fteqw/engine/gl/gl_rlight.c
Spoike fb86222fc7 made max_clients more dynamic on the server to attempt to reduce bss usage. hopefully this will help the webgl port without resulting in extra crashes.
tweaked shadowmaps. now seems faster than stencil shadows. cubemap orientation should now match other engines.
tweaked terrain. rtlights work. added pvs tests for embedded terrain. sections are now saved in chunks instead, which should mean windows doesn't have a panic attack at 16 million files in a single directory. hurrah.
first pass at realigning menu options to cope with variable-width fonts. still need to do pure-text items.

git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@4514 fc73d0e0-1445-4013-8a0c-d673dee63da5
2013-10-29 17:38:22 +00:00

1481 lines
35 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_light.c
#include "quakedef.h"
#if defined(GLQUAKE) || defined(D3DQUAKE)
#include "glquake.h"
#include "shader.h"
extern cvar_t r_shadow_realtime_world, r_shadow_realtime_world_lightmaps;
int r_dlightframecount;
int d_lightstylevalue[256]; // 8.8 fraction of base light value
/*
==================
R_AnimateLight
==================
*/
void R_AnimateLight (void)
{
int i,j;
float f;
//
// light animations
// 'm' is normal light, 'a' is no light, 'z' is double bright
f = (cl.time*r_lightstylespeed.value);
if (f < 0)
f = 0;
i = (int)f;
f -= i; //this can require updates at 1000 times a second.. Depends on your framerate of course
for (j=0 ; j<MAX_LIGHTSTYLES ; j++)
{
int v1, v2, vd;
if (!cl_lightstyle[j].length)
{
d_lightstylevalue[j] = 256;
cl_lightstyle[j].colour = 7;
continue;
}
v1 = i % cl_lightstyle[j].length;
v1 = cl_lightstyle[j].map[v1] - 'a';
v2 = (i+1) % cl_lightstyle[j].length;
v2 = cl_lightstyle[j].map[v2] - 'a';
vd = v1 - v2;
if (!r_lightstylesmooth.ival || vd < -r_lightstylesmooth_limit.ival || vd > r_lightstylesmooth_limit.ival)
d_lightstylevalue[j] = v1*22;
else
d_lightstylevalue[j] = (v1*(1-f) + v2*(f))*22;
}
}
/*
=============================================================================
DYNAMIC LIGHTS BLEND RENDERING
=============================================================================
*/
void AddLightBlend (float r, float g, float b, float a2)
{
float a;
r = bound(0, r, 1);
g = bound(0, g, 1);
b = bound(0, b, 1);
sw_blend[3] = a = sw_blend[3] + a2*(1-sw_blend[3]);
a2 = a2/a;
sw_blend[0] = sw_blend[0]*(1-a2) + r*a2;
sw_blend[1] = sw_blend[1]*(1-a2) + g*a2;
sw_blend[2] = sw_blend[2]*(1-a2) + b*a2;
//Con_Printf("AddLightBlend(): %4.2f %4.2f %4.2f %4.6f\n", v_blend[0], v_blend[1], v_blend[2], v_blend[3]);
}
#define FLASHBLEND_VERTS 16
static float bubble_sintable[FLASHBLEND_VERTS+1], bubble_costable[FLASHBLEND_VERTS+1];
static void R_InitBubble(void)
{
float a;
int i;
float *bub_sin, *bub_cos;
bub_sin = bubble_sintable;
bub_cos = bubble_costable;
for (i=FLASHBLEND_VERTS ; i>=0 ; i--)
{
a = i/(float)FLASHBLEND_VERTS * M_PI*2;
*bub_sin++ = sin(a);
*bub_cos++ = cos(a);
}
}
avec4_t flashblend_colours[FLASHBLEND_VERTS+1];
vecV_t flashblend_vcoords[FLASHBLEND_VERTS+1];
vec2_t flashblend_tccoords[FLASHBLEND_VERTS+1];
index_t flashblend_indexes[FLASHBLEND_VERTS*3];
index_t flashblend_fsindexes[6] = {0, 1, 2, 0, 2, 3};
mesh_t flashblend_mesh;
mesh_t flashblend_fsmesh;
shader_t *flashblend_shader;
shader_t *lpplight_shader;
void R_GenerateFlashblendTexture(void)
{
float dx, dy;
int x, y, a;
unsigned char pixels[32][32][4];
for (y = 0;y < 32;y++)
{
dy = (y - 15.5f) * (1.0f / 16.0f);
for (x = 0;x < 32;x++)
{
dx = (x - 15.5f) * (1.0f / 16.0f);
a = (int)(((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2)));
a = bound(0, a, 255);
pixels[y][x][0] = a;
pixels[y][x][1] = a;
pixels[y][x][2] = a;
pixels[y][x][3] = 255;
}
}
R_LoadTexture32("***flashblend***", 32, 32, pixels, 0);
}
void R_InitFlashblends(void)
{
int i;
R_InitBubble();
for (i = 0; i < FLASHBLEND_VERTS; i++)
{
flashblend_indexes[i*3+0] = 0;
