LoadSkyBox();
}
qboolean SWR_CheckSky (void)
{
int i;
char pathname[MAX_QPATH];
if (!*skyname)
return true;
for (i=0 ; i<6 ; i++)
{
sprintf (pathname, "env/%s%s.pcx", skyname, suf[r_skysideimage[i]]);
if (COM_FCheckExists(pathname))
{
continue;// it exists, don't bother going for a tga version
}
sprintf (pathname, "env/%s%s.tga", skyname, suf[r_skysideimage[i]]);
if (!COM_FCheckExists(pathname))
return false;
// if (!CL_CheckOrDownloadFile(pathname, NULL, -1))
// return false;
}
return true;
}
/*
================
R_InitSkyBox
================
*/
void R_InitSkyBox (void)
{
int i;
model_t *wm;
wm = cl.worldmodel;
if (wm->numsurfaces+6 > MAX_MAP_FACES
|| wm->numvertexes+8 > MAX_MAP_VERTS
|| wm->numedges+12 > MAX_MAP_EDGES)
Host_Error ("InitSkyBox: map overflow");
r_skyfaces = wm->surfaces + wm->numsurfaces;
// wm->numsurfaces += 6;
r_skyverts = wm->vertexes + wm->numvertexes;
// wm->numvertexes += 8;
r_skyedges = wm->edges + wm->numedges;
// wm->numedges += 12;
r_skysurfedges = wm->surfedges + wm->numsurfedges;
// wm->numsurfedges += 24;
memset (r_skyfaces, 0, 6*sizeof(*r_skyfaces));
for (i=0 ; i<6 ; i++)
{
r_skyplanes[i].normal[skybox_planes[i*2]] = 1;
r_skyplanes[i].dist = skybox_planes[i*2+1];
VectorCopy (box_vecs[i][0], r_skytexinfo[i].vecs[0]);
VectorCopy (box_vecs[i][1], r_skytexinfo[i].vecs[1]);
r_skyfaces[i].plane = &r_skyplanes[i];
r_skyfaces[i].numedges = 4;
r_skyfaces[i].flags = box_faces[i] | SURF_DRAWSKYBOX;
r_skyfaces[i].firstedge = wm->numsurfedges+i*4;
r_skyfaces[i].texinfo = &r_skytexinfo[i];
r_skyfaces[i].texturemins[0] = -128;
r_skyfaces[i].texturemins[1] = -128;
r_skyfaces[i].extents[0] = 256;
r_skyfaces[i].extents[1] = 256;
}
for (i=0 ; i<24 ; i++)
if (box_surfedges[i] > 0)
r_skysurfedges[i] = wm->numedges - 1 + box_surfedges[i];
else
r_skysurfedges[i] = -(wm->numedges - 1 + -box_surfedges[i]);
for(i=0 ; i<12 ; i++)
{
r_skyedges[i].v[0] = wm->numvertexes-1+box_edges[i*2+0];
r_skyedges[i].v[1] = wm->numvertexes-1+box_edges[i*2+1];
r_skyedges[i].cachededgeoffset = 0;
}
Hunk_Check();
}
void SWR_Skyboxname_Callback(struct cvar_s *var, char *oldvalue)
{
Q_strncpyz (skyname, var->string, sizeof(skyname));
SWR_LoadSkyBox();
}
/*
================
R_EmitSkyBox
================
*/
qboolean R_EmitSkyBox (void)
{
int i, j;
int oldkey;
if (insubmodel)
return false; // submodels should never have skies
if (r_skyframe == r_framecount)
return true; // already set this frame
if (!*skyname) //none set
return false;
r_skyframe = r_framecount;
// set the eight fake vertexes
for (i=0 ; i<8 ; i++)
for (j=0 ; j<3 ; j++)
r_skyverts[i].position[j] = r_origin[j] + box_verts[i][j]*128;
// set the six fake planes
for (i=0 ; i<6 ; i++)
if (skybox_planes[i*2+1] > 0)
r_skyplanes[i].dist = r_origin[skybox_planes[i*2]]+128;
else
r_skyplanes[i].dist = r_origin[skybox_planes[i*2]]-128;
// fix texture offseets
for (i=0 ; i<6 ; i++)
{
r_skytexinfo[i].vecs[0][3] = -DotProduct (r_origin, r_skytexinfo[i].vecs[0]);
r_skytexinfo[i].vecs[1][3] = -DotProduct (r_origin, r_skytexinfo[i].vecs[1]);
}
// emit the six faces
oldkey = r_currentkey;
r_currentkey = 0x7ffffff0;
for (i=0 ; i<6 ; i++)
{
R_RenderFace (r_skyfaces + i, 15);
}
r_currentkey = oldkey; // bsp sorting order
return true;
}
#if !id386
/*
================
R_EmitEdge
================
*/
void R_EmitEdge (mvertex_t *pv0, mvertex_t *pv1)
{
edge_t *edge, *pcheck;
int u_check;
float u, u_step;
vec3_t local, transformed;
float *world;
int v, v2, ceilv0;
float scale, lzi0, u0, v0;
int side;
if (r_lastvertvalid)
{
u0 = r_u1;
v0 = r_v1;
lzi0 = r_lzi1;
ceilv0 = r_ceilv1;
}
else
{
world = &pv0->position[0];
// transform and project
VectorSubtract (world, modelorg, local);
TransformVector (local, transformed);
if (transformed[2] < NEAR_CLIP)
transformed[2] = NEAR_CLIP;
lzi0 = 1.0 / transformed[2];
// FIXME: build x/yscale into transform?
scale = xscale * lzi0;
u0 = (xcenter + scale*transformed[0]);
if (u0 < r_refdef.fvrectx_adj)
u0 = r_refdef.fvrectx_adj;
if (u0 > r_refdef.fvrectright_adj)
u0 = r_refdef.fvrectright_adj;
scale = yscale * lzi0;
v0 = (ycenter - scale*transformed[1]);
if (v0 < r_refdef.fvrecty_adj)
v0 = r_refdef.fvrecty_adj;
if (v0 > r_refdef.fvrectbottom_adj)
v0 = r_refdef.fvrectbottom_adj;
ceilv0 = (int) ceil(v0);
}
world = &pv1->position[0];
// transform and project
VectorSubtract (world, modelorg, local);
TransformVector (local, transformed);
if (transformed[2] < NEAR_CLIP)
transformed[2] = NEAR_CLIP;
r_lzi1 = 1.0 / transformed[2];
scale = xscale * r_lzi1;
r_u1 = (xcenter + scale*transformed[0]);
if (r_u1 < r_refdef.fvrectx_adj)
r_u1 = r_refdef.fvrectx_adj;
if (r_u1 > r_refdef.fvrectright_adj)
r_u1 = r_refdef.fvrectright_adj;
scale = yscale * r_lzi1;
r_v1 = (ycenter - scale*transformed[1]);
if (r_v1 < r_refdef.fvrecty_adj)
r_v1 = r_refdef.fvrecty_adj;
if (r_v1 > r_refdef.fvrectbottom_adj)
r_v1 = r_refdef.fvrectbottom_adj;
if (r_lzi1 > lzi0)
lzi0 = r_lzi1;
if (lzi0 > r_nearzi) // for mipmap finding
r_nearzi = lzi0;
// for right edges, all we want is the effect on 1/z
if (r_nearzionly)
return;
r_emitted = 1;
r_ceilv1 = (int) ceil(r_v1);
// create the edge
if (ceilv0 == r_ceilv1)
{
// we cache unclipped horizontal edges as fully clipped
if (cacheoffset != 0x7FFFFFFF)
{
cacheoffset = FULLY_CLIPPED_CACHED |
(r_framecount & FRAMECOUNT_MASK);
}
return; // horizontal edge
}
side = ceilv0 > r_ceilv1;
edge = edge_p++;
edge->owner = r_pedge;
edge->nearzi = lzi0;
if (side == 0)
{
// trailing edge (go from p1 to p2)
v = ceilv0;
v2 = r_ceilv1 - 1;
edge->surfs[0] = surface_p - surfaces;
edge->surfs[1] = 0;
u_step = ((r_u1 - u0) / (r_v1 - v0));
u = u0 + ((float)v - v0) * u_step;
}
else
{
// leading edge (go from p2 to p1)
v2 = ceilv0 - 1;
v = r_ceilv1;
edge->surfs[0] = 0;
edge->surfs[1] = surface_p - surfaces;
u_step = ((u0 - r_u1) / (v0 - r_v1));
u = r_u1 + ((float)v - r_v1) * u_step;
}
edge->u_step = u_step*0x100000;
edge->u = u*0x100000 + 0xFFFFF;
// we need to do this to avoid stepping off the edges if a very nearly
// horizontal edge is less than epsilon above a scan, and numeric error causes
// it to incorrectly extend to the scan, and the extension of the line goes off
// the edge of the screen
// FIXME: is this actually needed?
