fteqw/engine/sw/sw_backend.c
Spoike 5d2ff1286d first version with dtls support. disabled for now.
schannel (ie: windows native) works as a client, not a server.
gnutls provides both client+server support. servers need to load a pre-generated cert from disk.
tweaked gamepads to actually work in the web target.
tweak gamepads a bit. added gp_* bind aliases. xinput+sdl+web should all use the same key mappings.
finally added the itemtimer glsl.
tweaked software renderer to not be quite so buggy, but you probably won't realise that if you try it.
disabled the ill-fated QWOVERQ3 feature.
don't do the oldorigin thing in quakeworld mods. hopefully this'll fix cspree's weird stuck-in-floor issue.
dpp7 is buggy serverside. disabled for now. I'm part way through rewriting its deltas.

git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5103 fc73d0e0-1445-4013-8a0c-d673dee63da5
2017-05-18 10:24:09 +00:00

700 lines
18 KiB
C

#include "quakedef.h"
#ifdef SWQUAKE
#include "sw.h"
#include "shader.h"
#include "glquake.h"
vecV_t vertbuf[65535];
swimage_t sw_nulltex =
{
1, 1, 0, 0, 0, 0
};
static struct
{
int foo;
int numrthreads;
void *threads[4];
backendmode_t mode;
float m_mvp[16];
vec4_t viewplane;
entity_t *curentity;
shader_t *curshader;
float curtime;
//this stuff should probably be moved out of the backend
int wbatch;
int maxwbatches;
batch_t *wbatches;
} shaderstate;
////////////////////////////////////////////////////////////////
//start generic tables
#define frand() (rand()*(1.0/RAND_MAX))
#define FTABLE_SIZE 1024
#define FTABLE_CLAMP(x) (((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1)))
#define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand()*((x)-floor(x)))
static float r_sintable[FTABLE_SIZE];
static float r_triangletable[FTABLE_SIZE];
static float r_squaretable[FTABLE_SIZE];
static float r_sawtoothtable[FTABLE_SIZE];
static float r_inversesawtoothtable[FTABLE_SIZE];
static float *FTableForFunc ( unsigned int func )
{
switch (func)
{
case SHADER_FUNC_SIN:
return r_sintable;
case SHADER_FUNC_TRIANGLE:
return r_triangletable;
case SHADER_FUNC_SQUARE:
return r_squaretable;
case SHADER_FUNC_SAWTOOTH:
return r_sawtoothtable;
case SHADER_FUNC_INVERSESAWTOOTH:
return r_inversesawtoothtable;
}
//bad values allow us to crash (so I can debug em)
return NULL;
}
static void BE_InitTables(void)
{
int i;
double t;
for (i = 0; i < FTABLE_SIZE; i++)
{
t = (double)i / (double)FTABLE_SIZE;
r_sintable[i] = sin(t * 2*M_PI);
if (t < 0.25)
r_triangletable[i] = t * 4.0;
else if (t < 0.75)
r_triangletable[i] = 2 - 4.0 * t;
else
r_triangletable[i] = (t - 0.75) * 4.0 - 1.0;
if (t < 0.5)
r_squaretable[i] = 1.0f;
else
r_squaretable[i] = -1.0f;
r_sawtoothtable[i] = t;
r_inversesawtoothtable[i] = 1.0 - t;
}
}
#define R_FastSin(x) sin((x)*(2*M_PI)) //fixme: use r_sintable instead!