if (i+1 == FLASHBLEND_VERTS)
flashblend_indexes[i*3+1] = 1;
else
flashblend_indexes[i*3+1] = i+2;
flashblend_indexes[i*3+2] = i+1;
flashblend_tccoords[i+1][0] = 0.5 + bubble_sintable[i]*0.5;
flashblend_tccoords[i+1][1] = 0.5 + bubble_costable[i]*0.5;
}
flashblend_tccoords[0][0] = 0.5;
flashblend_tccoords[0][1] = 0.5;
flashblend_mesh.numvertexes = FLASHBLEND_VERTS+1;
flashblend_mesh.xyz_array = flashblend_vcoords;
flashblend_mesh.st_array = flashblend_tccoords;
flashblend_mesh.colors4f_array[0] = flashblend_colours;
flashblend_mesh.indexes = flashblend_indexes;
flashblend_mesh.numindexes = FLASHBLEND_VERTS*3;
flashblend_mesh.istrifan = true;
flashblend_fsmesh.numvertexes = 4;
flashblend_fsmesh.xyz_array = flashblend_vcoords;
flashblend_fsmesh.st_array = flashblend_tccoords;
flashblend_fsmesh.colors4f_array[0] = flashblend_colours;
flashblend_fsmesh.indexes = flashblend_fsindexes;
flashblend_fsmesh.numindexes = 6;
flashblend_fsmesh.istrifan = true;
R_GenerateFlashblendTexture();
flashblend_shader = R_RegisterShader("flashblend", SUF_NONE,
"{\n"
"program defaultadditivesprite\n"
"{\n"
"map ***flashblend***\n"
"blendfunc gl_one gl_one\n"
"rgbgen vertex\n"
"alphagen vertex\n"
"nodepth\n"
"}\n"
"}\n"
);
lpplight_shader = NULL;
}
static qboolean R_BuildDlightMesh(dlight_t *light, float colscale, float radscale, int dtype)
{
int i, j;
// float a;
vec3_t v;
float rad;
float *bub_sin, *bub_cos;
vec3_t colour;
extern cvar_t gl_mindist;
bub_sin = bubble_sintable;
bub_cos = bubble_costable;
rad = light->radius * radscale;
VectorCopy(light->color, colour);
if (light->fov)
{
float a = -DotProduct(light->axis[0], vpn);
colour[0] *= a;
colour[1] *= a;
colour[2] *= a;
rad *= a;
rad *= 0.33;
}
if (light->style)
{
colscale *= d_lightstylevalue[light->style-1]/255.0f;
}
VectorSubtract (light->origin, r_origin, v);
if (dtype != 1 && Length (v) < rad + gl_mindist.value*2)
{ // view is inside the dlight
return false;
}
flashblend_colours[0][0] = colour[0]*colscale;
flashblend_colours[0][1] = colour[1]*colscale;
flashblend_colours[0][2] = colour[2]*colscale;
flashblend_colours[0][3] = 1;
VectorCopy(light->origin, flashblend_vcoords[0]);
for (i=FLASHBLEND_VERTS ; i>0 ; i--)
{
for (j=0 ; j<3 ; j++)
flashblend_vcoords[i][j] = light->origin[j] + (vright[j]*(*bub_cos) +
+ vup[j]*(*bub_sin)) * rad;
bub_sin++;
bub_cos++;
}
if (dtype == 0)
{
//flashblend 3d-ish
VectorMA(flashblend_vcoords[0], -rad/1.5, vpn, flashblend_vcoords[0]);
}
else if (dtype != 1)
{
//prepass lights needs to be fully infront of the light. the glsl is a fullscreen-style effect, but we can benefit from early-z and scissoring
vec3_t diff;
VectorSubtract(r_origin, light->origin, diff);
VectorNormalize(diff);
for (i=0 ; i<=FLASHBLEND_VERTS ; i++)
VectorMA(flashblend_vcoords[i], rad, diff, flashblend_vcoords[i]);
}
return true;
}
/*
=============
R_RenderDlights
=============
*/
void R_RenderDlights (void)
{
int i;
dlight_t *l;
vec3_t waste1, waste2;
unsigned int beflags = 0;
float intensity, cscale;
qboolean coronastyle;
if (!r_coronas.value && !r_flashblend.value)
return;
// r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
l = cl_dlights+rtlights_first;
for (i=rtlights_first; i<rtlights_max; i++, l++)
{
if (!l->radius)
continue;
if (l->corona <= 0)
continue;
if (l->flags & LFLAG_FLASHBLEND)
{
if (!r_flashblend.value)
continue;
//dlights emitting from the local player are not visible as flashblends
if (l->key == r_refdef.playerview->viewentity)
continue; //was a glow
if (l->key == -(r_refdef.playerview->viewentity))
continue; //was a muzzleflash
coronastyle = false;
}
else
coronastyle = true;
cscale = l->coronascale;
intensity = l->corona * 0.25;
if (coronastyle)
intensity *= r_coronas.value;
else
intensity *= r_flashblend.value;
if (intensity <= 0 || cscale <= 0)
continue;
/*coronas use depth testing to compute visibility*/
if (coronastyle)
{
