fteqw/engine/gl/ltface.c
Shpoike 8dadfb4878 Added sys_openfile console command(and menu option) to web and flatpak(via cmake+dbus) builds, to 'install' packages on sandboxed systems a bit more easily.
Cmake: Add FTE_WERROR option, defaults to true in debug builds and off in release builds (in case future compilers have issues).
Cmake: Pull in libXscreensaver so we don't get interrupted by screensavers when playing demos.
Make: Added `make webcl-rel` for a web build without server bloat (eg for sites focused on demo playback. Yes, this means you XantoM).
fteqcc: Include the decompiler in fteqcc (non-gui) builds ('-d' arg).
fteqcc: Decompiler can now mostly handle hexen2 mods without any unknown opcodes.
Allow ezHud and OpenSSL to be compiled as in-engine plugins, potentially for web and windows ports respectively.
Web: Fix support for ogg vorbis. Add support for voip.
Web: Added basic support for WebXR.
QTV: Don't try seeking on unseekable qtv streams. Don't spam when developer 1 is set.
QTV: add support for some eztv extensions.
MVD: added hack to use ktx's vweps in mvd where mvdsv doesn't bother to record the info.
qwfwd: hack around a hack in qwfwd, allowing it to work again.
recording: favour qwd in single player, instead of mvd.
Protocol: reduce client memory used for precache names. Bump maximum precache counts - some people are just abusive, yes you Orl.
hexen2: add enough clientside protocol compat to play the demo included with h2mp. lacks effects.
in_xflip: restored this setting.
fs_hidesyspaths: new cvar, defaults to enabled so you won't find your username or whatever turning up in screenshots or the like. change it to 0 before debuging stuff eg via 'path'.
gl_overbright_models: Added cvar to match QS.
netchan: Added MTU determination, we'll no longer fail to connect when routers stupidly drop icmp packets.
Win: try a few other versions of xinput too.
CSQC: Added a CSQC_GenerateMaterial function, to give the csqc a chance to generate custom materials.
MenuQC: Added support for the skeletal objects API.
2024-07-14 19:58:24 +01:00

1259 lines
29 KiB
C

#include "quakedef.h"
#ifdef RUNTIMELIGHTING
typedef struct mentity_s {
vec3_t origin;
float light;
float angle;
float cone;
int style;
vec3_t colour;
char classname[64];
char target[64];
char targetname[64];
int targetentnum;
} mentity_t;
struct relight_ctx_s
{
unsigned int nummodels;
model_t *models[2048]; //0 is the worldmodel and must be valid
qboolean parsed; //ents have been parsed okay.
qboolean loaded; //needed models are all loaded.
double starttime;
float minlight;
qboolean skiplit; //lux only
qboolean shadows;
mentity_t *entities;
unsigned int num_entities;
unsigned int max_entities;
size_t lightmapsamples;
unsigned long nextface;
};
#define bsptexinfo(i) (*i)
#define dsurfedges lightmodel->surfedges
#define dvertexes lightmodel->vertexes
#define dedges lightmodel->edges
#define texinfo_t mtexinfo_t
#define Q_PI M_PI
#define dfaces lightmodel->surfaces
#define dplanes lightmodel->planes
#define dface_t msurface_t
#define dvertex_t mvertex_t
#define side flags & SURF_PLANEBACK
#define scaledist 1
#define rangescale 0.5
#define extrasamples 1
#define scalecos 0.5
#define bsp_origin vec3_origin
/*
============
CastRay
Returns the distance between the points, or -1 if blocked
=============
*/
static vec_t CastRay (struct relight_ctx_s *ctx, vec3_t p1, vec3_t p2)
{
trace_t trace;
vec3_t move;
if (ctx->shadows)
{
ctx->models[0]->funcs.NativeTrace (ctx->models[0], 0, NULLFRAMESTATE, NULL, p1, p2, vec3_origin, vec3_origin, false, FTECONTENTS_SOLID, &trace);
if (trace.fraction < 1)
return -1;
}
VectorSubtract(p1, p2, move);
return VectorLength(move);
}
static void ParseEpair (mentity_t *mapent, char *key, char *value)
{
double vec[3];
if (!strcmp(key, "classname"))
strcpy(mapent->classname, value);
else if (!strcmp(key, "target"))
strcpy(mapent->target, value);
else if (!strcmp(key, "targetname"))
strcpy(mapent->targetname, value);
else if (!strcmp(key, "light") || !strcmp(key, "_light"))
mapent->light = atoi(value);
else if (!strcmp(key, "style") || !strcmp(key, "_style"))
mapent->style = atoi(value);
else if (!strcmp(key, "angle") || !strcmp(key, "_angle"))
mapent->angle = atof(value);
else if (!strcmp(key, "cone") || !strcmp(key, "_cone"))
mapent->cone = atof(value);
else if (!strcmp(key, "origin"))
{
sscanf (value, "%lf %lf %lf", &vec[0], &vec[1], &vec[2]);
mapent->origin[0]=vec[0];
mapent->origin[1]=vec[1];
mapent->origin[2]=vec[2];
}
else if (!strcmp(key, "colour") || !strcmp(key, "color") || !strcmp(key, "_colour") || !strcmp(key, "_color"))
{
sscanf (value, "%lf %lf %lf", &vec[0], &vec[1], &vec[2]);
mapent->colour[0]=vec[0];
mapent->colour[1]=vec[1];
mapent->colour[2]=vec[2];
}
}
void LightShutdown(struct relight_ctx_s *ctx, model_t *model)
{
unsigned int u;
for (u = 0; u < ctx->nummodels; u++)
if (ctx->models[u] == model)
{
if (u < ctx->nummodels-1) //swap it out.