//end generic tables
////////////////////////////////////////////////////////////////
//start matrix functions
typedef vec3_t mat3_t[3];
static mat3_t axisDefault={{1, 0, 0},
{0, 1, 0},
{0, 0, 1}};
static void Matrix3_Transpose (mat3_t in, mat3_t out)
{
out[0][0] = in[0][0];
out[1][1] = in[1][1];
out[2][2] = in[2][2];
out[0][1] = in[1][0];
out[0][2] = in[2][0];
out[1][0] = in[0][1];
out[1][2] = in[2][1];
out[2][0] = in[0][2];
out[2][1] = in[1][2];
}
static void Matrix3_Multiply_Vec3 (mat3_t a, vec3_t b, vec3_t product)
{
product[0] = a[0][0]*b[0] + a[0][1]*b[1] + a[0][2]*b[2];
product[1] = a[1][0]*b[0] + a[1][1]*b[1] + a[1][2]*b[2];
product[2] = a[2][0]*b[0] + a[2][1]*b[1] + a[2][2]*b[2];
}
//static int Matrix3_Compare(mat3_t in, mat3_t out)
//{
// return memcmp(in, out, sizeof(mat3_t));
//}
//end matrix functions
////////////////////////////////////////////////////////////////
//start xyz
static void deformgen(const deformv_t *deformv, int cnt, vecV_t *src, vecV_t *dst, const mesh_t *mesh)
{
float *table;
int j, k;
float args[4];
float deflect;
switch (deformv->type)
{
default:
case DEFORMV_NONE:
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
break;
case DEFORMV_WAVE:
if (!mesh->normals_array)
{
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
return;
}
args[0] = deformv->func.args[0];
args[1] = deformv->func.args[1];
args[3] = deformv->func.args[2] + deformv->func.args[3] * shaderstate.curtime;
table = FTableForFunc(deformv->func.type);
for ( j = 0; j < cnt; j++ )
{
deflect = deformv->args[0] * (src[j][0]+src[j][1]+src[j][2]) + args[3];
deflect = FTABLE_EVALUATE(table, deflect) * args[1] + args[0];
// Deflect vertex along its normal by wave amount
VectorMA(src[j], deflect, mesh->normals_array[j], dst[j]);
}
break;
case DEFORMV_NORMAL:
//normal does not actually move the verts, but it does change the normals array
//we don't currently support that.
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
/*
args[0] = deformv->args[1] * shaderstate.curtime;
for ( j = 0; j < cnt; j++ )
{
args[1] = normalsArray[j][2] * args[0];
deflect = deformv->args[0] * R_FastSin(args[1]);
normalsArray[j][0] *= deflect;
deflect = deformv->args[0] * R_FastSin(args[1] + 0.25);
normalsArray[j][1] *= deflect;
VectorNormalizeFast(normalsArray[j]);
}
*/ break;
case DEFORMV_MOVE:
table = FTableForFunc(deformv->func.type);
deflect = deformv->func.args[2] + shaderstate.curtime * deformv->func.args[3];
deflect = FTABLE_EVALUATE(table, deflect) * deformv->func.args[1] + deformv->func.args[0];
for ( j = 0; j < cnt; j++ )
VectorMA(src[j], deflect, deformv->args, dst[j]);
break;
case DEFORMV_BULGE:
args[0] = deformv->args[0]/(2*M_PI);
args[1] = deformv->args[1];
args[2] = shaderstate.curtime * deformv->args[2]/(2*M_PI);
for (j = 0; j < cnt; j++)
{
deflect = R_FastSin(mesh->st_array[j][0]*args[0] + args[2])*args[1];
dst[j][0] = src[j][0]+deflect*mesh->normals_array[j][0];
dst[j][1] = src[j][1]+deflect*mesh->normals_array[j][1];