if (TraceLineN(r_refdef.vieworg, l->origin, waste1, waste2))
continue;
}
if (!R_BuildDlightMesh (l, intensity, cscale, coronastyle) && !coronastyle)
AddLightBlend (l->color[0], l->color[1], l->color[2], l->radius * 0.0003);
else
BE_DrawMesh_Single(flashblend_shader, &flashblend_mesh, NULL, &flashblend_shader->defaulttextures, (coronastyle?BEF_FORCENODEPTH|BEF_FORCEADDITIVE:0)|beflags);
}
}
void R_GenDlightMesh(struct batch_s *batch)
{
static mesh_t *meshptr;
dlight_t *l = cl_dlights + batch->surf_first;
BE_SelectDLight(l, l->color, 0);
if (!R_BuildDlightMesh (l, 2, 1, 2))
{
int i;
static vec2_t s[4] = {{1, -1}, {-1, -1}, {-1, 1}, {1, 1}};
batch->flags |= BEF_FORCENODEPTH;
for (i = 0; i < 4; i++)
{
VectorMA(r_origin, 32, vpn, flashblend_vcoords[i]);
VectorMA(flashblend_vcoords[i], s[i][0]*320, vright, flashblend_vcoords[i]);
VectorMA(flashblend_vcoords[i], s[i][1]*320, vup, flashblend_vcoords[i]);
}
meshptr = &flashblend_fsmesh;
}
else
{
meshptr = &flashblend_mesh;
}
batch->mesh = &meshptr;
}
void R_GenDlightBatches(batch_t *batches[])
{
int i, sort;
dlight_t *l;
batch_t *b;
if (!lpplight_shader)
lpplight_shader = R_RegisterShader("lpp_light", SUF_NONE,
"{\n"
"program lpp_light\n"
"{\n"
"map $sourcecolour\n"
"blendfunc gl_one gl_one\n"
"}\n"
"surfaceparm nodlight\n"
"lpp_light\n"
"}\n"
);
l = cl_dlights+rtlights_first;
for (i=rtlights_first; i<rtlights_max; i++, l++)
{
if (!l->radius)
continue;
if (R_CullSphere(l->origin, l->radius))
continue;
b = BE_GetTempBatch();
if (!b)
return;
b->flags = 0;
sort = lpplight_shader->sort;
b->buildmeshes = R_GenDlightMesh;
b->ent = &r_worldentity;
b->mesh = NULL;
b->firstmesh = 0;
b->meshes = 1;
b->skin = &lpplight_shader->defaulttextures;
b->texture = NULL;
b->shader = lpplight_shader;
b->lightmap[0] = -1;
b->lightmap[1] = -1;
b->lightmap[2] = -1;
b->lightmap[3] = -1;
b->surf_first = i;
b->flags |= BEF_NOSHADOWS;
b->vbo = NULL;
b->next = batches[sort];
batches[sort] = b;
}
}
/*
=============================================================================
DYNAMIC LIGHTS
=============================================================================
*/
/*
=============
R_PushDlights
=============
*/
void R_PushDlights (void)
{
int i;
dlight_t *l;
r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
#ifdef RTLIGHTS
/*if we're doing full rtlighting only, then don't bother calculating old-style dlights as they won't be visible anyway*/
if (r_shadow_realtime_world.ival && r_shadow_realtime_world_lightmaps.value < 0.1)
return;
#endif
if (!r_dynamic.ival || !cl.worldmodel)
return;
if (!cl.worldmodel->nodes)
return;
currentmodel = cl.worldmodel;
if (!currentmodel->funcs.MarkLights)
return;
l = cl_dlights+rtlights_first;
for (i=rtlights_first ; i <= DL_LAST ; i++, l++)
{
if (!l->radius || !(l->flags & LFLAG_LIGHTMAP))
continue;
currentmodel->funcs.MarkLights( l, 1<<i, currentmodel->nodes );
}
}
/////////////////////////////////////////////////////////////
//rtlight loading
#ifdef RTLIGHTS
void R_ImportRTLights(char *entlump)
{
typedef enum lighttype_e {LIGHTTYPE_MINUSX, LIGHTTYPE_RECIPX, LIGHTTYPE_RECIPXX, LIGHTTYPE_NONE, LIGHTTYPE_SUN, LIGHTTYPE_MINUSXX} lighttype_t;
/*I'm using the DP code so I know I'll get the DP results*/
int entnum, style, islight, skin, pflags, n;
lighttype_t type;
float origin[3], angles[3], radius, color[3], light[4], fadescale, lightscale, originhack[3], overridecolor[3], vec[4];
char key[256], value[8192];
int nest;
COM_Parse(entlump);
if (!strcmp(com_token, "Version"))
{
entlump = COM_Parse(entlump);
entlump = COM_Parse(entlump);
}
for (entnum = 0; ;entnum++)
{
entlump = COM_Parse(entlump);
if (com_token[0] != '{')
break;
type = LIGHTTYPE_MINUSX;
origin[0] = origin[1] = origin[2] = 0;
originhack[0] = originhack[1] = originhack[2] = 0;
angles[0] = angles[1] = angles[2] = 0;
color[0] = color[1] = color[2] = 1;
light[0] = light[1] = light[2] = 1;light[3] = 300;
overridecolor[0] = overridecolor[1] = overridecolor[2] = 1;