ctx->models[u] = ctx->models[ctx->nummodels-1];
ctx->nummodels -= 1;
if (ctx->nummodels)
return; //other models still refer to it!
Z_Free(ctx->entities);
Z_Free(ctx);
break;
}
}
struct relight_ctx_s *LightStartup(struct relight_ctx_s *ctx, model_t *model, qboolean shadows, qboolean skiplit)
{
unsigned int u;
if (!ctx)
{
ctx = Z_Malloc(sizeof(*ctx));
ctx->shadows = shadows;
ctx->skiplit = skiplit;
}
for (u = 0; u < ctx->nummodels; u++)
if (ctx->models[u] == model)
break;
if (u == ctx->nummodels)
if (ctx->nummodels < countof(ctx->models))
ctx->models[ctx->nummodels++] = model;
ctx->starttime = Sys_DoubleTime();
return ctx;
}
void LightReloadEntities(struct relight_ctx_s *ctx, const char *entstring, qboolean ignorestyles)
{
#define DEFAULTLIGHTLEVEL 300
mentity_t *mapent;
char key[1024];
char value[1024];
int i;
int switchedstyle=32;
ctx->num_entities = 0;
while(1)
{
entstring = COM_ParseOut(entstring, key, sizeof(key));
if (!entstring || !*key)
break;
if (strcmp(key, "{"))
{ //someone messed up. Stop parsing.
Con_Printf("token wasn't an open brace\n");
break;
}
if (ctx->num_entities == ctx->max_entities)
{
ctx->max_entities = ctx->max_entities + 128;
ctx->entities = BZ_Realloc(ctx->entities, sizeof(*ctx->entities) * ctx->max_entities);
}
mapent = &ctx->entities[ctx->num_entities];
memset(mapent, 0, sizeof(*mapent));
mapent->colour[0] = 0;
mapent->colour[1] = 0;
mapent->colour[2] = 0;
mapent->targetentnum = -1;
while(entstring)
{
entstring = COM_ParseOut(entstring, key, sizeof(key));
if (!strcmp(key, "}"))
break;
entstring = COM_ParseOut(entstring, value, sizeof(value));
ParseEpair(mapent, key, value);
}
if (!mapent->colour[0] && !mapent->colour[1] && !mapent->colour[2])
{
int cont;
vec3_t v;
v[0] = mapent->origin[0];
v[1] = mapent->origin[1];
cont=0;
for (i = 0; i < 256; i+=16)
{
v[2] = mapent->origin[2]-i;
cont = ctx->models[0]->funcs.PointContents (ctx->models[0], NULL, v);
if (cont & (FTECONTENTS_LAVA | FTECONTENTS_SLIME | FTECONTENTS_SOLID))
break;
}
if (cont & FTECONTENTS_LAVA)
{
mapent->colour[0] = 1;
mapent->colour[1] = i/256.0;
mapent->colour[2] = i/256.0;
}
else if (cont & FTECONTENTS_SLIME)
{
mapent->colour[0] = 0.5+0.5*i/256.0;
mapent->colour[1] = 1;
mapent->colour[2] = 0.5+0.5*i/256.0;
}
else
{
if (mapent->style == 9) //hmm..