dst[j][2] = src[j][2]+deflect*mesh->normals_array[j][2];
}
break;
case DEFORMV_AUTOSPRITE:
if (mesh->numindexes < 6)
break;
for (j = 0; j < cnt-3; j+=4, src+=4, dst+=4)
{
vec3_t mid, d;
float radius;
mid[0] = 0.25*(src[0][0] + src[1][0] + src[2][0] + src[3][0]);
mid[1] = 0.25*(src[0][1] + src[1][1] + src[2][1] + src[3][1]);
mid[2] = 0.25*(src[0][2] + src[1][2] + src[2][2] + src[3][2]);
VectorSubtract(src[0], mid, d);
radius = 2*VectorLength(d);
for (k = 0; k < 4; k++)
{
dst[k][0] = mid[0] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[0+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[0+1]);
dst[k][1] = mid[1] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[4+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[4+1]);
dst[k][2] = mid[2] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[8+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[8+1]);
}
}
break;
case DEFORMV_AUTOSPRITE2:
if (mesh->numindexes < 6)
break;
for (k = 0; k < mesh->numindexes; k += 6)
{
int long_axis, short_axis;
vec3_t axis;
float len[3];
mat3_t m0, m1, m2, result;
float *quad[4];
vec3_t rot_centre, tv;
quad[0] = (float *)(dst + mesh->indexes[k+0]);
quad[1] = (float *)(dst + mesh->indexes[k+1]);
quad[2] = (float *)(dst + mesh->indexes[k+2]);
for (j = 2; j >= 0; j--)
{
quad[3] = (float *)(dst + mesh->indexes[k+3+j]);
if (!VectorEquals (quad[3], quad[0]) &&
!VectorEquals (quad[3], quad[1]) &&
!VectorEquals (quad[3], quad[2]))
{
break;
}
}
// build a matrix were the longest axis of the billboard is the Y-Axis
VectorSubtract(quad[1], quad[0], m0[0]);
VectorSubtract(quad[2], quad[0], m0[1]);
VectorSubtract(quad[2], quad[1], m0[2]);
len[0] = DotProduct(m0[0], m0[0]);
len[1] = DotProduct(m0[1], m0[1]);
len[2] = DotProduct(m0[2], m0[2]);
if ((len[2] > len[1]) && (len[2] > len[0]))
{
if (len[1] > len[0])
{
long_axis = 1;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 1;
}
}
else if ((len[1] > len[2]) && (len[1] > len[0]))
{
if (len[2] > len[0])
{
long_axis = 2;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 2;
}
}
else //if ( (len[0] > len[1]) && (len[0] > len[2]) )
{
if (len[2] > len[1])
{
long_axis = 2;
short_axis = 1;
}
else
{
long_axis = 1;
short_axis = 2;
}
}
if (DotProduct(m0[long_axis], m0[short_axis]))
{
VectorNormalize2(m0[long_axis], axis);
VectorCopy(axis, m0[1]);
if (axis[0] || axis[1])
{
VectorVectors(m0[1], m0[2], m0[0]);
}
else
{
VectorVectors(m0[1], m0[0], m0[2]);
}
}
else
{
VectorNormalize2(m0[long_axis], axis);
VectorNormalize2(m0[short_axis], m0[0]);
VectorCopy(axis, m0[1]);
CrossProduct(m0[0], m0[1], m0[2]);
}
for (j = 0; j < 3; j++)
rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25;
if (shaderstate.curentity)
{
VectorAdd(shaderstate.curentity->origin, rot_centre, tv);
}
else
{
VectorCopy(rot_centre, tv);
}
VectorSubtract(r_origin, tv, tv);
// filter any longest-axis-parts off the camera-direction
deflect = -DotProduct(tv, axis);
VectorMA(tv, deflect, axis, m1[2]);