if (edge->u < r_refdef.vrect_x_adj_shift20)
edge->u = r_refdef.vrect_x_adj_shift20;
if (edge->u > r_refdef.vrectright_adj_shift20)
edge->u = r_refdef.vrectright_adj_shift20;
//
// sort the edge in normally
//
u_check = edge->u;
if (edge->surfs[0])
u_check++; // sort trailers after leaders
if (!newedges[v] || newedges[v]->u >= u_check)
{
edge->next = newedges[v];
newedges[v] = edge;
}
else
{
pcheck = newedges[v];
while (pcheck->next && pcheck->next->u < u_check)
pcheck = pcheck->next;
edge->next = pcheck->next;
pcheck->next = edge;
}
edge->nextremove = removeedges[v2];
removeedges[v2] = edge;
}
/*
================
R_ClipEdge
================
*/
void R_ClipEdge (mvertex_t *pv0, mvertex_t *pv1, clipplane_t *clip)
{
float d0, d1, f;
mvertex_t clipvert;
if (clip)
{
do
{
d0 = DotProduct (pv0->position, clip->normal) - clip->dist;
d1 = DotProduct (pv1->position, clip->normal) - clip->dist;
if (d0 >= 0)
{
// point 0 is unclipped
if (d1 >= 0)
{
// both points are unclipped
continue;
}
// only point 1 is clipped
// we don't cache clipped edges
cacheoffset = 0x7FFFFFFF;
f = d0 / (d0 - d1);
clipvert.position[0] = pv0->position[0] +
f * (pv1->position[0] - pv0->position[0]);
clipvert.position[1] = pv0->position[1] +
f * (pv1->position[1] - pv0->position[1]);
clipvert.position[2] = pv0->position[2] +
f * (pv1->position[2] - pv0->position[2]);
if (clip->leftedge)
{
r_leftclipped = true;
r_leftexit = clipvert;
}
else if (clip->rightedge)
{
r_rightclipped = true;
r_rightexit = clipvert;
}
R_ClipEdge (pv0, &clipvert, clip->next);
return;
}
else
{
// point 0 is clipped
if (d1 < 0)
{
// both points are clipped
// we do cache fully clipped edges
if (!r_leftclipped)
cacheoffset = FULLY_CLIPPED_CACHED |
(r_framecount & FRAMECOUNT_MASK);
return;
}
// only point 0 is clipped
r_lastvertvalid = false;
// we don't cache partially clipped edges
cacheoffset = 0x7FFFFFFF;
f = d0 / (d0 - d1);
clipvert.position[0] = pv0->position[0] +
f * (pv1->position[0] - pv0->position[0]);
clipvert.position[1] = pv0->position[1] +
f * (pv1->position[1] - pv0->position[1]);
clipvert.position[2] = pv0->position[2] +
f * (pv1->position[2] - pv0->position[2]);
if (clip->leftedge)
{
r_leftclipped = true;
r_leftenter = clipvert;
}
else if (clip->rightedge)
{
r_rightclipped = true;
r_rightenter = clipvert;
}
R_ClipEdge (&clipvert, pv1, clip->next);
return;
}
} while ((clip = clip->next) != NULL);
}
// add the edge
R_EmitEdge (pv0, pv1);
}
#endif // !id386
/*
================
R_EmitCachedEdge
================
*/
void R_EmitCachedEdge (void)
{
edge_t *pedge_t;
pedge_t = (edge_t *)((unsigned long)r_edges + r_pedge->cachededgeoffset);
if (!pedge_t->surfs[0])
pedge_t->surfs[0] = surface_p - surfaces;
else
pedge_t->surfs[1] = surface_p - surfaces;
if (pedge_t->nearzi > r_nearzi) // for mipmap finding
r_nearzi = pedge_t->nearzi;
r_emitted = 1;
}
/*
================
R_RenderFace
================
*/
void R_RenderFace (msurface_t *fa, int clipflags)
{
extern float r_wateralphaval;
int i, lindex;
unsigned mask;
mplane_t *pplane;
float distinv;
vec3_t p_normal;
medge_t *pedges, tedge;
clipplane_t *pclip;
if (fa->texinfo->texture && (*fa->texinfo->texture->name == '{' || fa->texinfo->flags & (SURF_TRANS33|SURF_TRANS66)))
{
if (fa->nextalphasurface)
return;
fa->nextalphasurface = r_alpha_surfaces;
r_alpha_surfaces = fa;
return;
}
if (r_wateralphaval != 1.0 && fa->flags & SURF_DRAWTURB)
{
if (fa->nextalphasurface)
return;
fa->nextalphasurface = r_alpha_surfaces;
r_alpha_surfaces = fa;
return;
}
if ( fa->texinfo->flags & SURF_SKY)
{
if (R_EmitSkyBox ())
return;
}
// skip out if no more surfs
if ((surface_p) >= surf_max)
{
r_outofsurfaces++;
return;
}
// ditto if not enough edges left, or switch to auxedges if possible
if ((edge_p + fa->numedges + 4) >= edge_max)
{
r_outofedges += fa->numedges;
return;
}
c_faceclip++;
// set up clip planes
pclip = NULL;
for (i=3, mask = 0x08 ; i>=0 ; i--, mask >>= 1)
{
if (clipflags & mask)
{
view_clipplanes[i].next = pclip;
pclip = &view_clipplanes[i];
}
}
// push the edges through
r_emitted = 0;
r_nearzi = 0;
r_nearzionly = false;
makeleftedge = makerightedge = false;
pedges = currententity->model->edges;
r_lastvertvalid = false;
for (i=0 ; i<fa->numedges ; i++)
{
lindex = currententity->model->surfedges[fa->firstedge + i];
if (lindex > 0)
{
r_pedge = &pedges[lindex];
// if the edge is cached, we can just reuse the edge
if (!insubmodel)
{
if (r_pedge->cachededgeoffset & FULLY_CLIPPED_CACHED)
{
if ((r_pedge->cachededgeoffset & FRAMECOUNT_MASK) ==
r_framecount)
{
r_lastvertvalid = false;
continue;
}
}
else
{
if ((((unsigned long)edge_p - (unsigned long)r_edges) >
r_pedge->cachededgeoffset) &&
(((edge_t *)((unsigned long)r_edges +
r_pedge->cachededgeoffset))->owner == r_pedge))
{
R_EmitCachedEdge ();
r_lastvertvalid = false;
continue;
}
}
}
// assume it's cacheable
cacheoffset = (qbyte *)edge_p - (qbyte *)r_edges;
r_leftclipped = r_rightclipped = false;
R_ClipEdge (&r_pcurrentvertbase[r_pedge->v[0]],
&r_pcurrentvertbase[r_pedge->v[1]],
pclip);
r_pedge->cachededgeoffset = cacheoffset;
if (r_leftclipped)
makeleftedge = true;
if (r_rightclipped)
makerightedge = true;
r_lastvertvalid = true;
}
else
{
lindex = -lindex;
r_pedge = &pedges[lindex];
// if the edge is cached, we can just reuse the edge
if (!insubmodel)
{
if (r_pedge->cachededgeoffset & FULLY_CLIPPED_CACHED)
{
if ((r_pedge->cachededgeoffset & FRAMECOUNT_MASK) ==
r_framecount)
{
r_lastvertvalid = false;
continue;
}
}
else
{
// it's cached if the cached edge is valid and is owned
// by this medge_t
if ((((unsigned long)edge_p - (unsigned long)r_edges) >
r_pedge->cachededgeoffset) &&
(((edge_t *)((unsigned long)r_edges +
r_pedge->cachededgeoffset))->owner == r_pedge))
{
R_EmitCachedEdge ();
r_lastvertvalid = false;
continue;
}
}
}
// assume it's cacheable
cacheoffset = (qbyte *)edge_p - (qbyte *)r_edges;
r_leftclipped = r_rightclipped = false;
R_ClipEdge (&r_pcurrentvertbase[r_pedge->v[1]],
&r_pcurrentvertbase[r_pedge->v[0]],
pclip);
r_pedge->cachededgeoffset = cacheoffset;
if (r_leftclipped)
makeleftedge = true;
if (r_rightclipped)
makerightedge = true;
r_lastvertvalid = true;
}
}
// if there was a clip off the left edge, add that edge too
// FIXME: faster to do in screen space?