{
mapent->colour[1] = 1;
}
else
{
if (!strncmp(mapent->classname, "light_torch_small_walltorch", 12))
{
mapent->colour[0] = 1;
mapent->colour[1] = 0.7;
mapent->colour[2] = 0.7;
}
else
{
mapent->colour[0] = 1;
mapent->colour[1] = 1;
if (strncmp(mapent->classname, "light_fluoro", 12))
mapent->colour[2] = 1;
}
}
}
}
if (!mapent->light && !strncmp (mapent->classname, "light", 5))
mapent->light = DEFAULTLIGHTLEVEL;
if (*mapent->targetname && !mapent->style && !strcmp(mapent->classname, "light"))
{
for (i = 0; i <= ctx->num_entities; i++)
{
if (ctx->entities[i].style >= 32 && !strcmp(ctx->entities[i].targetname, mapent->targetname))
{
mapent->style = ctx->entities[i].style;
break;
}
}
if (i == ctx->num_entities)
mapent->style = switchedstyle++;
}
if (ignorestyles)
mapent->style = 0;
ctx->num_entities++;
}
if (ctx->num_entities)
if (ctx->entities[0].light)
ctx->minlight = ctx->entities[0].light;
for (mapent = ctx->entities; mapent < &ctx->entities[ctx->num_entities]; mapent++)
{
if (*mapent->target)
{
for (i = 0; i < ctx->num_entities; i++)
{
if (mapent == &ctx->entities[i])
continue;
if (!strcmp(mapent->target, ctx->entities[i].targetname))
{
mapent->targetentnum = i;
break;
}
}
}
}
}
/*
===============================================================================
SAMPLE POINT DETERMINATION
void SetupBlock (dface_t *f) Returns with surfpt[] set
This is a little tricky because the lightmap covers more area than the face.
If done in the straightforward fashion, some of the
sample points will be inside walls or on the other side of walls, causing
false shadows and light bleeds.
To solve this, I only consider a sample point valid if a line can be drawn
between it and the exact midpoint of the face. If invalid, it is adjusted
towards the center until it is valid.
(this doesn't completely work)
===============================================================================
*/
#define MAXIMUMEXTENT 128
#define SINGLEMAP (MAXIMUMEXTENT*MAXIMUMEXTENT*4)
typedef struct llightinfo_s
{
struct relight_ctx_s *ctx; //relight context, shared between threads.
vec3_t lightmaps[MAXCPULIGHTMAPS][SINGLEMAP];
vec3_t lightnorm[MAXCPULIGHTMAPS][SINGLEMAP];
int numlightstyles;
vec_t *light;
vec_t facedist;
vec3_t facenormal;
int numsurfpt;
vec3_t surfpt[SINGLEMAP];
vec3_t texorg;
vec3_t worldtotex[2]; // s = (world - texorg) . worldtotex[0]
vec3_t textoworld[2]; // world = texorg + s * textoworld[0]
vec_t exactmins[2], exactmaxs[2];
int texmins[2], texsize[2];
int lightstyles[MAXCPULIGHTMAPS];
} llightinfo_t;
const size_t lightthreadctxsize = sizeof(llightinfo_t);
/*
================
CalcFaceVectors
Fills in texorg, worldtotex. and textoworld
================
*/
static void LightCalcFaceVectors (llightinfo_t *l, vec4_t surf_texplanes[2])
{
int i, j;
vec3_t texnormal;
float distscale;
vec_t dist, len;
// convert from float to vec_t
for (i=0 ; i<2 ; i++)
for (j=0 ; j<3 ; j++)
l->worldtotex[i][j] = surf_texplanes[i][j];
// calculate a normal to the texture axis. points can be moved along this
// without changing their S/T
texnormal[0] = surf_texplanes[1][1]*surf_texplanes[0][2]
- surf_texplanes[1][2]*surf_texplanes[0][1];
texnormal[1] = surf_texplanes[1][2]*surf_texplanes[0][0]
- surf_texplanes[1][0]*surf_texplanes[0][2];
texnormal[2] = surf_texplanes[1][0]*surf_texplanes[0][1]
- surf_texplanes[1][1]*surf_texplanes[0][0];
VectorNormalize (texnormal);
// flip it towards plane normal
distscale = DotProduct (texnormal, l->facenormal);
if (!distscale)
{
VectorCopy(l->facenormal, texnormal);
distscale = 1;
Con_Printf ("Texture axis perpendicular to face\n");
}
if (distscale < 0)
{
distscale = -distscale;
VectorNegate (texnormal, texnormal);
}
// distscale is the ratio of the distance along the texture normal to
// the distance along the plane normal
distscale = 1/distscale;
for (i=0 ; i<2 ; i++)
{
len = VectorLength (l->worldtotex[i]);
dist = DotProduct (l->worldtotex[i], l->facenormal);
dist *= distscale;
VectorMA (l->worldtotex[i], -dist, texnormal, l->textoworld[i]);
VectorScale (l->textoworld[i], (1/len)*(1/len), l->textoworld[i]);
}
// calculate texorg on the texture plane
for (i=0 ; i<3 ; i++)
l->texorg[i] = -surf_texplanes[0][3]* l->textoworld[0][i] - surf_texplanes[1][3] * l->textoworld[1][i];
// project back to the face plane
dist = DotProduct (l->texorg, l->facenormal) - l->facedist - 1;
dist *= distscale;
VectorMA (l->texorg, -dist, texnormal, l->texorg);
}
/*
================
CalcFaceExtents
Fills in s->texmins[] and s->texsize[]
also sets exactmins[] and exactmaxs[]