VectorNormalizeFast(m1[2]);
VectorCopy(axis, m1[1]);
CrossProduct(m1[1], m1[2], m1[0]);
Matrix3_Transpose(m1, m2);
Matrix3_Multiply(m2, m0, result);
for (j = 0; j < 4; j++)
{
VectorSubtract(quad[j], rot_centre, tv);
Matrix3_Multiply_Vec3(result, tv, quad[j]);
VectorAdd(rot_centre, quad[j], quad[j]);
}
}
break;
// case DEFORMV_PROJECTION_SHADOW:
// break;
}
}
//end xyz
////////////////////////////////////////////////////////////////
void SWBE_SelectMode(backendmode_t mode)
{
}
void SWBE_TransformVerticies(swvert_t *v, mesh_t *mesh)
{
int i;
vecV_t *xyz;
/*generate vertex blends*/
if (mesh->xyz2_array)
{
xyz = vertbuf;
for (i = 0; i < mesh->numvertexes; i++)
{
VectorInterpolate(mesh->xyz_array[i], mesh->xyz_blendw[1], mesh->xyz2_array[i], xyz[i]);
}
}
/*else if (skeletal)
{
}
*/
else
{
xyz = mesh->xyz_array;
}
/*now apply any shader deforms*/
if (shaderstate.curshader->numdeforms)
{
deformgen(&shaderstate.curshader->deforms[0], mesh->numvertexes, xyz, vertbuf, mesh);
xyz = vertbuf;
for (i = 1; i < shaderstate.curshader->numdeforms; i++)
{
deformgen(&shaderstate.curshader->deforms[i], mesh->numvertexes, xyz, xyz, mesh);
}
}
for (i = 0; i < mesh->numvertexes; i++, v++)
{
VectorCopy(xyz[i], v->vcoord);
Vector2Copy(mesh->st_array[i], v->tccoord);
// v->colour[0] = mesh->colors4b_array[i][0];
// v->colour[1] = mesh->colors4b_array[i][1];
// v->colour[2] = mesh->colors4b_array[i][2];
// v->colour[3] = mesh->colors4b_array[i][3];
}
}
static void SWBE_DrawMesh_Internal(shader_t *shader, mesh_t *mesh, struct vbo_s *vbo, struct texnums_s *texnums, unsigned int be_flags)
{
wqcom_t *com;
if (!texnums)
{
// if (shader->numdefaulttextures)
// texnums = shader->defaulttextures + ;
// else
texnums = shader->defaulttextures;
}
shaderstate.curshader = shader;
if (mesh->istrifan)
{
com = SWRast_BeginCommand(&commandqueue, WTC_TRIFAN, mesh->numvertexes*sizeof(swvert_t) + sizeof(com->trifan) - sizeof(com->trifan.verts));
if (texnums->base)
com->trifan.texture = texnums->base->ptr;
else
com->trifan.texture = &sw_nulltex;
com->trifan.numverts = mesh->numvertexes;
SWBE_TransformVerticies(com->trifan.verts, mesh);
SWRast_EndCommand(&commandqueue, com);
}
else
{
com = SWRast_BeginCommand(&commandqueue, WTC_TRISOUP, (mesh->numvertexes*sizeof(swvert_t)) + sizeof(com->trisoup) - sizeof(com->trisoup.verts) + (sizeof(index_t)*mesh->numindexes));
if (texnums->base)
com->trisoup.texture = texnums->base->ptr;
else
com->trisoup.texture = &sw_nulltex;
com->trisoup.numverts = mesh->numvertexes;
com->trisoup.numidx = mesh->numindexes;
SWBE_TransformVerticies(com->trisoup.verts, mesh);
memcpy(com->trisoup.verts + mesh->numvertexes, mesh->indexes, sizeof(index_t)*mesh->numindexes);
SWRast_EndCommand(&commandqueue, com);
}
}
void SWBE_DrawMesh_List(shader_t *shader, int nummeshes, struct mesh_s **mesh, struct vbo_s *vbo, struct texnums_s *texnums, unsigned int be_flags)
{
while(nummeshes-->0)
{
SWBE_DrawMesh_Internal(shader, *mesh++, vbo, texnums, be_flags);
