1
0
Fork 0
forked from valve/halflife-sdk
halflife-sdk-steam/cl_dll/interpolation.cpp

222 lines
4.5 KiB
C++

/************ (C) Copyright 2003 Valve, L.L.C. All rights reserved. ***********
**
** The copyright to the contents herein is the property of Valve, L.L.C.
** The contents may be used and/or copied only with the written permission of
** Valve, L.L.C., or in accordance with the terms and conditions stipulated in
** the agreement/contract under which the contents have been supplied.
**
*******************************************************************************
**
** Contents:
**
** interpolation.cpp: implementation of the interpolation class
**
******************************************************************************/
#include "hud.h"
#include "cl_util.h"
#include "interpolation.h"
// = determinant of matrix a,b,c
#define Determinant(a,b,c) ( (a)[2] * ( (b)[0]*(c)[1] - (b)[1]*(c)[0] ) + \
(a)[1] * ( (b)[2]*(c)[0] - (b)[0]*(c)[2] ) + \
(a)[0] * ( (b)[1]*(c)[2] - (b)[2]*(c)[1] ) )
// slove 3 vector linear system of equations v0 = x*v1 + y*v2 + z*v3 (if possible)
bool SolveLSE (vec3_t v0, vec3_t v1, vec3_t v2, vec3_t v3, float * x, float * y, float * z)
{
float d = Determinant(v1,v2,v3);
if (d==0.0f)
return false;
if ( x )
*x = Determinant(v0,v2,v3) / d;
if ( y )
*y= Determinant(v1,v0,v3) / d;
if ( z )
*z= Determinant(v1,v2,v0) / d;
return true;
}
// p = closest point between vector lines a1+x*m1 and a2+x*m2
bool GetPointBetweenLines(vec3_t &p, vec3_t a1, vec3_t m1, vec3_t a2, vec3_t m2 )
{
float x,z;
vec3_t t1 = CrossProduct(m1, m2);
vec3_t t2 = a2 - a1;
if ( !SolveLSE( t2, m1, t1, m2, &x , NULL, &z ) )
return false;
t1 = a1 + x*m1;
t2 = a2 + (-z)*m2;
p = ( t1 + t2 ) / 2.0f;
return true;
}
// Bernstein Poynom B(u) with n = 2, i = 0
#define BernsteinPolynom20(u) ((1.0f-u)*(1.0f-u))
#define BernsteinPolynom21(u) (2.0f*u*(1.0f-u))
#define BernsteinPolynom22(u) (u*u)
CInterpolation::CInterpolation()
{
}
CInterpolation::~CInterpolation()
{
m_SmoothStart = m_SmoothEnd = false;
}
void CInterpolation::SetViewAngles( vec3_t start, vec3_t end )
{
m_StartAngle = start;
m_EndAngle = end;
NormalizeAngles( m_StartAngle );
NormalizeAngles( m_EndAngle );
}
void CInterpolation::SetFOVs(float start, float end)
{
m_StartFov = start;
m_EndFov = end;
}
void CInterpolation::SetWaypoints( vec3_t * prev, vec3_t start, vec3_t end, vec3_t * next)
{
m_StartPoint = start;
m_EndPoint = end;
vec3_t a,b,c,d;
if ( !prev && !next )
{
// no direction given, straight linear interpolation
m_Center = (m_StartPoint + m_EndPoint) / 2.0f;
}
else if ( !prev )
{
a = start - end;
float dist = a.Length() / 2.0f;
a = a.Normalize();
b = *next - end;
b = b.Normalize();
c = a - b;
c = c.Normalize();
m_Center = end + c*dist;
}
else if ( !next )
{
a = *prev - start;
a = a.Normalize();
b = end - start;
float dist = b.Length() / 2.0f;
b = b.Normalize();
c = b - a;
c = c.Normalize();
m_Center = start + c*dist;
}
else
{
// we have a previous and a next point, great!
a = *prev - start;
a = a.Normalize();
b = end - start;
b = b.Normalize();
c = b - a;
a = start - end;
a = a.Normalize();
b = *next - end;
b = b.Normalize();
d = a - b;
GetPointBetweenLines( m_Center, start, c, end, d);
}
}
void CInterpolation::Interpolate( float t, vec3_t &point, vec3_t &angle, float * fov)
{
if ( m_SmoothStart && m_SmoothEnd )
{
t = (1.0f-t)*(t*t)+t*(1.0f-((t-1.0f)*(t-1.0f)));
}
else if ( m_SmoothStart )
{
t = t*t;
}
else if ( m_SmoothEnd )
{
t = t - 1.0f;
t = -(t*t)+1;
}
if ( point )
{
BezierInterpolatePoint(t, point);
}
if ( angle )
{
InterpolateAngle(t, angle);
}
if ( fov )
{
*fov = m_StartFov + (t * (m_EndFov-m_StartFov));
}
}
void CInterpolation::BezierInterpolatePoint( float t, vec3_t &point )
{
point = m_StartPoint * BernsteinPolynom20(t);
point = point + m_Center * BernsteinPolynom21(t);
point = point + m_EndPoint * BernsteinPolynom22(t);
}
void CInterpolation::SetSmoothing(bool start, bool end)
{
m_SmoothStart = start;
m_SmoothEnd = end;
}
void CInterpolation::InterpolateAngle( float t, vec3_t &angle )
{
int i;
float ang1, ang2;
float d;
for ( i = 0 ; i < 3 ; i++ )
{
ang1 = m_StartAngle[i];
ang2 = m_EndAngle[i];
d = ang2 - ang1;
if ( d > 180 )
{
d -= 360;
}
else if ( d < -180 )
{
d += 360;
}
angle[i] = ang1 + d * t;
}
NormalizeAngles( angle );
}