================
*/
static void LightCalcFaceExtents (model_t *lightmodel, dface_t *s, vec2_t exactmins, vec2_t exactmaxs, int texmins[2], int texsize[2])
{
vec_t mins[2], maxs[2], val;
int i,j, e;
dvertex_t *v;
texinfo_t *tex;
mins[0] = mins[1] = 999999;
maxs[0] = maxs[1] = -999999;
tex = &bsptexinfo(s->texinfo);
for (i=0 ; i<s->numedges ; i++)
{
e = dsurfedges[s->firstedge+i];
if (e >= 0)
v = dvertexes + dedges[e].v[0];
else
v = dvertexes + dedges[-e].v[1];
for (j=0 ; j<2 ; j++)
{
val = v->position[0] * tex->vecs[j][0] +
v->position[1] * tex->vecs[j][1] +
v->position[2] * tex->vecs[j][2] +
tex->vecs[j][3];
if (val < mins[j])
mins[j] = val;
if (val > maxs[j])
maxs[j] = val;
}
}
for (i=0 ; i<2 ; i++)
{
exactmins[i] = mins[i];
exactmaxs[i] = maxs[i];
mins[i] = floor(mins[i]/(1<<s->lmshift));
maxs[i] = ceil(maxs[i]/(1<<s->lmshift));
texmins[i] = mins[i];
texsize[i] = maxs[i] - mins[i];
if (texsize[i] > MAXIMUMEXTENT-1)
{
texsize[i] = MAXIMUMEXTENT-1;
Con_Printf("Bad surface extents");
}
}
}
/*
=================
CalcPoints
For each texture aligned grid point, back project onto the plane
to get the world xyz value of the sample point
=================
*/
static void LightCalcPoints (llightinfo_t *l, float lmscale)
{
int i;
int s, t, j;
int w, h;
vec_t step;
vec_t starts, startt, us, ut;
vec_t *surf;
vec_t mids, midt;
vec3_t facemid, move;
//
// fill in surforg
// the points are biased towards the center of the surface
// to help avoid edge cases just inside walls
//
surf = l->surfpt[0];
mids = (l->exactmaxs[0] + l->exactmins[0])/2;
midt = (l->exactmaxs[1] + l->exactmins[1])/2;
for (j=0 ; j<3 ; j++)
facemid[j] = l->texorg[j] + l->textoworld[0][j]*mids + l->textoworld[1][j]*midt;
if (extrasamples)
{ // extra filtering
h = (l->texsize[1]+1)*2;
w = (l->texsize[0]+1)*2;
starts = (l->texmins[0]-0.5)*lmscale;
startt = (l->texmins[1]-0.5)*lmscale;
step = 0.5 * lmscale;
}
else
{
h = l->texsize[1]+1;
w = l->texsize[0]+1;
starts = l->texmins[0]*lmscale;
startt = l->texmins[1]*lmscale;
step = lmscale;
}
l->numsurfpt = w * h;
for (t=0 ; t<h ; t++)
{
for (s=0 ; s<w ; s++, surf+=3)
{
us = starts + s*step;
ut = startt + t*step;
// if a line can be traced from surf to facemid, the point is good
for (i=0 ; i<6 ; i++)
{
// calculate texture point
for (j=0 ; j<3 ; j++)
surf[j] = l->texorg[j] + l->textoworld[0][j]*us
+ l->textoworld[1][j]*ut;
if (CastRay (l->ctx, facemid, surf) != -1)
break; // got it
if (i & 1)
{
if (us > mids)
{
us -= lmscale*0.5;
if (us < mids)
us = mids;
}
else
{
us += lmscale*0.5;
if (us > mids)
us = mids;
}
}
else
{
if (ut > midt)
{
ut -= lmscale*0.5;
if (ut < midt)
ut = midt;
}
else
{
ut += lmscale*0.5;
if (ut > midt)
ut = midt;
}
}
// move surf 8 pixels towards the center
VectorSubtract (facemid, surf, move);
VectorNormalize (move);
VectorMA (surf, 8, move, surf);
}
}
}
}
/*
===============================================================================
FACE LIGHTING
===============================================================================
*/
/*
================
SingleLightFace
================
*/
static void SingleLightFace (mentity_t *light, llightinfo_t *l)
{
vec_t dist;
vec3_t incoming;
vec_t angle;
vec_t add;
vec_t *surf;
qboolean hit;
int mapnum;
int c;
vec3_t rel;
vec3_t spotvec;
vec_t falloff;
vec3_t *lightsamp;
vec3_t *norms;
VectorSubtract (light->origin, bsp_origin, rel);
dist = scaledist * (DotProduct (rel, l->facenormal) - l->facedist);
// don't bother with lights behind the surface
if (dist <= 0)
return;
// don't bother with light too far away
if (dist > light->light)
return;
if (light->targetentnum>=0)
{
VectorSubtract (l->ctx->entities[light->targetentnum].origin, light->origin, spotvec);
VectorNormalize (spotvec);
if (!light->angle)
falloff = -cos(20*Q_PI/180);
else
falloff = -cos(light->angle/2*Q_PI/180);
}
else
falloff = 0; // shut up compiler warnings
mapnum = 0;
for (mapnum=0 ; mapnum<l->numlightstyles ; mapnum++)
if (l->lightstyles[mapnum] == light->style)
break;
lightsamp = l->lightmaps[mapnum];
norms = l->lightnorm[mapnum];
if (mapnum == l->numlightstyles)
{ // init a new light map
#ifdef UTILITY
if (mapnum == MAXCPULIGHTMAPS)
{
printf ("WARNING: Too many light styles on a face\n");
return;
}
size = (l->texsize[1]+1)*(l->texsize[0]+1);
for (i=0 ; i<size ; i++)
{
lightsamp[i][0] = 0;
lightsamp[i][1] = 0;
lightsamp[i][2] = 0;
norms[i][0] = 0;
norms[i][1] = 0;
norms[i][2] = 0;
}
#else
return; //can't light a surface with a lightstyle that did not previously exist, due to lightmap space limits.
