1
0
Fork 0
forked from valve/halflife-sdk
halflife-sdk-steam/dlls/h_ai.cpp
2000-06-05 00:00:00 +00:00

198 lines
6.2 KiB
C++

/***
*
* Copyright (c) 1999, 2000 Valve LLC. All rights reserved.
*
* This product contains software technology licensed from Id
* Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc.
* All Rights Reserved.
*
* Use, distribution, and modification of this source code and/or resulting
* object code is restricted to non-commercial enhancements to products from
* Valve LLC. All other use, distribution, or modification is prohibited
* without written permission from Valve LLC.
*
****/
/*
h_ai.cpp - halflife specific ai code
*/
#include "extdll.h"
#include "util.h"
#include "cbase.h"
#include "monsters.h"
#define NUM_LATERAL_CHECKS 13 // how many checks are made on each side of a monster looking for lateral cover
#define NUM_LATERAL_LOS_CHECKS 6 // how many checks are made on each side of a monster looking for lateral cover
//float flRandom = RANDOM_FLOAT(0,1);
DLL_GLOBAL BOOL g_fDrawLines = FALSE;
//=========================================================
//
// AI UTILITY FUNCTIONS
//
// !!!UNDONE - move CBaseMonster functions to monsters.cpp
//=========================================================
//=========================================================
// FBoxVisible - a more accurate ( and slower ) version
// of FVisible.
//
// !!!UNDONE - make this CBaseMonster?
//=========================================================
BOOL FBoxVisible ( entvars_t *pevLooker, entvars_t *pevTarget, Vector &vecTargetOrigin, float flSize )
{
// don't look through water
if ((pevLooker->waterlevel != 3 && pevTarget->waterlevel == 3)
|| (pevLooker->waterlevel == 3 && pevTarget->waterlevel == 0))
return FALSE;
TraceResult tr;
Vector vecLookerOrigin = pevLooker->origin + pevLooker->view_ofs;//look through the monster's 'eyes'
for (int i = 0; i < 5; i++)
{
Vector vecTarget = pevTarget->origin;
vecTarget.x += RANDOM_FLOAT( pevTarget->mins.x + flSize, pevTarget->maxs.x - flSize);
vecTarget.y += RANDOM_FLOAT( pevTarget->mins.y + flSize, pevTarget->maxs.y - flSize);
vecTarget.z += RANDOM_FLOAT( pevTarget->mins.z + flSize, pevTarget->maxs.z - flSize);
UTIL_TraceLine(vecLookerOrigin, vecTarget, ignore_monsters, ignore_glass, ENT(pevLooker)/*pentIgnore*/, &tr);
if (tr.flFraction == 1.0)
{
vecTargetOrigin = vecTarget;
return TRUE;// line of sight is valid.
}
}
return FALSE;// Line of sight is not established
}
//
// VecCheckToss - returns the velocity at which an object should be lobbed from vecspot1 to land near vecspot2.
// returns g_vecZero if toss is not feasible.
//
Vector VecCheckToss ( entvars_t *pev, const Vector &vecSpot1, Vector vecSpot2, float flGravityAdj )
{
TraceResult tr;
Vector vecMidPoint;// halfway point between Spot1 and Spot2
Vector vecApex;// highest point
Vector vecScale;
Vector vecGrenadeVel;
Vector vecTemp;
float flGravity = CVAR_GET_FLOAT( "sv_gravity" ) * flGravityAdj;
if (vecSpot2.z - vecSpot1.z > 500)
{
// to high, fail
return g_vecZero;
}
UTIL_MakeVectors (pev->angles);
// toss a little bit to the left or right, not right down on the enemy's bean (head).
vecSpot2 = vecSpot2 + gpGlobals->v_right * ( RANDOM_FLOAT(-8,8) + RANDOM_FLOAT(-16,16) );
vecSpot2 = vecSpot2 + gpGlobals->v_forward * ( RANDOM_FLOAT(-8,8) + RANDOM_FLOAT(-16,16) );
// calculate the midpoint and apex of the 'triangle'
// UNDONE: normalize any Z position differences between spot1 and spot2 so that triangle is always RIGHT
// How much time does it take to get there?
// get a rough idea of how high it can be thrown
vecMidPoint = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5;
UTIL_TraceLine(vecMidPoint, vecMidPoint + Vector(0,0,500), ignore_monsters, ENT(pev), &tr);
vecMidPoint = tr.vecEndPos;
// (subtract 15 so the grenade doesn't hit the ceiling)
vecMidPoint.z -= 15;
if (vecMidPoint.z < vecSpot1.z || vecMidPoint.z < vecSpot2.z)
{
// to not enough space, fail
return g_vecZero;
}
// How high should the grenade travel to reach the apex
float distance1 = (vecMidPoint.z - vecSpot1.z);
float distance2 = (vecMidPoint.z - vecSpot2.z);
// How long will it take for the grenade to travel this distance
float time1 = sqrt( distance1 / (0.5 * flGravity) );
float time2 = sqrt( distance2 / (0.5 * flGravity) );
if (time1 < 0.1)
{
// too close
return g_vecZero;
}
// how hard to throw sideways to get there in time.
vecGrenadeVel = (vecSpot2 - vecSpot1) / (time1 + time2);
// how hard upwards to reach the apex at the right time.
vecGrenadeVel.z = flGravity * time1;
// find the apex
vecApex = vecSpot1 + vecGrenadeVel * time1;
vecApex.z = vecMidPoint.z;
UTIL_TraceLine(vecSpot1, vecApex, dont_ignore_monsters, ENT(pev), &tr);
if (tr.flFraction != 1.0)
{
// fail!
return g_vecZero;
}
// UNDONE: either ignore monsters or change it to not care if we hit our enemy
UTIL_TraceLine(vecSpot2, vecApex, ignore_monsters, ENT(pev), &tr);
if (tr.flFraction != 1.0)
{
// fail!
return g_vecZero;
}
return vecGrenadeVel;
}
//
// VecCheckThrow - returns the velocity vector at which an object should be thrown from vecspot1 to hit vecspot2.
// returns g_vecZero if throw is not feasible.
//
Vector VecCheckThrow ( entvars_t *pev, const Vector &vecSpot1, Vector vecSpot2, float flSpeed, float flGravityAdj )
{
float flGravity = CVAR_GET_FLOAT( "sv_gravity" ) * flGravityAdj;
Vector vecGrenadeVel = (vecSpot2 - vecSpot1);
// throw at a constant time
float time = vecGrenadeVel.Length( ) / flSpeed;
vecGrenadeVel = vecGrenadeVel * (1.0 / time);
// adjust upward toss to compensate for gravity loss
vecGrenadeVel.z += flGravity * time * 0.5;
Vector vecApex = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5;
vecApex.z += 0.5 * flGravity * (time * 0.5) * (time * 0.5);
TraceResult tr;
UTIL_TraceLine(vecSpot1, vecApex, dont_ignore_monsters, ENT(pev), &tr);
if (tr.flFraction != 1.0)
{
// fail!
return g_vecZero;
}
UTIL_TraceLine(vecSpot2, vecApex, ignore_monsters, ENT(pev), &tr);
if (tr.flFraction != 1.0)
{
// fail!
return g_vecZero;
}
return vecGrenadeVel;
}