// FIXME: share clipped edges?
if (makeleftedge)
{
r_pedge = &tedge;
r_lastvertvalid = false;
R_ClipEdge (&r_leftexit, &r_leftenter, pclip->next);
}
// if there was a clip off the right edge, get the right r_nearzi
if (makerightedge)
{
r_pedge = &tedge;
r_lastvertvalid = false;
r_nearzionly = true;
R_ClipEdge (&r_rightexit, &r_rightenter, view_clipplanes[1].next);
}
// if no edges made it out, return without posting the surface
if (!r_emitted)
return;
r_polycount++;
surface_p->data = (void *)fa;
surface_p->nearzi = r_nearzi;
surface_p->flags = fa->flags;
surface_p->insubmodel = insubmodel;
surface_p->spanstate = 0;
surface_p->entity = currententity;
surface_p->key = r_currentkey++;
surface_p->spans = NULL;
pplane = fa->plane;
// FIXME: cache this?
TransformVector (pplane->normal, p_normal);
// FIXME: cache this?
distinv = 1.0 / (pplane->dist - DotProduct (modelorg, pplane->normal));
surface_p->d_zistepu = p_normal[0] * xscaleinv * distinv;
surface_p->d_zistepv = -p_normal[1] * yscaleinv * distinv;
surface_p->d_ziorigin = p_normal[2] * distinv -
xcenter * surface_p->d_zistepu -
ycenter * surface_p->d_zistepv;
//JDC VectorCopy (r_worldmodelorg, surface_p->modelorg);
surface_p++;
}
/*
================
R_RenderBmodelFace
================
*/
void R_RenderBmodelFace (bedge_t *pedges, msurface_t *psurf)
{
int i;
unsigned mask;
mplane_t *pplane;
float distinv;
vec3_t p_normal;
medge_t tedge;
clipplane_t *pclip;
// skip out if no more surfs
if (surface_p >= surf_max)
{
r_outofsurfaces++;
return;
}
if (*psurf->texinfo->texture->name == '{' || psurf->texinfo->flags & (SURF_TRANS33|SURF_TRANS66))
{
if (psurf->nextalphasurface)
return;
psurf->nextalphasurface = r_alpha_surfaces;
r_alpha_surfaces = psurf;
return;
}
// ditto if not enough edges left, or switch to auxedges if possible
if ((edge_p + psurf->numedges + 4) >= edge_max)
{
r_outofedges += psurf->numedges;
return;
}
c_faceclip++;
// this is a dummy to give the caching mechanism someplace to write to
r_pedge = &tedge;
// set up clip planes
pclip = NULL;
for (i=3, mask = 0x08 ; i>=0 ; i--, mask >>= 1)
{
if (r_clipflags & mask)
{
view_clipplanes[i].next = pclip;
pclip = &view_clipplanes[i];
}
}
// push the edges through
r_emitted = 0;
r_nearzi = 0;
r_nearzionly = false;
makeleftedge = makerightedge = false;
// FIXME: keep clipped bmodel edges in clockwise order so last vertex caching
// can be used?
r_lastvertvalid = false;
for ( ; pedges ; pedges = pedges->pnext)
{
r_leftclipped = r_rightclipped = false;
R_ClipEdge (pedges->v[0], pedges->v[1], pclip);
if (r_leftclipped)
makeleftedge = true;
if (r_rightclipped)
makerightedge = true;
}
// if there was a clip off the left edge, add that edge too
// FIXME: faster to do in screen space?
// FIXME: share clipped edges?
if (makeleftedge)
{
r_pedge = &tedge;
R_ClipEdge (&r_leftexit, &r_leftenter, pclip->next);
}
// if there was a clip off the right edge, get the right r_nearzi
if (makerightedge)
{
r_pedge = &tedge;
r_nearzionly = true;
R_ClipEdge (&r_rightexit, &r_rightenter, view_clipplanes[1].next);
}
// if no edges made it out, return without posting the surface
if (!r_emitted)
return;
r_polycount++;
surface_p->data = (void *)psurf;
surface_p->nearzi = r_nearzi;
surface_p->flags = psurf->flags;
surface_p->insubmodel = true;
surface_p->spanstate = 0;
surface_p->entity = currententity;
surface_p->key = r_currentbkey;
surface_p->spans = NULL;
pplane = psurf->plane;
// FIXME: cache this?
TransformVector (pplane->normal, p_normal);
// FIXME: cache this?