fadescale = 1;
lightscale = 1;
style = 0;
skin = 0;
pflags = 0;
//effects = 0;
islight = false;
nest = 1;
while (1)
{
entlump = COM_Parse(entlump);
if (!entlump)
break; // error
if (com_token[0] == '{')
{
nest++;
continue;
}
if (com_token[0] == '}')
{
nest--;
if (!nest)
break; // end of entity
continue;
}
if (nest!=1)
continue;
if (com_token[0] == '_')
Q_strncpyz(key, com_token + 1, sizeof(key));
else
Q_strncpyz(key, com_token, sizeof(key));
while (key[strlen(key)-1] == ' ') // remove trailing spaces
key[strlen(key)-1] = 0;
entlump = COM_Parse(entlump);
if (!entlump)
break; // error
Q_strncpyz(value, com_token, sizeof(value));
// now that we have the key pair worked out...
if (!strcmp("light", key))
{
n = sscanf(value, "%f %f %f %f", &vec[0], &vec[1], &vec[2], &vec[3]);
if (n == 1)
{
// quake
light[0] = vec[0] * (1.0f / 256.0f);
light[1] = vec[0] * (1.0f / 256.0f);
light[2] = vec[0] * (1.0f / 256.0f);
light[3] = vec[0];
}
else if (n == 4)
{
// halflife
light[0] = vec[0] * (1.0f / 255.0f);
light[1] = vec[1] * (1.0f / 255.0f);
light[2] = vec[2] * (1.0f / 255.0f);
light[3] = vec[3];
}
}
else if (!strcmp("delay", key))
type = atoi(value);
else if (!strcmp("origin", key))
sscanf(value, "%f %f %f", &origin[0], &origin[1], &origin[2]);
else if (!strcmp("angle", key))
angles[0] = 0, angles[1] = atof(value), angles[2] = 0;
else if (!strcmp("angles", key))
sscanf(value, "%f %f %f", &angles[0], &angles[1], &angles[2]);
else if (!strcmp("color", key))
sscanf(value, "%f %f %f", &color[0], &color[1], &color[2]);
else if (!strcmp("wait", key))
fadescale = atof(value);
else if (!strcmp("classname", key))
{
if (!strncmp(value, "light", 5))
{
islight = true;
if (!strcmp(value, "light_fluoro"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 1;
overridecolor[2] = 1;
}
if (!strcmp(value, "light_fluorospark"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 1;
overridecolor[2] = 1;
}
if (!strcmp(value, "light_globe"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.8;
overridecolor[2] = 0.4;
}
if (!strcmp(value, "light_flame_large_yellow"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
if (!strcmp(value, "light_flame_small_yellow"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
if (!strcmp(value, "light_torch_small_white"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
if (!strcmp(value, "light_torch_small_walltorch"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
}
}
else if (!strcmp("style", key))
style = atoi(value);
else if (!strcmp("skin", key))
skin = (int)atof(value);
else if (!strcmp("pflags", key))
pflags = (int)atof(value);
//else if (!strcmp("effects", key))
//effects = (int)atof(value);
else if (!strcmp("scale", key))
lightscale = atof(value);
else if (!strcmp("fade", key))
fadescale = atof(value);
else if (!strcmp("light_radius", key))
{
light[0] = 1;
light[1] = 1;
light[2] = 1;
light[3] = atof(value);
}
}
if (!islight)
continue;
if (lightscale <= 0)
lightscale = 1;
if (fadescale <= 0)
fadescale = 1;
if (color[0] == color[1] && color[0] == color[2])
{
color[0] *= overridecolor[0];
color[1] *= overridecolor[1];
color[2] *= overridecolor[2];
}
radius = light[3] * r_editlights_import_radius.value * lightscale / fadescale;
color[0] = color[0] * light[0];
color[1] = color[1] * light[1];
color[2] = color[2] * light[2];
switch (type)
{
case LIGHTTYPE_MINUSX:
break;
case LIGHTTYPE_RECIPX:
radius *= 2;
VectorScale(color, (1.0f / 16.0f), color);
break;
case LIGHTTYPE_RECIPXX:
radius *= 2;
VectorScale(color, (1.0f / 16.0f), color);
break;
default:
case LIGHTTYPE_NONE:
break;
case LIGHTTYPE_SUN:
break;
case LIGHTTYPE_MINUSXX:
break;
}
VectorAdd(origin, originhack, origin);
if (radius >= 1)
{
dlight_t *dl = CL_AllocSlight();
if (!dl)
break;
VectorCopy(origin, dl->origin);
AngleVectors(angles, dl->axis[0], dl->axis[1], dl->axis[2]);
VectorInverse(dl->axis[1]);
dl->radius = radius;