#endif
}
//
// check it for real
//
hit = false;
surf = l->surfpt[0];
for (c=0 ; c<l->numsurfpt ; c++, surf+=3)
{
dist = CastRay(l->ctx, light->origin, surf)*scaledist;
if (dist < 0)
continue; // light doesn't reach
VectorSubtract (light->origin, surf, incoming);
VectorNormalize (incoming);
if (light->targetentnum >= 0)
{ // spotlight cutoff
if (DotProduct (spotvec, incoming) > falloff)
continue;
}
angle = DotProduct (incoming, l->facenormal);
angle = (1.0-scalecos) + scalecos*angle;
add = light->light - dist;
add *= angle;
if (add < 0)
continue;
lightsamp[c][0] += add*light->colour[0];
lightsamp[c][1] += add*light->colour[1];
lightsamp[c][2] += add*light->colour[2];
norms[c][0] += add * incoming[0];
norms[c][1] += add * incoming[1];
norms[c][2] += add * incoming[2];
if (add > 1) // ignore real tiny lights
hit = true;
}
if (mapnum == l->numlightstyles && hit)
{
l->lightstyles[mapnum] = light->style;
l->numlightstyles++; // the style has some real data now
}
}
/*
============
FixMinlight
============
*/
static void FixMinlight (llightinfo_t *l)
{
int i, j;
float minlight = l->ctx->minlight;
// if minlight is set, there must be a style 0 light map
if (!minlight)
return;
for (i=0 ; i< l->numlightstyles ; i++)
{
if (l->lightstyles[i] == 0)
break;
}
if (i == l->numlightstyles)
{
if (l->numlightstyles == MAXCPULIGHTMAPS)
return; // oh well..
for (j=0 ; j<l->numsurfpt ; j++)
{
l->lightmaps[i][j][0] = minlight;
l->lightmaps[i][j][1] = minlight;
l->lightmaps[i][j][2] = minlight;
}
l->lightstyles[i] = 0;
l->numlightstyles++;
}
else
{
for (j=0 ; j<l->numsurfpt ; j++)
{
if ( l->lightmaps[i][j][0] < minlight)
l->lightmaps[i][j][0] = minlight;
if ( l->lightmaps[i][j][1] < minlight)
l->lightmaps[i][j][1] = minlight;
if ( l->lightmaps[i][j][2] < minlight)
l->lightmaps[i][j][2] = minlight;
}
}
}
static unsigned int PackE5BRG9(vec3_t rgb)
{ //5 bits exponent, 3*9 bits of mantissa. no sign bit.
int e = 0;
float m = max(max(rgb[0], rgb[1]), rgb[2]);
float scale;
unsigned int hdr;
if (m >= 0.5)
{ //positive exponent
while (m >= (1<<(e)) && e < 30-15) //don't do nans.
e++;
}
else
{ //negative exponent...
while (m < 1/(1<<-e) && e > -15) //don't do denormals.