}
}
void SWBE_DrawMesh_Single(shader_t *shader, mesh_t *mesh, struct vbo_s *vbo, unsigned int be_flags)
{
SWBE_DrawMesh_Internal(shader, mesh, vbo, NULL, be_flags);
}
void SWBE_SubmitBatch(struct batch_s *batch)
{
int m;
SWBE_SelectEntity(batch->ent);
for (m = 0; m < batch->meshes; m++)
{
SWBE_DrawMesh_Internal(batch->shader, batch->mesh[m], batch->vbo, batch->skin, batch->flags);
}
}
struct batch_s *SWBE_GetTempBatch(void)
{
if (shaderstate.wbatch >= shaderstate.maxwbatches)
{
shaderstate.wbatch++;
return NULL;
}
return &shaderstate.wbatches[shaderstate.wbatch++];
}
static void SWBE_SubmitMeshesSortList(batch_t *sortlist)
{
batch_t *batch;
for (batch = sortlist; batch; batch = batch->next)
{
if (batch->meshes == batch->firstmesh)
continue;
if (batch->flags & BEF_NODLIGHT)
if (shaderstate.mode == BEM_LIGHT)
continue;
if (batch->flags & BEF_NOSHADOWS)
if (shaderstate.mode == BEM_STENCIL)
continue;
if (batch->buildmeshes)
batch->buildmeshes(batch);
if (batch->shader->flags & SHADER_NODRAW)
continue;
if (batch->shader->flags & SHADER_NODLIGHT)
if (shaderstate.mode == BEM_LIGHT)
continue;
if (batch->shader->flags & SHADER_SKY)
{
if (shaderstate.mode == BEM_STANDARD || shaderstate.mode == BEM_DEPTHDARK)
{
if (!batch->shader->prog)
{
R_DrawSkyChain (batch);
continue;
}
}
else if (shaderstate.mode != BEM_FOG && shaderstate.mode != BEM_CREPUSCULAR)
continue;
}
SWBE_SubmitBatch(batch);
}
}
void SWBE_SubmitMeshes (batch_t **worldbatches, batch_t **blist, int start, int stop)
{
int i;
for (i = start; i <= stop; i++)
{
if (worldbatches)
{
// if (i == SHADER_SORT_PORTAL && !r_noportals.ival && !r_refdef.recurse)
// SWBE_SubmitMeshesPortals(worldbatches, blist[i]);
SWBE_SubmitMeshesSortList(worldbatches[i]);
}
SWBE_SubmitMeshesSortList(blist[i]);
}
}
static void SWBE_UpdateUniforms(void)
{
wqcom_t *com;
com = SWRast_BeginCommand(&commandqueue, WTC_UNIFORMS, sizeof(com->uniforms));
memcpy(com->uniforms.u.matrix, shaderstate.m_mvp, sizeof(com->uniforms.u.matrix));
Vector4Copy(shaderstate.viewplane, com->uniforms.u.viewplane);
SWRast_EndCommand(&commandqueue, com);
}
void SWBE_Set2D(void)
{
extern cvar_t gl_screenangle;
float ang, rad, w, h;
float tmp[16];
float tmp2[16];
vid.fbvwidth = vid.width;
vid.fbvheight = vid.height;
vid.fbpwidth = vid.pixelwidth;
vid.fbpheight = vid.pixelheight;
ang = (gl_screenangle.value>0?(gl_screenangle.value+45):(gl_screenangle.value-45))/90;
ang = (int)ang * 90;
if (ang)
{ /*more expensive maths*/
rad = (ang * M_PI) / 180;
w = fabs(cos(rad)) * (vid.width) + fabs(sin(rad)) * (vid.height);
h = fabs(sin(rad)) * (vid.width) + fabs(cos(rad)) * (vid.height);
Matrix4x4_CM_Orthographic(r_refdef.m_projection, w/-2.0f, w/2.0f, h/2.0f, h/-2.0f, -99999, 99999);
Matrix4x4_Identity(tmp);
Matrix4_Multiply(Matrix4x4_CM_NewTranslation((vid.width/-2.0f), (vid.height/-2.0f), 0), tmp, tmp2);
Matrix4_Multiply(Matrix4x4_CM_NewRotation(-ang, 0, 0, 1), tmp2, r_refdef.m_view);
}
else
{
if (0)