VectorCopy(color, dl->color);
dl->flags = 0;
dl->flags |= LFLAG_REALTIMEMODE;
dl->flags |= (pflags & PFLAGS_CORONA)?LFLAG_FLASHBLEND:0;
dl->flags |= (pflags & PFLAGS_NOSHADOW)?LFLAG_NOSHADOWS:0;
dl->style = style+1;
dl->lightcolourscales[0] = r_editlights_import_ambient.value;
dl->lightcolourscales[1] = r_editlights_import_diffuse.value;
dl->lightcolourscales[2] = r_editlights_import_specular.value;
if (skin >= 16)
snprintf(dl->cubemapname, sizeof(dl->cubemapname), "cubemaps/%i", skin);
}
}
}
void R_LoadRTLights(void)
{
dlight_t *dl;
char fname[MAX_QPATH];
char cubename[MAX_QPATH];
char *file;
char *end;
int style;
vec3_t org;
float radius;
vec3_t rgb;
unsigned int flags;
float coronascale;
float corona;
float ambientscale, diffusescale, specularscale;
vec3_t angles;
//delete all old lights, even dynamic ones
rtlights_first = RTL_FIRST;
rtlights_max = RTL_FIRST;
COM_StripExtension(cl.worldmodel->name, fname, sizeof(fname));
strncat(fname, ".rtlights", MAX_QPATH-1);
file = COM_LoadTempFile(fname);
if (file)
while(1)
{
end = strchr(file, '\n');
if (!end)
end = file + strlen(file);
if (end == file)
break;
*end = '\0';
while(*file == ' ' || *file == '\t')
file++;
if (*file == '!')
{
flags = LFLAG_NOSHADOWS;
file++;
}
else
flags = 0;
file = COM_Parse(file);
org[0] = atof(com_token);
file = COM_Parse(file);
org[1] = atof(com_token);
file = COM_Parse(file);
org[2] = atof(com_token);
file = COM_Parse(file);
radius = atof(com_token);
file = COM_Parse(file);
rgb[0] = file?atof(com_token):1;
file = COM_Parse(file);
rgb[1] = file?atof(com_token):1;
file = COM_Parse(file);
rgb[2] = file?atof(com_token):1;
file = COM_Parse(file);
style = file?atof(com_token):0;
file = COM_Parse(file);
//cubemap
Q_strncpyz(cubename, com_token, sizeof(cubename));
file = COM_Parse(file);
//corona
corona = file?atof(com_token):0;
file = COM_Parse(file);
angles[0] = file?atof(com_token):0;
file = COM_Parse(file);
angles[1] = file?atof(com_token):0;
file = COM_Parse(file);
angles[2] = file?atof(com_token):0;
file = COM_Parse(file);
//corrona scale
coronascale = file?atof(com_token):0.25;
file = COM_Parse(file);
//ambient
ambientscale = file?atof(com_token):0;
file = COM_Parse(file);
//diffuse
diffusescale = file?atof(com_token):1;
file = COM_Parse(file);
//specular
specularscale = file?atof(com_token):1;
file = COM_Parse(file);
flags |= file?atoi(com_token):LFLAG_REALTIMEMODE;
if (radius)
{
dl = CL_AllocSlight();
if (!dl)
break;
VectorCopy(org, dl->origin);
dl->radius = radius;
VectorCopy(rgb, dl->color);
dl->corona = corona;
dl->coronascale = coronascale;
dl->die = 0;
dl->flags = flags;
dl->lightcolourscales[0] = ambientscale;
dl->lightcolourscales[1] = diffusescale;
dl->lightcolourscales[2] = specularscale;
AngleVectors(angles, dl->axis[0], dl->axis[1], dl->axis[2]);
VectorInverse(dl->axis[1]);
Q_strncpyz(dl->cubemapname, cubename, sizeof(dl->cubemapname));
if (*dl->cubemapname)
dl->cubetexture = R_LoadReplacementTexture(dl->cubemapname, "", IF_CUBEMAP);
else
dl->cubetexture = r_nulltex;
dl->style = style+1;
}
file = end+1;
}
}
void R_SaveRTLights_f(void)
{
dlight_t *light;
vfsfile_t *f;
unsigned int i;
char fname[MAX_QPATH];
vec3_t ang;
COM_StripExtension(cl.worldmodel->name, fname, sizeof(fname));
strncat(fname, ".rtlights", MAX_QPATH-1);
FS_CreatePath(fname, FS_GAMEONLY);
f = FS_OpenVFS(fname, "wb", FS_GAMEONLY);
if (!f)
{
Con_Printf("couldn't open %s\n", fname);
return;
}
for (light = cl_dlights+rtlights_first, i=rtlights_first; i<rtlights_max; i++, light++)
{
if (light->die)
continue;
if (!light->radius)
continue;
VectorAngles(light->axis[0], light->axis[2], ang);
VFS_PUTS(f, va(
"%s%f %f %f "
"%f %f %f %f "
"%i "
"\"%s\" %f "
"%f %f %f "
"%f %f %f %f %i "
"\n"
,
(light->flags & LFLAG_NOSHADOWS)?"!":"", light->origin[0], light->origin[1], light->origin[2],
light->radius, light->color[0], light->color[1], light->color[2],
light->style-1,