e--;
}
scale = pow(2, e-9);
hdr = ((e+15)<<27);
hdr |= bound(0, (int)(rgb[0]/scale + 0.5), 0x1ff)<<0;
hdr |= bound(0, (int)(rgb[1]/scale + 0.5), 0x1ff)<<9;
hdr |= bound(0, (int)(rgb[2]/scale + 0.5), 0x1ff)<<18;
return hdr;
}
/*
============
LightFace
============
*/
void LightPlane (struct relight_ctx_s *ctx, struct llightinfo_s *l, lightstyleindex_t surf_styles[MAXCPULIGHTMAPS], unsigned int *surf_expsamples, qbyte *surf_rgbsamples, qbyte *surf_deluxesamples, vec4_t surf_plane, vec4_t surf_texplanes[2], vec2_t exactmins, vec2_t exactmaxs, int texmins[2], int texsize[2], float lmscale)
{
int s, t;
int i,c,ch;
vec_t total, mean;
int size;
int lightmapwidth;
#ifdef UTILITY
int lightmapsize;
byte *out;
#endif
unsigned int *expout;
qbyte *rgbout;
qbyte *dulout;
vec3_t *light, *norm;
vec3_t wnorm, temp, svector, tvector;
int w;
//
// some surfaces don't need lightmaps
//
if (!surf_rgbsamples && !surf_expsamples)
return;
// memset (l, 0, sizeof(*l));
l->ctx = ctx;
//
// rotate plane
//
VectorCopy (surf_plane, l->facenormal);
l->facedist = surf_plane[3];
LightCalcFaceVectors (l, surf_texplanes);
Vector2Copy(exactmins, l->exactmins);
Vector2Copy(exactmaxs, l->exactmaxs);
Vector2Copy(texmins, l->texmins);
Vector2Copy(texsize, l->texsize);
LightCalcPoints (l, lmscale);
lightmapwidth = l->texsize[0]+1;
size = lightmapwidth*(l->texsize[1]+1);
if (size > SINGLEMAP)
Host_Error ("Bad lightmap size");
i = 0;
#ifndef UTILITY
for (; surf_styles[i] != INVALID_LIGHTSTYLE && i < MAXCPULIGHTMAPS; i++)
{
l->lightstyles[i] = surf_styles[i];
memset(&l->lightmaps[i], 0, sizeof(l->lightmaps[i][0])*l->numsurfpt);
memset(&l->lightnorm[i], 0, sizeof(l->lightnorm[i][0])*l->numsurfpt);
}
#endif
l->numlightstyles = i;
for ( ; i<MAXCPULIGHTMAPS ; i++)
l->lightstyles[i] = INVALID_LIGHTSTYLE;
//
// cast all lights
//
for (i=0 ; i<ctx->num_entities ; i++)
{
if (ctx->entities[i].light)
SingleLightFace (&ctx->entities[i], l);
}
FixMinlight (l);
if (!l->numlightstyles)
{ // no light hitting it
#ifdef UTILITY
f->lightofs = -1;
#endif
return;
}
//
// save out the values
//
for (i=0 ; i <MAXCPULIGHTMAPS ; i++)
surf_styles[i] = l->lightstyles[i];
#ifdef UTILITY
lightmapsize = size*l->numlightstyles;
if (runningrgblightdatabase)
{
out = GetFakeFileSpace(&f->lightofs, lightmapsize);
expout = NULL;
rgbout = runningrgblightdatabase + f->lightofs*3;
dulout = runninglightnormbase + f->lightofs*3;
}
else
{
out = GetFileSpace (&f->lightofs, lightmapsize);
expout = NULL;
rgbout = GetRGBFileSpace (f->lightofs, lightmapsize);
dulout = GetNormFileSpace (f->lightofs, lightmapsize);
}
#else
if (!ctx->skiplit)
{
expout = surf_expsamples;
rgbout = surf_rgbsamples;
}
else
{
expout = NULL;
rgbout = NULL;
}
if (l->ctx->models[0]->deluxdata)
{
dulout = surf_deluxesamples;
VectorCopy(surf_texplanes[0], svector);
VectorNegate(surf_texplanes[1], tvector);
VectorNormalize(svector);
VectorNormalize(tvector);
}
else
dulout = NULL;
#endif
// extra filtering
// h = (l.texsize[1]+1)*2;
w = l->texsize[0]+1;
if (extrasamples)
w *= 2;
for (i=0 ; i< l->numlightstyles ; i++)
{
if (l->lightstyles[i] == 0xff)
Host_Error ("Wrote empty lightmap");
light = l->lightmaps[i];
norm = l->lightnorm[i];
c = 0;
for (t=0 ; t<=l->texsize[1] ; t++)
{
for (s=0 ; s<=l->texsize[0] ; s++, c++)
{
mean = 0;
for (ch = 0; ch < 3; ch++)
{
if (extrasamples)
{ // filtered sample
total = light[t*2*w+s*2][ch] + light[t*2*w+s*2+1][ch]
+ light[(t*2+1)*w+s*2][ch] + light[(t*2+1)*w+s*2+1][ch];
total *= 0.25;
wnorm[ch] = norm[t*2*w+s*2][ch] + norm[t*2*w+s*2+1][ch]
+ norm[(t*2+1)*w+s*2][ch] + norm[(t*2+1)*w+s*2+1][ch];
}
else
{
total = light[c][ch];
wnorm[ch] = norm[c][ch];
}
total *= rangescale; // scale before clamping
temp[ch] = total/0x80; // quake bsps store logical light values between 0 and 2 for overbrights. normalise it appropriately.