distinv = 1.0 / (pplane->dist - DotProduct (modelorg, pplane->normal));
surface_p->d_zistepu = p_normal[0] * xscaleinv * distinv;
surface_p->d_zistepv = -p_normal[1] * yscaleinv * distinv;
surface_p->d_ziorigin = p_normal[2] * distinv -
xcenter * surface_p->d_zistepu -
ycenter * surface_p->d_zistepv;
//JDC VectorCopy (r_worldmodelorg, surface_p->modelorg);
surface_p++;
}
/*
================
R_RenderPoly
================
*/
void R_RenderPoly (msurface_t *fa, int clipflags)
{
int i, lindex, lnumverts, s_axis, t_axis;
float dist, lastdist, lzi, scale, u, v, frac;
unsigned mask;
vec3_t local, transformed;
clipplane_t *pclip;
medge_t *pedges;
mplane_t *pplane;
mvertex_t verts[2][100]; //FIXME: do real number
polyvert_t pverts[100]; //FIXME: do real number, safely
int vertpage, newverts, newpage, lastvert;
qboolean visible;
// FIXME: clean this up and make it faster
// FIXME: guard against running out of vertices
s_axis = t_axis = 0; // keep compiler happy
// set up clip planes
pclip = NULL;
for (i=3, mask = 0x08 ; i>=0 ; i--, mask >>= 1)
{
if (clipflags & mask)
{
view_clipplanes[i].next = pclip;
pclip = &view_clipplanes[i];
}
}
// reconstruct the polygon
// FIXME: these should be precalculated and loaded off disk
pedges = currententity->model->edges;
lnumverts = fa->numedges;
vertpage = 0;
for (i=0 ; i<lnumverts ; i++)
{
lindex = currententity->model->surfedges[fa->firstedge + i];
if (lindex > 0)
{
r_pedge = &pedges[lindex];
verts[0][i] = r_pcurrentvertbase[r_pedge->v[0]];
}
else
{
r_pedge = &pedges[-lindex];
verts[0][i] = r_pcurrentvertbase[r_pedge->v[1]];
}
}
// clip the polygon, done if not visible
while (pclip)
{
lastvert = lnumverts - 1;
lastdist = DotProduct (verts[vertpage][lastvert].position,
pclip->normal) - pclip->dist;
visible = false;
newverts = 0;
newpage = vertpage ^ 1;
for (i=0 ; i<lnumverts ; i++)
{
dist = DotProduct (verts[vertpage][i].position, pclip->normal) -
pclip->dist;
if ((lastdist > 0) != (dist > 0))
{
frac = dist / (dist - lastdist);
verts[newpage][newverts].position[0] =
verts[vertpage][i].position[0] +
((verts[vertpage][lastvert].position[0] -
verts[vertpage][i].position[0]) * frac);
verts[newpage][newverts].position[1] =
verts[vertpage][i].position[1] +
((verts[vertpage][lastvert].position[1] -
verts[vertpage][i].position[1]) * frac);
verts[newpage][newverts].position[2] =
verts[vertpage][i].position[2] +
((verts[vertpage][lastvert].position[2] -
verts[vertpage][i].position[2]) * frac);
newverts++;
}
if (dist >= 0)
{
verts[newpage][newverts] = verts[vertpage][i];
newverts++;
visible = true;
}
lastvert = i;
lastdist = dist;
}
if (!visible || (newverts < 3))
return;
lnumverts = newverts;
vertpage ^= 1;
pclip = pclip->next;
}
// transform and project, remembering the z values at the vertices and
// r_nearzi, and extract the s and t coordinates at the vertices
pplane = fa->plane;
switch (pplane->type)
{
case PLANE_X:
case PLANE_ANYX:
s_axis = 1;
t_axis = 2;
break;
case PLANE_Y:
case PLANE_ANYY:
s_axis = 0;
t_axis = 2;
break;
case PLANE_Z:
case PLANE_ANYZ:
s_axis = 0;
t_axis = 1;
break;
}
r_nearzi = 0;
for (i=0 ; i<lnumverts ; i++)
{
// transform and project
VectorSubtract (verts[vertpage][i].position, modelorg, local);
TransformVector (local, transformed);
if (transformed[2] < NEAR_CLIP)
transformed[2] = NEAR_CLIP;
lzi = 1.0 / transformed[2];
if (lzi > r_nearzi) // for mipmap finding
r_nearzi = lzi;
// FIXME: build x/yscale into transform?
scale = xscale * lzi;
u = (xcenter + scale*transformed[0]);
if (u < r_refdef.fvrectx_adj)
u = r_refdef.fvrectx_adj;
if (u > r_refdef.fvrectright_adj)
u = r_refdef.fvrectright_adj;
scale = yscale * lzi;
v = (ycenter - scale*transformed[1]);
if (v < r_refdef.fvrecty_adj)
v = r_refdef.fvrecty_adj;
if (v > r_refdef.fvrectbottom_adj)
v = r_refdef.fvrectbottom_adj;
pverts[i].u = u;
pverts[i].v = v;
pverts[i].zi = lzi;
pverts[i].s = verts[vertpage][i].position[s_axis];
pverts[i].t = verts[vertpage][i].position[t_axis];
}
// build the polygon descriptor, including fa, r_nearzi, and u, v, s, t, and z
// for each vertex
r_polydesc.numverts = lnumverts;
r_polydesc.nearzi = r_nearzi;
r_polydesc.pcurrentface = fa;
r_polydesc.pverts = pverts;
// draw the polygon
D_DrawPoly ();
}
/*
================
R_ZDrawSubmodelPolys
================
*/
void R_ZDrawSubmodelPolys (model_t *pmodel)
{
int i, numsurfaces;
msurface_t *psurf;
float dot;
mplane_t *pplane;
psurf = &pmodel->surfaces[pmodel->firstmodelsurface];
numsurfaces = pmodel->nummodelsurfaces;
for (i=0 ; i<numsurfaces ; i++, psurf++)
{
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
(!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON)))
{
// FIXME: use bounding-box-based frustum clipping info?
R_RenderPoly (psurf, 15);
}
}
}
//this code from Quake2
typedef struct
{
int nump;
emitpoint_t *pverts;
qbyte *pixels; // image
int pixel_width; // image width
int pixel_height; // image height
vec3_t vup, vright, vpn; // in worldspace, for plane eq
float dist;
float s_offset, t_offset;
float viewer_position[3];
void (*drawspanlet)( void );
int stipple_parity;
int alpha;
} q2polydesc_t;
q2polydesc_t r_q2polydesc;
static espan_t *s_polygon_spans;
static int clip_current;
static int s_minindex, s_maxindex;
vec5_t r_clip_verts[2][MAXWORKINGVERTS+2];
model_t *currentmodel;
#define AFFINE_SPANLET_SIZE 16
#define AFFINE_SPANLET_SIZE_BITS 4
typedef struct
{
qbyte *pbase, *pdest;
short *pz;
fixed16_t s, t;
fixed16_t sstep, tstep;
int izi, izistep, izistep_times_2;
int spancount;
unsigned u, v;
} spanletvars_t;
spanletvars_t s_spanletvars;
void R_DrawSpanletConstant( void )
{
do
{
if (*s_spanletvars.pz <= (s_spanletvars.izi >> 16))
{
*s_spanletvars.pdest = 15;//r_polyblendcolor;
}
s_spanletvars.izi += s_spanletvars.izistep;
s_spanletvars.pdest++;
s_spanletvars.pz++;
} while (--s_spanletvars.spancount > 0);
}
void R_16DrawSpanlet33Stipple( void )
{
unsigned btemp;
unsigned short *pdest = (unsigned short *)s_spanletvars.pdest;
short *pz = s_spanletvars.pz;
int izi = s_spanletvars.izi;
if ( r_q2polydesc.stipple_parity ^ ( s_spanletvars.v & 1 ) )
{
s_spanletvars.pdest += s_spanletvars.spancount;
s_spanletvars.pz += s_spanletvars.spancount;
if ( s_spanletvars.spancount == AFFINE_SPANLET_SIZE )
s_spanletvars.izi += s_spanletvars.izistep << AFFINE_SPANLET_SIZE_BITS;
else