light->cubemapname, light->corona,
ang[0], ang[1], ang[2],
light->coronascale, light->lightcolourscales[0], light->lightcolourscales[1], light->lightcolourscales[2], light->flags&(LFLAG_NORMALMODE|LFLAG_REALTIMEMODE|LFLAG_CREPUSCULAR)
));
}
VFS_CLOSE(f);
Con_Printf("rtlights saved to %s\n", fname);
}
void R_ReloadRTLights_f(void)
{
if (!cl.worldmodel)
{
Con_Printf("Cannot reload lights at this time\n");
return;
}
rtlights_first = RTL_FIRST;
rtlights_max = RTL_FIRST;
if (!strcmp(Cmd_Argv(1), "bsp"))
R_ImportRTLights(cl.worldmodel->entities);
else if (!strcmp(Cmd_Argv(1), "rtlights"))
R_LoadRTLights();
else if (strcmp(Cmd_Argv(1), "none"))
{
R_LoadRTLights();
if (rtlights_first == rtlights_max)
R_ImportRTLights(cl.worldmodel->entities);
}
}
#endif
/*
=============================================================================
LIGHT SAMPLING
=============================================================================
*/
mplane_t *lightplane;
vec3_t lightspot;
void GLQ3_LightGrid(model_t *mod, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir)
{
q3lightgridinfo_t *lg = (q3lightgridinfo_t *)cl.worldmodel->lightgrid;
int index[8];
int vi[3];
int i, j;
float t[8], direction_uv[3];
vec3_t vf, vf2;
vec3_t ambient, diffuse;
if (res_dir)
{
res_dir[0] = 1;
res_dir[1] = 1;
res_dir[2] = 0.1;
}
if (!lg || !lg->lightgrid)
{
if(res_ambient)
{
res_ambient[0] = 64;
res_ambient[1] = 64;
res_ambient[2] = 64;
}
if (res_diffuse)
{
res_diffuse[0] = 192;
res_diffuse[1] = 192;
res_diffuse[2] = 192;
}
return;
}
//If in doubt, steal someone else's code...
//Thanks QFusion.
for ( i = 0; i < 3; i++ )
{
vf[i] = (point[i] - lg->gridMins[i]) / lg->gridSize[i];
vi[i] = (int)(vf[i]);
vf[i] = vf[i] - floor(vf[i]);
vf2[i] = 1.0f - vf[i];
}
index[0] = vi[2]*lg->gridBounds[3] + vi[1]*lg->gridBounds[0] + vi[0];
index[1] = index[0] + lg->gridBounds[0];
index[2] = index[0] + lg->gridBounds[3];
index[3] = index[2] + lg->gridBounds[0];
index[4] = index[0]+(index[0]<(lg->numlightgridelems-1));
index[5] = index[1]+(index[1]<(lg->numlightgridelems-1));
index[6] = index[2]+(index[2]<(lg->numlightgridelems-1));
index[7] = index[3]+(index[3]<(lg->numlightgridelems-1));
for ( i = 0; i < 8; i++ )
{
if ( index[i] < 0 || index[i] >= (lg->numlightgridelems) )
{
res_ambient[0] = 255; //out of the map
res_ambient[1] = 255;
res_ambient[2] = 255;
return;
}
}
t[0] = vf2[0] * vf2[1] * vf2[2];
t[1] = vf[0] * vf2[1] * vf2[2];
t[2] = vf2[0] * vf[1] * vf2[2];
t[3] = vf[0] * vf[1] * vf2[2];
t[4] = vf2[0] * vf2[1] * vf[2];
t[5] = vf[0] * vf2[1] * vf[2];
t[6] = vf2[0] * vf[1] * vf[2];
t[7] = vf[0] * vf[1] * vf[2];
for ( j = 0; j < 3; j++ )
{
ambient[j] = 0;
diffuse[j] = 0;
for ( i = 0; i < 4; i++ )
{
ambient[j] += t[i*2] * lg->lightgrid[ index[i]].ambient[j];
ambient[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].ambient[j];
diffuse[j] += t[i*2] * lg->lightgrid[ index[i]].diffuse[j];
diffuse[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].diffuse[j];
}
}
for ( j = 0; j < 2; j++ )
{
direction_uv[j] = 0;
for ( i = 0; i < 4; i++ )
{
direction_uv[j] += t[i*2] * lg->lightgrid[ index[i]].direction[j];
direction_uv[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].direction[j];
}
direction_uv[j] = anglemod ( direction_uv[j] );
}
VectorScale(ambient, 4, ambient);
VectorScale(diffuse, 4, diffuse);
/*ambient is the min level*/
/*diffuse is the max level*/
VectorCopy(ambient, res_ambient);
if (res_diffuse)
VectorAdd(diffuse, ambient, res_diffuse);
if (res_dir)
{
vec3_t right, left;
direction_uv[2] = 0;
AngleVectors(direction_uv, res_dir, right, left);
}
}
int GLRecursiveLightPoint (mnode_t *node, vec3_t start, vec3_t end)
{
int r;
float front, back, frac;
int side;
mplane_t *plane;
vec3_t mid;
msurface_t *surf;
int s, t, ds, dt;
int i;
mtexinfo_t *tex;
qbyte *lightmap;
unsigned scale;
int maps;
if (cl.worldmodel->fromgame == fg_quake2)
{
if (node->contents != -1)
return -1; // solid
}