#ifndef UTILITY
// if (total > *rgbout) //sorry - for qw
// total = *rgbout;
#endif
if (total < 0)
total = 0;
if (total > 0xff)
total = 0xff;
if (rgbout)
*rgbout++ = total;
mean += total;
}
if (expout)
*expout++ = PackE5BRG9(temp);
#ifdef UTILITY
*out++ = mean/3;
#endif
if (dulout)
{
temp[0] = DotProduct(wnorm, svector);
temp[1] = DotProduct(wnorm, tvector);
temp[2] = DotProduct(wnorm, l->facenormal);
if (!temp[0] && !temp[1] && !temp[2])
VectorSet(temp, 0, 0, 1);
else
VectorNormalize(temp);
*dulout++ = (temp[0]+1)*127;
*dulout++ = (temp[1]+1)*127;
*dulout++ = (temp[2]+1)*127;
}
}
}
}
}
static void LightFace (struct relight_ctx_s *ctx, struct llightinfo_s *threadctx, int facenum)
{
dface_t *f = ctx->models[0]->surfaces + facenum;
vec4_t plane;
vec2_t exactmins;
vec2_t exactmaxs;
int texmins[2], texsize[2];
VectorCopy (f->plane->normal, plane);
plane[3] = f->plane->dist;
if (f->flags & SURF_PLANEBACK)
{
VectorNegate (plane, plane);
plane[3] = -plane[3];
}
//no lighting on these.
if (f->texinfo->flags & TEX_SPECIAL)
return;
LightCalcFaceExtents(ctx->models[0], f, exactmins, exactmaxs, texmins, texsize);
if (ctx->models[0]->lightmaps.fmt == LM_E5BGR9)
LightPlane(ctx, threadctx, f->styles, (unsigned int*)f->samples, NULL, 3*(f->samples - ctx->models[0]->lightdata)/4 + ctx->models[0]->deluxdata, plane, f->texinfo->vecs, exactmins, exactmaxs, texmins, texsize, 1<<f->lmshift);
else
LightPlane(ctx, threadctx, f->styles, NULL, f->samples, f->samples - ctx->models[0]->lightdata + ctx->models[0]->deluxdata, plane, f->texinfo->vecs, exactmins, exactmaxs, texmins, texsize, 1<<f->lmshift);
}
static struct relight_ctx_s *lightcontext;
#if defined(MULTITHREAD)
#ifdef _WIN32
#include <windows.h>
#elif defined(__linux__)
#include <unistd.h>
#endif
static void *relightthread[8];
static unsigned int relightthreads;
static volatile qboolean wantrelight;
static int RelightThread(void *ctx)
{
int surf;
struct relight_ctx_s *lightcontext = ctx;
model_t *lightmodel = lightcontext->models[0];
void *threadctx = malloc(lightthreadctxsize);
while (wantrelight)
{
#ifdef _WIN32
surf = InterlockedIncrement(&lightcontext->nextface);
#elif defined(__GNUC__)
surf = __sync_add_and_fetch(&lightcontext->nextface, 1);
#else
surf = relitsurface++;
#endif
if (surf >= lightmodel->numsurfaces)
break;
LightFace(lightcontext, threadctx, surf);
lightmodel->surfaces[surf].cached_dlight = -1; //invalidate it (slightly racey buy w/e
}
free(threadctx);
return 0;
}
#else
static void *lightmainthreadctx;
#endif
void RelightTerminate(model_t *mod)
{
model_t *lightmodel;
size_t u;
if (!lightcontext)
return;
//if one of the models we're using is being purged then we have to abort the relight to avoid caching partial results (especially if its the model we're actually relighting)
if (mod)
{
for (u = 0; u < lightcontext->nummodels; u++)
if (lightcontext->models[u] == mod)
break;
}
else
u = 0;
if (u < lightcontext->nummodels)
{
lightmodel = lightcontext->models[0];
#ifdef MULTITHREAD
wantrelight = false;
if (relightthreads)
{
int i;
wantrelight = false;
for (i = 0; i < relightthreads; i++)
{
Sys_WaitOnThread(relightthread[i]);
relightthread[i] = NULL;
}
relightthreads = 0;
}
#else
free(lightmainthreadctx);
lightmainthreadctx = NULL;
#endif
if (lightcontext->nextface >= lightmodel->numsurfaces)
{
vfsfile_t *f;
char filename[MAX_QPATH];
if (lightmodel->deluxdata)
{
COM_StripExtension(lightmodel->name, filename, sizeof(filename));
COM_DefaultExtension(filename, ".lux", sizeof(filename));
f = FS_OpenVFS(filename, "wb", FS_GAME);
if (f)
{
VFS_WRITE(f, "QLIT\1\0\0\0", 8);
VFS_WRITE(f, lightmodel->deluxdata, lightcontext->lightmapsamples*3);
VFS_CLOSE(f);
}
else
Con_Printf("Unable to write \"%s\"\n", filename);
}
if (!lightcontext->skiplit) //the user might already have a lit file (don't overwrite it).