s_spanletvars.izi += s_spanletvars.izistep * s_spanletvars.izistep;
if ( r_q2polydesc.stipple_parity ^ ( s_spanletvars.u & 1 ) )
{
izi += s_spanletvars.izistep;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
pdest++;
pz++;
s_spanletvars.spancount--;
}
s_spanletvars.sstep *= 2;
s_spanletvars.tstep *= 2;
while ( s_spanletvars.spancount > 0 )
{
unsigned s = s_spanletvars.s >> 16;
unsigned t = s_spanletvars.t >> 16;
btemp = *( s_spanletvars.pbase + ( s ) + ( t * cachewidth ) );
if ( btemp != 255 )
{
if ( *pz <= ( izi >> 16 ) )
*pdest = btemp;
}
izi += s_spanletvars.izistep_times_2;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
pdest += 2;
pz += 2;
s_spanletvars.spancount -= 2;
}
}
}
void R_8DrawSpanletAlphaTest( void ) //8 bit rendering only
{
unsigned btemp;
do
{
unsigned ts, tt;
ts = s_spanletvars.s >> 16;
tt = s_spanletvars.t >> 16;
btemp = *(s_spanletvars.pbase + (ts) + (tt) * cachewidth);
if ( btemp != 255 )
{
if (*s_spanletvars.pz <= (s_spanletvars.izi >> 16))
{
*s_spanletvars.pdest = btemp;
}
}
s_spanletvars.izi += s_spanletvars.izistep;
s_spanletvars.pdest++;
s_spanletvars.pz++;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
} while (--s_spanletvars.spancount > 0);
}
void R_8DrawSpanletAlphaBlend( void ) //8 bit rendering only
{
unsigned btemp;
D_SetTransLevel(r_q2polydesc.alpha/255.0, BM_BLEND);
do
{
unsigned ts, tt;
ts = s_spanletvars.s >> 16;
tt = s_spanletvars.t >> 16;
btemp = *(s_spanletvars.pbase + (ts) + (tt) * cachewidth);
if ( btemp != 255 )
{
if (*s_spanletvars.pz <= (s_spanletvars.izi >> 16))
{
*s_spanletvars.pdest = Trans(*s_spanletvars.pdest, btemp);
}
}
s_spanletvars.izi += s_spanletvars.izistep;
s_spanletvars.pdest++;
s_spanletvars.pz++;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
} while (--s_spanletvars.spancount > 0);
}
void R_8DrawSpanletTurbulentAlphaBlend( void )
{
extern int *r_turb_turb;
unsigned btemp;
D_SetTransLevel(r_q2polydesc.alpha/255.0, BM_BLEND);
do
{
unsigned ts, tt;
ts = ((s_spanletvars.s + r_turb_turb[(s_spanletvars.t>>16)&(CYCLE-1)])>>16)&63;
tt = ((s_spanletvars.t + r_turb_turb[(s_spanletvars.s>>16)&(CYCLE-1)])>>16)&63;
btemp = *(s_spanletvars.pbase + (ts) + (tt) * cachewidth);
if ( btemp != 255 )
{
if (*s_spanletvars.pz <= (s_spanletvars.izi >> 16))
{
*s_spanletvars.pdest = Trans(*s_spanletvars.pdest, btemp);
}
}
s_spanletvars.izi += s_spanletvars.izistep;
s_spanletvars.pdest++;
s_spanletvars.pz++;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
} while (--s_spanletvars.spancount > 0);
}
void R_16DrawSpanletAlphaTest( void ) //16 bit rendering only
{
unsigned btemp;
do
{
unsigned ts, tt;
ts = s_spanletvars.s >> 16;
tt = s_spanletvars.t >> 16;
btemp = *(s_spanletvars.pbase + (ts) + (tt) * cachewidth);
if ( btemp != 255 )
{
if (*s_spanletvars.pz <= (s_spanletvars.izi >> 16))
{
*s_spanletvars.pdest = btemp;
}
}
s_spanletvars.izi += s_spanletvars.izistep;
s_spanletvars.pdest++;
s_spanletvars.pz++;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
} while (--s_spanletvars.spancount > 0);
}
void R_32DrawSpanletAlphaTest( void )
{
unsigned btemp;
do
{
unsigned ts, tt;
ts = s_spanletvars.s >> 16;
tt = s_spanletvars.t >> 16;
btemp = *((int *)s_spanletvars.pbase + (ts) + (tt) * cachewidth);
if ( btemp &0xff000000 )
{
if (*s_spanletvars.pz <= (s_spanletvars.izi >> 16))
{
*(int*)s_spanletvars.pdest = btemp;
}
}
s_spanletvars.izi += s_spanletvars.izistep;
s_spanletvars.pdest+=4;
s_spanletvars.pz++;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
} while (--s_spanletvars.spancount > 0);
}
void R_32DrawSpanletBlended( void )
{
unsigned *btemp;
do
{
unsigned ts, tt;
ts = s_spanletvars.s >> 16;
tt = s_spanletvars.t >> 16;
btemp = ((unsigned int *)s_spanletvars.pbase + (ts) + (tt) * cachewidth);
if ( ((qbyte *)btemp)[3] )
{
if (*s_spanletvars.pz <= (s_spanletvars.izi >> 16))
{
((qbyte *)s_spanletvars.pdest)[0] = (((qbyte *)s_spanletvars.pdest)[0]*(255-r_q2polydesc.alpha) + ((qbyte *)btemp)[2]*r_q2polydesc.alpha)/255;
((qbyte *)s_spanletvars.pdest)[1] = (((qbyte *)s_spanletvars.pdest)[1]*(255-r_q2polydesc.alpha) + ((qbyte *)btemp)[1]*r_q2polydesc.alpha)/255;
((qbyte *)s_spanletvars.pdest)[2] = (((qbyte *)s_spanletvars.pdest)[2]*(255-r_q2polydesc.alpha) + ((qbyte *)btemp)[0]*r_q2polydesc.alpha)/255;
}
}
s_spanletvars.izi += s_spanletvars.izistep;
s_spanletvars.pdest+=4;
s_spanletvars.pz++;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
} while (--s_spanletvars.spancount > 0);
}
void R_32DrawSpanletTurbulentBlended( void )
{
extern int *r_turb_turb;
unsigned *btemp;
int sturb, tturb;
do
{
sturb = ((s_spanletvars.s + r_turb_turb[(s_spanletvars.t>>16)&(CYCLE-1)])>>16)&63;
tturb = ((s_spanletvars.t + r_turb_turb[(s_spanletvars.s>>16)&(CYCLE-1)])>>16)&63;
btemp = ( (int *)s_spanletvars.pbase + ( sturb ) + ( tturb << 6 ) );
if ( *s_spanletvars.pz <= ( s_spanletvars.izi >> 16 ) )
{
((qbyte *)s_spanletvars.pdest)[0] = (((qbyte *)s_spanletvars.pdest)[0]*(255-r_q2polydesc.alpha) + ((qbyte *)btemp)[2]*r_q2polydesc.alpha)/255;
((qbyte *)s_spanletvars.pdest)[1] = (((qbyte *)s_spanletvars.pdest)[1]*(255-r_q2polydesc.alpha) + ((qbyte *)btemp)[1]*r_q2polydesc.alpha)/255;
((qbyte *)s_spanletvars.pdest)[2] = (((qbyte *)s_spanletvars.pdest)[2]*(255-r_q2polydesc.alpha) + ((qbyte *)btemp)[0]*r_q2polydesc.alpha)/255;
}
s_spanletvars.izi += s_spanletvars.izistep;
s_spanletvars.pdest+=4;
s_spanletvars.pz++;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
} while ( --s_spanletvars.spancount > 0 );
}
/*
** R_DrawSpanlet66Stipple
*/
void R_16DrawSpanlet66Stipple( void )
{
unsigned btemp;
unsigned short *pdest = (unsigned short *)s_spanletvars.pdest;
short *pz = s_spanletvars.pz;
int izi = s_spanletvars.izi;
s_spanletvars.pdest += s_spanletvars.spancount<<1;
s_spanletvars.pz += s_spanletvars.spancount;
if ( s_spanletvars.spancount == AFFINE_SPANLET_SIZE )
s_spanletvars.izi += s_spanletvars.izistep << AFFINE_SPANLET_SIZE_BITS;
else
s_spanletvars.izi += s_spanletvars.izistep * s_spanletvars.izistep;
if ( r_q2polydesc.stipple_parity ^ ( s_spanletvars.v & 1 ) )
{
if ( r_q2polydesc.stipple_parity ^ ( s_spanletvars.u & 1 ) )
{
izi += s_spanletvars.izistep;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
pdest++;
pz++;
s_spanletvars.spancount--;
}
s_spanletvars.sstep *= 2;
s_spanletvars.tstep *= 2;
while ( s_spanletvars.spancount > 0 )
{
unsigned s = s_spanletvars.s >> 16;