else if (node->contents < 0)
return -1; // didn't hit anything
// calculate mid point
// FIXME: optimize for axial
plane = node->plane;
front = DotProduct (start, plane->normal) - plane->dist;
back = DotProduct (end, plane->normal) - plane->dist;
side = front < 0;
if ( (back < 0) == side)
return GLRecursiveLightPoint (node->children[side], start, end);
frac = front / (front-back);
mid[0] = start[0] + (end[0] - start[0])*frac;
mid[1] = start[1] + (end[1] - start[1])*frac;
mid[2] = start[2] + (end[2] - start[2])*frac;
// go down front side
r = GLRecursiveLightPoint (node->children[side], start, mid);
if (r >= 0)
return r; // hit something
if ( (back < 0) == side )
return -1; // didn't hit anuthing
// check for impact on this node
VectorCopy (mid, lightspot);
lightplane = plane;
surf = cl.worldmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->flags & SURF_DRAWTILED)
continue; // no lightmaps
tex = surf->texinfo;
s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];;
if (s < surf->texturemins[0] || t < surf->texturemins[1])
continue;
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if ( ds > surf->extents[0] || dt > surf->extents[1] )
continue;
if (!surf->samples)
return 0;
ds >>= 4;
dt >>= 4;
lightmap = surf->samples;
r = 0;
if (lightmap)
{
if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING)
{
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]];
r += (lightmap[0]+lightmap[1]+lightmap[2]) * scale / 3;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1)*3;
}
}
else
{
lightmap += dt * ((surf->extents[0]>>4)+1) + ds;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]];
r += *lightmap * scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1);
}
}
r >>= 8;
}
return r;
}
// go down back side
return GLRecursiveLightPoint (node->children[!side], mid, end);
}
int R_LightPoint (vec3_t p)
{
vec3_t end;
int r;
if (r_refdef.flags & 1)
return 255;
if (!cl.worldmodel || !cl.worldmodel->lightdata)
return 255;
if (cl.worldmodel->fromgame == fg_quake3)
{
GLQ3_LightGrid(cl.worldmodel, p, NULL, end, NULL);
return (end[0] + end[1] + end[2])/3;
}
end[0] = p[0];
end[1] = p[1];
end[2] = p[2] - 2048;
r = GLRecursiveLightPoint (cl.worldmodel->nodes, p, end);
if (r == -1)
r = 0;
return r;
}
#ifdef PEXT_LIGHTSTYLECOL
float *GLRecursiveLightPoint3C (mnode_t *node, vec3_t start, vec3_t end)
{
static float l[6];
float *r;
float front, back, frac;
int side;
mplane_t *plane;
vec3_t mid;
msurface_t *surf;
int s, t, ds, dt;
int i;
mtexinfo_t *tex;
qbyte *lightmap, *deluxmap;
float scale;
int maps;
if (cl.worldmodel->fromgame == fg_quake2)
{
if (node->contents != -1)
return NULL; // solid
}
else if (node->contents < 0)
return NULL; // didn't hit anything
// calculate mid point
// FIXME: optimize for axial
plane = node->plane;
front = DotProduct (start, plane->normal) - plane->dist;
back = DotProduct (end, plane->normal) - plane->dist;
side = front < 0;
if ( (back < 0) == side)
return GLRecursiveLightPoint3C (node->children[side], start, end);
frac = front / (front-back);
mid[0] = start[0] + (end[0] - start[0])*frac;
mid[1] = start[1] + (end[1] - start[1])*frac;
mid[2] = start[2] + (end[2] - start[2])*frac;
// go down front side
r = GLRecursiveLightPoint3C (node->children[side], start, mid);
if (r && r[0]+r[1]+r[2] >= 0)
return r; // hit something
if ( (back < 0) == side )
return NULL; // didn't hit anuthing
// check for impact on this node
VectorCopy (mid, lightspot);
lightplane = plane;
surf = cl.worldmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->flags & SURF_DRAWTILED)
continue; // no lightmaps
tex = surf->texinfo;
s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];
if (s < surf->texturemins[0] ||
t < surf->texturemins[1])
continue;
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if ( ds > surf->extents[0] || dt > surf->extents[1] )
continue;
if (!surf->samples)
{
l[0]=0;l[1]=0;l[2]=0;
l[3]=0;l[4]=1;l[5]=1;