Matrix4x4_CM_Orthographic(r_refdef.m_projection, 0, vid.width, 0, vid.height, 0, 99999);
else
Matrix4x4_CM_Orthographic(r_refdef.m_projection, 0, vid.width, vid.height, 0, 0, 99999);
Matrix4x4_Identity(r_refdef.m_view);
}
memcpy(shaderstate.m_mvp, r_refdef.m_projection, sizeof(shaderstate.m_mvp));
shaderstate.viewplane[0] = -r_refdef.m_view[0*4+2];
shaderstate.viewplane[1] = -r_refdef.m_view[1*4+2];
shaderstate.viewplane[2] = -r_refdef.m_view[2*4+2];
VectorNormalize(shaderstate.viewplane);
VectorScale(shaderstate.viewplane, 1.0/99999, shaderstate.viewplane);
shaderstate.viewplane[3] = DotProduct(vec3_origin, shaderstate.viewplane);// - 0.5;
SWBE_UpdateUniforms();
}
void SWBE_DrawWorld(batch_t **worldbatches)
{
batch_t *batches[SHADER_SORT_COUNT];
if (!r_refdef.recurse)
{
if (shaderstate.wbatch + 50 > shaderstate.maxwbatches)
{
int newm = shaderstate.wbatch + 100;
shaderstate.wbatches = BZ_Realloc(shaderstate.wbatches, newm * sizeof(*shaderstate.wbatches));
memset(shaderstate.wbatches + shaderstate.maxwbatches, 0, (newm - shaderstate.maxwbatches) * sizeof(*shaderstate.wbatches));
shaderstate.maxwbatches = newm;
}
shaderstate.wbatch = 0;
}
BE_GenModelBatches(batches, NULL, shaderstate.mode);
// R_GenDlightBatches(batches);
shaderstate.curentity = NULL;
SWBE_SelectEntity(&r_worldentity);
SWBE_SubmitMeshes(worldbatches, batches, SHADER_SORT_PORTAL, SHADER_SORT_NEAREST);
SWBE_Set2D();
}
void SWBE_Init(void)
{
memset(&sh_config, 0, sizeof(sh_config));
sh_config.texfmt[PTI_BGRA8] = true;
sh_config.texfmt[PTI_BGRX8] = true;
sh_config.texfmt[PTI_RGBA8] = true;
sh_config.texfmt[PTI_RGBX8] = true;
BE_InitTables();
}
void SWBE_GenBrushModelVBO(struct model_s *mod)
{
}
void SWBE_ClearVBO(struct vbo_s *vbo)
{
}
void SWBE_UploadAllLightmaps(void)
{
}
void SWBE_SelectEntity(struct entity_s *ent)
{
float modelmatrix[16];
float modelviewmatrix[16];
vec3_t vieworg;
if (shaderstate.curentity == ent)
return;
shaderstate.curentity = ent;
R_RotateForEntity(modelmatrix, modelviewmatrix, shaderstate.curentity, shaderstate.curentity->model);
Matrix4_Multiply(r_refdef.m_projection, modelviewmatrix, shaderstate.m_mvp);
shaderstate.viewplane[0] = vpn[0];//-modelviewmatrix[0];//0*4+2];
shaderstate.viewplane[1] = vpn[1];//-modelviewmatrix[1];//1*4+2];
shaderstate.viewplane[2] = vpn[2];//-modelviewmatrix[2];//2*4+2];
VectorNormalize(shaderstate.viewplane);
VectorScale(shaderstate.viewplane, 1.0/8192, shaderstate.viewplane);
vieworg[0] = modelviewmatrix[3*4+0];
vieworg[1] = modelviewmatrix[3*4+1];
vieworg[2] = modelviewmatrix[3*4+2];
VectorMA(r_refdef.vieworg, 256, shaderstate.viewplane, vieworg);
shaderstate.viewplane[3] = DotProduct(vieworg, shaderstate.viewplane);
SWBE_UpdateUniforms();
}
qboolean SWBE_SelectDLight(struct dlight_s *dl, vec3_t colour, vec3_t axis[3], unsigned int lmode)
{
return false;
}
qboolean SWBE_LightCullModel(vec3_t org, struct model_s *model)
{
return false;
}
void SWBE_RenderToTextureUpdate2d(qboolean destchanged)
{
}
#endif