unsigned t = s_spanletvars.t >> 16;
btemp = vid.colormap16[*( s_spanletvars.pbase + ( s ) + ( t * cachewidth ) )];
if ( btemp != 255 )
{
if ( *pz <= ( izi >> 16 ) )
*pdest = btemp;
}
izi += s_spanletvars.izistep_times_2;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
pdest += 2;
pz += 2;
s_spanletvars.spancount -= 2;
}
}
else
{
while ( s_spanletvars.spancount > 0 )
{
unsigned s = s_spanletvars.s >> 16;
unsigned t = s_spanletvars.t >> 16;
btemp = s+t;//vid.colormap16[*( s_spanletvars.pbase + ( s ) + ( t * cachewidth ) )];
if ( btemp != 255 )
{
if ( *pz <= ( izi >> 16 ) )
*pdest = btemp;
}
izi += s_spanletvars.izistep;
s_spanletvars.s += s_spanletvars.sstep;
s_spanletvars.t += s_spanletvars.tstep;
pdest++;
pz++;
s_spanletvars.spancount--;
}
}
}
/*
** R_PolygonDrawSpans
*/
// PGM - iswater was qboolean. changed to allow passing more flags
void R_PolygonDrawSpans(espan_t *pspan, int iswater )
{
extern int *r_turb_turb;
int count;
fixed16_t snext, tnext;
float sdivz, tdivz, zi, z, du, dv, spancountminus1;
float sdivzspanletstepu, tdivzspanletstepu, zispanletstepu;
s_spanletvars.pbase = cacheblock;
//PGM
// if ( iswater & SURF_WARP)
r_turb_turb = sintable + ((int)(cl.time*SPEED)&(CYCLE-1));
// else if (iswater & SURF_FLOWING)
// r_turb_turb = blanktable;
//PGM
sdivzspanletstepu = d_sdivzstepu * AFFINE_SPANLET_SIZE;
tdivzspanletstepu = d_tdivzstepu * AFFINE_SPANLET_SIZE;
zispanletstepu = d_zistepu * AFFINE_SPANLET_SIZE;
// we count on FP exceptions being turned off to avoid range problems
s_spanletvars.izistep = (int)(d_zistepu * 0x8000 * 0x10000);
s_spanletvars.izistep_times_2 = s_spanletvars.izistep * 2;
s_spanletvars.pz = 0;
do
{
s_spanletvars.pdest = (qbyte *)d_viewbuffer + r_pixbytes*( d_scantable[pspan->v] /*r_screenwidth * pspan->v*/ + pspan->u);
s_spanletvars.pz = d_pzbuffer + (d_zwidth * pspan->v) + pspan->u;
s_spanletvars.u = pspan->u;
s_spanletvars.v = pspan->v;
count = pspan->count;
if (count <= 0)
goto NextSpan;
// calculate the initial s/z, t/z, 1/z, s, and t and clamp
du = (float)pspan->u;
dv = (float)pspan->v;
sdivz = d_sdivzorigin + dv*d_sdivzstepv + du*d_sdivzstepu;
tdivz = d_tdivzorigin + dv*d_tdivzstepv + du*d_tdivzstepu;
zi = d_ziorigin + dv*d_zistepv + du*d_zistepu;
z = (float)0x10000 / zi; // prescale to 16.16 fixed-point
// we count on FP exceptions being turned off to avoid range problems
s_spanletvars.izi = (int)(zi * 0x8000 * 0x10000);
s_spanletvars.s = (int)(sdivz * z) + sadjust;
s_spanletvars.t = (int)(tdivz * z) + tadjust;
if ( !iswater )
{
if (s_spanletvars.s > bbextents)
s_spanletvars.s = bbextents;
else if (s_spanletvars.s < 0)
s_spanletvars.s = 0;
if (s_spanletvars.t > bbextentt)
s_spanletvars.t = bbextentt;
else if (s_spanletvars.t < 0)
s_spanletvars.t = 0;
}
do
{
// calculate s and t at the far end of the span
if (count >= AFFINE_SPANLET_SIZE )
s_spanletvars.spancount = AFFINE_SPANLET_SIZE;
else
s_spanletvars.spancount = count;
count -= s_spanletvars.spancount;
if (count)
{
// calculate s/z, t/z, zi->fixed s and t at far end of span,
// calculate s and t steps across span by shifting
sdivz += sdivzspanletstepu;
tdivz += tdivzspanletstepu;
zi += zispanletstepu;
z = (float)0x10000 / zi; // prescale to 16.16 fixed-point
snext = (int)(sdivz * z) + sadjust;
tnext = (int)(tdivz * z) + tadjust;
if ( !iswater )
{
if (snext > bbextents)
snext = bbextents;
else if (snext < AFFINE_SPANLET_SIZE)
snext = AFFINE_SPANLET_SIZE; // prevent round-off error on <0 steps from
// from causing overstepping & running off the
// edge of the texture
if (tnext > bbextentt)
tnext = bbextentt;
else if (tnext < AFFINE_SPANLET_SIZE)
tnext = AFFINE_SPANLET_SIZE; // guard against round-off error on <0 steps
}
s_spanletvars.sstep = (snext - s_spanletvars.s) >> AFFINE_SPANLET_SIZE_BITS;
s_spanletvars.tstep = (tnext - s_spanletvars.t) >> AFFINE_SPANLET_SIZE_BITS;
}
else
{
// calculate s/z, t/z, zi->fixed s and t at last pixel in span (so
// can't step off polygon), clamp, calculate s and t steps across
// span by division, biasing steps low so we don't run off the
// texture
spancountminus1 = (float)(s_spanletvars.spancount - 1);
sdivz += d_sdivzstepu * spancountminus1;
tdivz += d_tdivzstepu * spancountminus1;
zi += d_zistepu * spancountminus1;
z = (float)0x10000 / zi; // prescale to 16.16 fixed-point
snext = (int)(sdivz * z) + sadjust;
tnext = (int)(tdivz * z) + tadjust;
if ( !iswater )
{
if (snext > bbextents)
snext = bbextents;
else if (snext < AFFINE_SPANLET_SIZE)
snext = AFFINE_SPANLET_SIZE; // prevent round-off error on <0 steps from
// from causing overstepping & running off the
// edge of the texture
if (tnext > bbextentt)
tnext = bbextentt;
else if (tnext < AFFINE_SPANLET_SIZE)
tnext = AFFINE_SPANLET_SIZE; // guard against round-off error on <0 steps
}
if (s_spanletvars.spancount > 1)
{
s_spanletvars.sstep = (snext - s_spanletvars.s) / (s_spanletvars.spancount - 1);
s_spanletvars.tstep = (tnext - s_spanletvars.t) / (s_spanletvars.spancount - 1);
}
}
if ( iswater )
{
s_spanletvars.s = s_spanletvars.s & ((CYCLE<<16)-1);
s_spanletvars.t = s_spanletvars.t & ((CYCLE<<16)-1);
}
r_q2polydesc.drawspanlet();
s_spanletvars.s = snext;
s_spanletvars.t = tnext;
} while (count > 0);
NextSpan:
pspan++;
} while (pspan->count != DS_SPAN_LIST_END);
}
/*
**
** R_PolygonScanLeftEdge
**
** Goes through the polygon and scans the left edge, filling in
** screen coordinate data for the spans
*/
void R_PolygonScanLeftEdge (void)
{
int i, v, itop, ibottom, lmaxindex;
emitpoint_t *pvert, *pnext;
espan_t *pspan;
float du, dv, vtop, vbottom, slope;
fixed16_t u, u_step;
pspan = s_polygon_spans;
i = s_minindex;
if (i == 0)
i = r_q2polydesc.nump;
lmaxindex = s_maxindex;
if (lmaxindex == 0)
lmaxindex = r_q2polydesc.nump;
vtop = ceil (r_q2polydesc.pverts[i].v);
do
{
pvert = &r_q2polydesc.pverts[i];
pnext = pvert - 1;
vbottom = ceil (pnext->v);
if (vtop < vbottom)
{
du = pnext->u - pvert->u;
dv = pnext->v - pvert->v;
slope = du / dv;
u_step = (int)(slope * 0x10000);
// adjust u to ceil the integer portion
u = (int)((pvert->u + (slope * (vtop - pvert->v))) * 0x10000) +
(0x10000 - 1);
itop = (int)vtop;
ibottom = (int)vbottom;
for (v=itop ; v<ibottom ; v++)
{
pspan->u = u >> 16;
pspan->v = v;
u += u_step;
pspan++;
}
}
vtop = vbottom;
i--;
if (i == 0)
i = r_q2polydesc.nump;
} while (i != lmaxindex);
