fteqw/engine/common/zone.h
Spoike dd8628eb2a tweak particle system a little for more compat.
added a couple extra effects to r_particledesc high
try and solve the trailparticles madness once and for all by autodetecting which set of arguments is used.
fix some annoyances with menuqc.
rebuild fs cache when doing vid_restart, to avoid insane reload times.
add profiling support.
qcc: be more permissive with {a,b,} in array definitions.
tweaked logfrag builtin to not loose frags quite so easily. should be more robust now. Whether tools agree or not is a different matter... but there's always the possibility that it'll just work.

git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@4644 fc73d0e0-1445-4013-8a0c-d673dee63da5
2014-04-24 01:53:01 +00:00

161 lines
4.7 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
memory allocation
H_??? The hunk manages the entire memory block given to quake. It must be
contiguous. Memory can be allocated from either the low or high end in a
stack fashion. The only way memory is released is by resetting one of the
pointers.
Hunk allocations should be given a name, so the Hunk_Print () function
can display usage.
Hunk allocations are guaranteed to be 16 byte aligned.
The video buffers are allocated high to avoid leaving a hole underneath
server allocations when changing to a higher video mode.
Z_??? Zone memory functions used for small, dynamic allocations like text
strings from command input. There is only about 48K for it, allocated at
the very bottom of the hunk.
Cache_??? Cache memory is for objects that can be dynamically loaded and
can usefully stay persistant between levels. The size of the cache
fluctuates from level to level.
To allocate a cachable object
Temp_??? Temp memory is used for file loading and surface caching. The size
of the cache memory is adjusted so that there is a minimum of 512k remaining
for temp memory.
------ Top of Memory -------
high hunk allocations
<--- high hunk reset point held by vid
video buffer
z buffer
surface cache
<--- high hunk used
cachable memory
<--- low hunk used
client and server low hunk allocations
<-- low hunk reset point held by host
startup hunk allocations
Zone block
----- Bottom of Memory -----
*/
void Memory_Init (void);
void Memory_DeInit(void);
void VARGS Z_Free (void *ptr);
void *Z_Malloc (int size); // returns 0 filled memory
void *ZF_Malloc (int size); // allowed to fail
void *Z_MallocNamed (int size, char *file, int line); // returns 0 filled memory
void *ZF_MallocNamed (int size, char *file, int line); // allowed to fail
//#define Z_Malloc(x) Z_MallocNamed2(x, __FILE__, __LINE__ )
void *VARGS Z_TagMalloc (int size, int tag);
void VARGS Z_TagFree(void *ptr);
void VARGS Z_FreeTags(int tag);
//void *Z_Realloc (void *ptr, int size);
//Big Zone: allowed to fail, doesn't clear. The expectation is a large file, rather than sensitive data structures.
//(this is a nicer name for malloc)
void *BZ_Malloc(int size);
void *BZF_Malloc(int size);
void *BZ_MallocNamed (int size, char *file, int line); // returns 0 filled memory
void *BZF_MallocNamed (int size, char *file, int line); // allowed to fail
void *BZ_Realloc(void *ptr, int size);
void *BZ_ReallocNamed(void *data, int newsize, char *file, int line);
void *BZF_Realloc(void *data, int newsize);
void *BZF_ReallocNamed(void *data, int newsize, char *file, int line);
void BZ_Free(void *ptr);
//ctx should start off as void*ctx=NULL
typedef struct zonegroup_s
{
void *first;
int bytes;
} zonegroup_t;
void *QDECL ZG_Malloc(zonegroup_t *ctx, int size);
void *ZG_MallocNamed(zonegroup_t *ctx, int size, char *file, int line);
void ZG_FreeGroup(zonegroup_t *ctx);
#ifdef USE_MSVCRT_DEBUG
#define BZ_Malloc(size) BZ_MallocNamed(size, __FILE__, __LINE__)
#define Z_Malloc(size) Z_MallocNamed(size, __FILE__, __LINE__)
#define BZ_Realloc(ptr, size) BZ_ReallocNamed(ptr, size, __FILE__, __LINE__)
#define BZF_Malloc(size) BZF_MallocNamed(size, __FILE__, __LINE__)
#define ZF_Malloc(size) ZF_MallocNamed(size, __FILE__, __LINE__)
#define BZF_Realloc(ptr, size) BZF_ReallocNamed(ptr, size, __FILE__, __LINE__)
#define ZG_Malloc(ctx, size) ZG_MallocNamed(ctx, size, __FILE__, __LINE__)
#endif
#define Z_StrDup(s) strcpy(Z_Malloc(strlen(s)+1), s)
/*
void *Hunk_Alloc (int size); // returns 0 filled memory
void *Hunk_AllocName (int size, char *name);
*/
void *Hunk_TempAlloc (int size);
void *Hunk_TempAllocMore (int size); //Don't clear old temp
/*
typedef struct cache_user_s
{
void *data;
qboolean fake;
} cache_user_t;
*/
void Cache_Flush (void);
/*
void *Cache_Check (cache_user_t *c);
// returns the cached data, and moves to the head of the LRU list
// if present, otherwise returns NULL
void Cache_Free (cache_user_t *c);
void *Cache_Alloc (cache_user_t *c, int size, char *name);
// Returns NULL if all purgable data was tossed and there still
// wasn't enough room.
void Cache_Report (void);
*/