{
COM_StripExtension(lightmodel->name, filename, sizeof(filename));
COM_DefaultExtension(filename, ".lit", sizeof(filename));
f = FS_OpenVFS(filename, "wb", FS_GAME);
if (f)
{
if (lightmodel->lightmaps.fmt == LM_E5BGR9)
{
VFS_WRITE(f, "QLIT\x01\0\x01\0", 8);
VFS_WRITE(f, lightmodel->lightdata, lightcontext->lightmapsamples*4);
}
else
{
VFS_WRITE(f, "QLIT\1\0\0\0", 8);
VFS_WRITE(f, lightmodel->lightdata, lightcontext->lightmapsamples*3);
}
VFS_CLOSE(f);
}
else
Con_Printf("Unable to write \"%s\"\n", filename);
}
}
else
Con_Printf("Relighting aborted before completion\n");
LightShutdown(lightcontext, mod);
lightcontext = NULL;
}
}
qboolean RelightSetup (model_t *model, size_t lightsamples, qboolean generatelit)
{
qboolean ret = false;
Sys_LockMutex(com_resourcemutex); //models can be loaded on different threads, so no race conditions please.
if (!lightcontext)
{
lightcontext = LightStartup(NULL, model, true, !generatelit);
lightcontext->lightmapsamples = lightsamples;
ret = true;
}
Sys_UnlockMutex(com_resourcemutex);
return ret;
}
const char *RelightGetProgress(float *progress)
{
char filename[MAX_QPATH];
if (!lightcontext)
return NULL;
*progress = (lightcontext->nextface*100.0f) / lightcontext->models[0]->numsurfaces;
COM_StripExtension(lightcontext->models[0]->name, filename, sizeof(filename));
COM_DefaultExtension(filename, lightcontext->skiplit?".lux":".lit", sizeof(filename));
return va("%s", filename);
}
void RelightThink (void)
{
if (lightcontext)
{
model_t *lightmodel = lightcontext->models[0];
if (!lightcontext->loaded)
{ //make sure everything finished loading properly before we start poking things.
size_t u;
if (!lightcontext->parsed)
{
if (lightcontext->models[0]->loadstate != MLS_LOADED)
return; //not ready yet...
LightReloadEntities(lightcontext, Mod_GetEntitiesString(lightmodel), false);
lightcontext->parsed = true;
}
for (u = 0; u < lightcontext->nummodels; u++)
if (lightcontext->models[u]->loadstate != MLS_LOADED)
return;
lightcontext->loaded = true;
}
#ifdef MULTITHREAD
if (!relightthreads)
{
int i;
#if defined(_WIN32) && !defined(WINRT)
HANDLE me = GetCurrentProcess();
DWORD_PTR proc, sys;
/*count cpus*/
GetProcessAffinityMask(me, &proc, &sys);
relightthreads = 0;
for (i = 0; i < sizeof(proc)*8; i++)
if (proc & ((size_t)1u<<i))
relightthreads++;
/*subtract 1*/
if (relightthreads <= 1)
relightthreads = 1;
else
relightthreads--;
#elif defined(__GNUC__)
#ifdef __linux__
relightthreads = sysconf(_SC_NPROCESSORS_ONLN)-1;
if (relightthreads < 1)
relightthreads = 1;
#else
relightthreads = 2; //erm, lets hope...
#endif
#else
/*can't do atomics*/
relightthreads = 1;
#endif
if (relightthreads > sizeof(relightthread)/sizeof(relightthread[0]))
relightthreads = sizeof(relightthread)/sizeof(relightthread[0]);
wantrelight = true;
for (i = 0; i < relightthreads; i++)
relightthread[i] = Sys_CreateThread("relight", RelightThread, lightcontext, THREADP_NORMAL, 0);
}
if (lightcontext->nextface < lightmodel->numsurfaces)
{
return;
}
#else
if (!lightmainthreadctx)
lightmainthreadctx = malloc(lightthreadctxsize);
LightFace(lightcontext, lightmainthreadctx, lightcontext->nextface);
lightmodel->surfaces[lightcontext->nextface].cached_dlight = -1;
lightcontext->nextface++;
#endif
if (lightcontext->nextface >= lightmodel->numsurfaces)
{
double starttime = lightcontext->starttime;
RelightTerminate(lightmodel);
Con_Printf("Finished lighting %s, took %.1f seconds\n", lightmodel->name, Sys_DoubleTime()-starttime);
}
}
}
#endif