}
/*
** R_PolygonScanRightEdge
**
** Goes through the polygon and scans the right edge, filling in
** count values.
*/
void R_PolygonScanRightEdge (void)
{
int i, v, itop, ibottom;
emitpoint_t *pvert, *pnext;
espan_t *pspan;
float du, dv, vtop, vbottom, slope, uvert, unext, vvert, vnext;
fixed16_t u, u_step;
pspan = s_polygon_spans;
i = s_minindex;
vvert = r_q2polydesc.pverts[i].v;
if (vvert < r_refdef.fvrecty_adj)
vvert = r_refdef.fvrecty_adj;
if (vvert > r_refdef.fvrectbottom_adj)
vvert = r_refdef.fvrectbottom_adj;
vtop = ceil (vvert);
do
{
pvert = &r_q2polydesc.pverts[i];
pnext = pvert + 1;
vnext = pnext->v;
if (vnext < r_refdef.fvrecty_adj)
vnext = r_refdef.fvrecty_adj;
if (vnext > r_refdef.fvrectbottom_adj)
vnext = r_refdef.fvrectbottom_adj;
vbottom = ceil (vnext);
if (vtop < vbottom)
{
uvert = pvert->u;
if (uvert < r_refdef.fvrectx_adj)
uvert = r_refdef.fvrectx_adj;
if (uvert > r_refdef.fvrectright_adj)
uvert = r_refdef.fvrectright_adj;
unext = pnext->u;
if (unext < r_refdef.fvrectx_adj)
unext = r_refdef.fvrectx_adj;
if (unext > r_refdef.fvrectright_adj)
unext = r_refdef.fvrectright_adj;
du = unext - uvert;
dv = vnext - vvert;
slope = du / dv;
u_step = (int)(slope * 0x10000);
// adjust u to ceil the integer portion
u = (int)((uvert + (slope * (vtop - vvert))) * 0x10000) +
(0x10000 - 1);
itop = (int)vtop;
ibottom = (int)vbottom;
for (v=itop ; v<ibottom ; v++)
{
pspan->count = (u >> 16) - pspan->u;
u += u_step;
pspan++;
}
}
vtop = vbottom;
vvert = vnext;
i++;
if (i == r_q2polydesc.nump)
i = 0;
} while (i != s_maxindex);
pspan->count = DS_SPAN_LIST_END; // mark the end of the span list
}
/*
** R_ClipPolyFace
**
** Clips the winding at clip_verts[clip_current] and changes clip_current
** Throws out the back side
*/
int R_ClipPolyFace (int nump, clipplane_t *pclipplane)
{
int i, outcount;
float dists[MAXWORKINGVERTS+3];
float frac, clipdist, *pclipnormal;
float *in, *instep, *outstep, *vert2;
clipdist = pclipplane->dist;
pclipnormal = pclipplane->normal;
// calc dists
if (clip_current)
{
in = r_clip_verts[1][0];
outstep = r_clip_verts[0][0];
clip_current = 0;
}
else
{
in = r_clip_verts[0][0];
outstep = r_clip_verts[1][0];
clip_current = 1;
}
instep = in;
for (i=0 ; i<nump ; i++, instep += sizeof (vec5_t) / sizeof (float))
{
dists[i] = DotProduct (instep, pclipnormal) - clipdist;
}
// handle wraparound case
dists[nump] = dists[0];
memcpy (instep, in, sizeof (vec5_t));
// clip the winding
instep = in;
outcount = 0;
for (i=0 ; i<nump ; i++, instep += sizeof (vec5_t) / sizeof (float))
{
if (dists[i] >= 0)
{
memcpy (outstep, instep, sizeof (vec5_t));
outstep += sizeof (vec5_t) / sizeof (float);
outcount++;
}
if (dists[i] == 0 || dists[i+1] == 0)
continue;
if ( (dists[i] > 0) == (dists[i+1] > 0) )
continue;
// split it into a new vertex
frac = dists[i] / (dists[i] - dists[i+1]);
vert2 = instep + sizeof (vec5_t) / sizeof (float);
outstep[0] = instep[0] + frac*(vert2[0] - instep[0]);
outstep[1] = instep[1] + frac*(vert2[1] - instep[1]);
outstep[2] = instep[2] + frac*(vert2[2] - instep[2]);
outstep[3] = instep[3] + frac*(vert2[3] - instep[3]);
outstep[4] = instep[4] + frac*(vert2[4] - instep[4]);
outstep += sizeof (vec5_t) / sizeof (float);
outcount++;
}
return outcount;
}
void R_PolygonCalculateGradients (void)
{
vec3_t p_normal, p_saxis, p_taxis;
float distinv;
TransformVector (r_q2polydesc.vpn, p_normal);
TransformVector (r_q2polydesc.vright, p_saxis);
TransformVector (r_q2polydesc.vup, p_taxis);
distinv = 1.0 / (-(DotProduct (r_q2polydesc.viewer_position, r_q2polydesc.vpn)) + r_q2polydesc.dist );
d_sdivzstepu = p_saxis[0] * xscaleinv;
d_sdivzstepv = -p_saxis[1] * yscaleinv;
d_sdivzorigin = p_saxis[2] - xcenter * d_sdivzstepu - ycenter * d_sdivzstepv;
d_tdivzstepu = p_taxis[0] * xscaleinv;
d_tdivzstepv = -p_taxis[1] * yscaleinv;
d_tdivzorigin = p_taxis[2] - xcenter * d_tdivzstepu - ycenter * d_tdivzstepv;
d_zistepu = p_normal[0] * xscaleinv * distinv;
d_zistepv = -p_normal[1] * yscaleinv * distinv;
d_ziorigin = p_normal[2] * distinv - xcenter * d_zistepu - ycenter * d_zistepv;
sadjust = (fixed16_t) ( ( DotProduct( r_q2polydesc.viewer_position, r_q2polydesc.vright) + r_q2polydesc.s_offset ) * 0x10000 );
tadjust = (fixed16_t) ( ( DotProduct( r_q2polydesc.viewer_position, r_q2polydesc.vup ) + r_q2polydesc.t_offset ) * 0x10000 );
// -1 (-epsilon) so we never wander off the edge of the texture
bbextents = (r_q2polydesc.pixel_width << 16) - 1;
bbextentt = (r_q2polydesc.pixel_height << 16) - 1;
}
static void R_DrawPoly( int iswater )
{
int i, nump;
float ymin, ymax;
emitpoint_t *pverts;
espan_t spans[MAXHEIGHT+1];
s_polygon_spans = spans;
// find the top and bottom vertices, and make sure there's at least one scan to
// draw
ymin = 999999.9;
ymax = -999999.9;
pverts = r_q2polydesc.pverts;
for (i=0 ; i<r_q2polydesc.nump ; i++)
{
if (pverts->v < ymin)
{
ymin = pverts->v;
s_minindex = i;
}
if (pverts->v > ymax)
{
ymax = pverts->v;
s_maxindex = i;
}
pverts++;
}
ymin = ceil (ymin);
ymax = ceil (ymax);
if (ymin >= ymax)
return; // doesn't cross any scans at all