return l;
}
ds >>= 4;
dt >>= 4;
lightmap = surf->samples;
l[0]=0;l[1]=0;l[2]=0;
l[3]=0;l[4]=0;l[5]=0;
if (lightmap)
{
if (cl.worldmodel->deluxdata)
{
if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING)
{
deluxmap = surf->samples - cl.worldmodel->lightdata + cl.worldmodel->deluxdata;
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
deluxmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]/256.0f;
if (cl_lightstyle[surf->styles[maps]].colour & 1)
l[0] += lightmap[0] * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 2)
l[1] += lightmap[1] * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 4)
l[2] += lightmap[2] * scale;
l[3] += (deluxmap[0]-127)*scale;
l[4] += (deluxmap[1]-127)*scale;
l[5] += (deluxmap[2]-127)*scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1) * 3;
deluxmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1) * 3;
}
}
else
{
deluxmap = (surf->samples - cl.worldmodel->lightdata)*3 + cl.worldmodel->deluxdata;
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds);
deluxmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]/256.0f;
if (cl_lightstyle[surf->styles[maps]].colour & 1)
l[0] += *lightmap * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 2)
l[1] += *lightmap * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 4)
l[2] += *lightmap * scale;
l[3] += deluxmap[0]*scale;
l[4] += deluxmap[1]*scale;
l[5] += deluxmap[2]*scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1);
deluxmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1) * 3;
}
}
}
else
{
if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING)
{
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]/256.0f;
if (cl_lightstyle[surf->styles[maps]].colour & 1)
l[0] += lightmap[0] * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 2)
l[1] += lightmap[1] * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 4)
l[2] += lightmap[2] * scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1) * 3;
}
}
else
{
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds);
for (maps = 0 ; maps < MAXQ1LIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]/256.0f;
if (cl_lightstyle[surf->styles[maps]].colour & 1)
l[0] += *lightmap * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 2)
l[1] += *lightmap * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 4)
l[2] += *lightmap * scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1);
}
}
}
}
return l;
}
// go down back side
return GLRecursiveLightPoint3C (node->children[!side], mid, end);
}
#endif
void GLQ1BSP_LightPointValues(model_t *model, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir)
{
vec3_t end;
float *r;
extern cvar_t r_shadow_realtime_world, r_shadow_realtime_world_lightmaps;
if (!cl.worldmodel->lightdata || r_fullbright.ival)
{
res_diffuse[0] = 0;
res_diffuse[1] = 0;
res_diffuse[2] = 0;
res_ambient[0] = 255;
res_ambient[1] = 255;
res_ambient[2] = 255;
res_dir[0] = 1;
res_dir[1] = 1;
res_dir[2] = 0.1;
VectorNormalize(res_dir);
return;
}
end[0] = point[0];
end[1] = point[1];
end[2] = point[2] - 2048;
r = GLRecursiveLightPoint3C(model->nodes, point, end);
if (r == NULL)
{
res_diffuse[0] = 0;
res_diffuse[1] = 0;
res_diffuse[2] = 0;
res_ambient[0] = 0;
res_ambient[1] = 0;
res_ambient[2] = 0;
res_dir[0] = 0;
res_dir[1] = 1;
res_dir[2] = 1;
}
else
{
res_diffuse[0] = r[0];
res_diffuse[1] = r[1];
res_diffuse[2] = r[2];
/*bright on one side, dark on the other, but not too dark*/
res_ambient[0] = r[0]/3;
res_ambient[1] = r[1]/3;
res_ambient[2] = r[2]/3;
res_dir[0] = r[3];
res_dir[1] = r[4];
res_dir[2] = -r[5];
if (!res_dir[0] && !res_dir[1] && !res_dir[2])
res_dir[1] = res_dir[2] = 1;
VectorNormalize(res_dir);
}
#ifdef RTLIGHTS
if (r_shadow_realtime_world.ival)
{
VectorScale(res_diffuse, r_shadow_realtime_world_lightmaps.value, res_diffuse);
VectorScale(res_ambient, r_shadow_realtime_world_lightmaps.value, res_ambient);
}
#endif
}
#endif