cachewidth = r_q2polydesc.pixel_width;
cacheblock = r_q2polydesc.pixels;
// copy the first vertex to the last vertex, so we don't have to deal with
// wrapping
nump = r_q2polydesc.nump;
pverts = r_q2polydesc.pverts;
pverts[nump] = pverts[0];
R_PolygonCalculateGradients ();
R_PolygonScanLeftEdge ();
R_PolygonScanRightEdge ();
R_PolygonDrawSpans( s_polygon_spans, iswater );
}
void R_ClipAndDrawPoly ( float alpha, int isturbulent, qboolean textured )
{
emitpoint_t outverts[MAXWORKINGVERTS+3], *pout;
float *pv;
int i, nump;
float scale;
vec3_t transformed, local;
if (r_pixbytes == 4)
{
if (alpha == 1 && !isturbulent)
r_q2polydesc.drawspanlet = R_32DrawSpanletAlphaTest;
else if (alpha <= 0)
return;
else
{
r_q2polydesc.alpha = alpha*255;
if (isturbulent)
r_q2polydesc.drawspanlet = R_32DrawSpanletTurbulentBlended;
else
r_q2polydesc.drawspanlet = R_32DrawSpanletBlended;
}
}
else if (r_pixbytes == 2)
{
if (alpha < 0.2)
return;
else if (alpha < 0.5)
r_q2polydesc.drawspanlet = R_16DrawSpanlet33Stipple;
else if (alpha < 0.9)
r_q2polydesc.drawspanlet = R_16DrawSpanlet66Stipple;
else
r_q2polydesc.drawspanlet = R_16DrawSpanletAlphaTest;
}
else
{
if (alpha >= TRANS_UPPER_CAP)
r_q2polydesc.drawspanlet = R_8DrawSpanletAlphaTest;
else if (alpha <= TRANS_LOWER_CAP)
return;
else if (isturbulent)
{
r_q2polydesc.alpha = alpha*255;
r_q2polydesc.drawspanlet = R_8DrawSpanletTurbulentAlphaBlend;
}
else
{
r_q2polydesc.alpha = alpha*255;
r_q2polydesc.drawspanlet = R_8DrawSpanletAlphaBlend;
}
}
// clip to the frustum in worldspace
nump = r_q2polydesc.nump;
clip_current = 0;
for (i=0 ; i<4 ; i++)
{
nump = R_ClipPolyFace (nump, &view_clipplanes[i]);
if (nump < 3)
return;
if (nump > MAXWORKINGVERTS)
Host_Error("R_ClipAndDrawPoly: too many points: %d", nump );
}
// transform vertices into viewspace and project
pv = &r_clip_verts[clip_current][0][0];
for (i=0 ; i<nump ; i++)
{
VectorSubtract (pv, r_origin, local);
TransformVector (local, transformed);
if (transformed[2] < NEAR_CLIP)
transformed[2] = NEAR_CLIP;
pout = &outverts[i];
pout->zi = 1.0 / transformed[2];
pout->s = pv[3];
pout->t = pv[4];
scale = xscale * pout->zi;
pout->u = (xcenter+0.5 + scale * transformed[0]);
scale = yscale * pout->zi;
pout->v = (ycenter - scale * transformed[1]);
pv += sizeof (vec5_t) / sizeof (pv);
}
// draw it
r_q2polydesc.nump = nump;
r_q2polydesc.pverts = outverts;
R_DrawPoly( isturbulent );
}
void R_BuildPolygonFromSurface(msurface_t *fa)
{
int i, lindex, lnumverts;
medge_t *pedges, *r_pedge;
int vertpage;
float *vec;
vec5_t *pverts;
float tmins[2] = { 0, 0 };
r_q2polydesc.nump = 0;
// reconstruct the polygon
pedges = currentmodel->edges;
lnumverts = fa->numedges;
vertpage = 0;
pverts = r_clip_verts[0];
for (i=0 ; i<lnumverts ; i++)
{
lindex = currentmodel->surfedges[fa->firstedge + i];
if (lindex > 0)
{
r_pedge = &pedges[lindex];
vec = currentmodel->vertexes[r_pedge->v[0]].position;
}
else
{
r_pedge = &pedges[-lindex];
vec = currentmodel->vertexes[r_pedge->v[1]].position;
}
VectorCopy (vec, pverts[i] );
}
VectorCopy( fa->texinfo->vecs[0], r_q2polydesc.vright );
VectorCopy( fa->texinfo->vecs[1], r_q2polydesc.vup );
VectorCopy( fa->plane->normal, r_q2polydesc.vpn );
VectorCopy( r_origin, r_q2polydesc.viewer_position );
if ( fa->flags & SURF_PLANEBACK )
{
VectorSubtract( vec3_origin, r_q2polydesc.vpn, r_q2polydesc.vpn );
}
// PGM 09/16/98
if ( fa->texinfo->flags & (SURF_WARP|SURF_FLOWING) || (fa->flags & SURF_DRAWTURB) )
{
r_q2polydesc.pixels = (qbyte *)fa->texinfo->texture + fa->texinfo->texture->offsets[0];
r_q2polydesc.pixel_width = fa->texinfo->texture->width;
r_q2polydesc.pixel_height = fa->texinfo->texture->height;
}
// PGM 09/16/98
else
{
surfcache_t *scache;
scache = D_CacheSurface( fa, 0 );
r_q2polydesc.pixels = scache->data;
r_q2polydesc.pixel_width = scache->width;
r_q2polydesc.pixel_height = scache->height;
tmins[0] = fa->texturemins[0];
tmins[1] = fa->texturemins[1];
}
r_q2polydesc.dist = DotProduct( r_q2polydesc.vpn, pverts[0] );
r_q2polydesc.s_offset = fa->texinfo->vecs[0][3] - tmins[0];
r_q2polydesc.t_offset = fa->texinfo->vecs[1][3] - tmins[1];
// scrolling texture addition
if (fa->texinfo->flags & SURF_FLOWING)
{
r_q2polydesc.s_offset += -128 * ( (cl.time*0.25) - (int)(cl.time*0.25) );
}
r_q2polydesc.nump = lnumverts;
}
void SWR_DrawAlphaSurfaces( void )
{
msurface_t *s = r_alpha_surfaces, *os;
currentmodel = r_worldentity.model;
modelorg[0] = -r_origin[0];
modelorg[1] = -r_origin[1];
modelorg[2] = -r_origin[2];
while ( s )
{
R_BuildPolygonFromSurface( s );
if (s->flags & SURF_DRAWTURB)
{
extern float r_wateralphaval;
R_ClipAndDrawPoly( r_wateralphaval, true, true );
}
else if (s->texinfo->flags & SURF_TRANS66)
{
R_ClipAndDrawPoly( 0.66f, (s->texinfo->flags & (SURF_WARP|SURF_FLOWING)), true );
}
else if (s->texinfo->flags & SURF_TRANS33)
{
R_ClipAndDrawPoly( 0.33f, (s->texinfo->flags & (SURF_WARP|SURF_FLOWING)), true );
}
else
R_ClipAndDrawPoly( 1.f, (s->texinfo->flags & (SURF_WARP|SURF_FLOWING)), true );
os = s;
s = s->nextalphasurface;
os->nextalphasurface=NULL;
}
r_alpha_surfaces = NULL;
}