1
0
Fork 0
forked from fte/fteqw
fteqw/engine/sw/r_misc.c
Spoike ce3c561cfe CSQC is standard now, and secure via the same md4 as a map currently has.
Particle system functions renamed a bit, a few other cleanups in that area.
Console handling tweeked. Better rules for subconsoles and plugins. Commands are coloured if it'll be execed, which should help reduce occurences of chat being commands. tab compleation tweeked, partial compleation no longer changes the suggestion.


git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@895 fc73d0e0-1445-4013-8a0c-d673dee63da5
2005-03-10 03:55:18 +00:00

641 lines
12 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_misc.c
#include "quakedef.h"
#include "r_local.h"
extern int r_viewcluster, r_viewcluster2, r_oldviewcluster, r_oldviewcluster2;
/*
===============
R_CheckVariables
===============
*/
void R_CheckVariables (void)
{
}
/*
============
Show
Debugging use
============
*/
void Show (void)
{
vrect_t vr;
vr.x = vr.y = 0;
vr.width = vid.width;
vr.height = vid.height;
vr.pnext = NULL;
SWVID_Update (&vr);
}
/*
====================
R_TimeRefresh_f
For program optimization
====================
*/
void SWR_TimeRefresh_f (void)
{
int i;
float start, stop, time;
int startangle;
vrect_t vr;
startangle = r_refdef.viewangles[1];
start = Sys_DoubleTime ();
for (i=0 ; i<128 ; i++)
{
r_refdef.viewangles[1] = i/128.0*360.0;
VID_LockBuffer ();
R_RenderView ();
VID_UnlockBuffer ();
vr.x = r_refdef.vrect.x;
vr.y = r_refdef.vrect.y;
vr.width = r_refdef.vrect.width;
vr.height = r_refdef.vrect.height;
vr.pnext = NULL;
SWVID_Update (&vr);
}
stop = Sys_DoubleTime ();
time = stop-start;
Con_Printf ("%f seconds (%f fps)\n", time, 128/time);
r_refdef.viewangles[1] = startangle;
}
/*
================
R_LineGraph
Only called by R_DisplayTime
================
*/
void R_LineGraph (int x, int y, int h)
{
int i;
qbyte *dest;
int s;
int color;
// FIXME: should be disabled on no-buffer adapters, or should be in the driver
// x += r_refdef.vrect.x;
// y += r_refdef.vrect.y;
dest = vid.buffer + vid.rowbytes*y + x;
s = r_graphheight.value;
if (h == 10000)
color = 0x6f; // yellow
else if (h == 9999)
color = 0x4f; // red
else if (h == 9998)
color = 0xd0; // blue
else
color = 0xff; // pink
if (h>s)
h = s;
for (i=0 ; i<h ; i++, dest -= vid.rowbytes*2)
{
dest[0] = color;
// *(dest-vid.rowbytes) = 0x30;
}
#if 0
for ( ; i<s ; i++, dest -= vid.rowbytes*2)
{
dest[0] = 0x30;
*(dest-vid.rowbytes) = 0x30;
}
#endif
}
/*
==============
R_TimeGraph
Performance monitoring tool
==============
*/
#define MAX_TIMINGS 100
extern float mouse_x, mouse_y;
int graphval;
void R_TimeGraph (void)
{
static int timex;
int a;
float r_time2;
static qbyte r_timings[MAX_TIMINGS];
int x;
r_time2 = Sys_DoubleTime ();
a = (r_time2-r_time1)/0.01;
//a = fabs(mouse_y * 0.05);
//a = (int)((r_refdef.vieworg[2] + 1024)/1)%(int)r_graphheight.value;
//a = (int)((pmove.velocity[2] + 500)/10);
//a = fabs(velocity[0])/20;
//a = ((int)fabs(origin[0])/8)%20;
//a = (cl.idealpitch + 30)/5;
//a = (int)(cl.simangles[YAW] * 64/360) & 63;
a = graphval;
r_timings[timex] = a;
a = timex;
if (r_refdef.vrect.width <= MAX_TIMINGS)
x = r_refdef.vrect.width-1;
else
x = r_refdef.vrect.width -
(r_refdef.vrect.width - MAX_TIMINGS)/2;
do
{
R_LineGraph (x, r_refdef.vrect.height-2, r_timings[a]);
if (x==0)
break; // screen too small to hold entire thing
x--;
a--;
if (a == -1)
a = MAX_TIMINGS-1;
} while (a != timex);
timex = (timex+1)%MAX_TIMINGS;
}
/*
==============
R_NetGraph
==============
*/
void SWR_NetGraph (void)
{
int a, x, y, y2, w, i;
int lost;
char st[80];
if (vid.width - 16 <= NET_TIMINGS)
w = vid.width - 16;
else
w = NET_TIMINGS;
x = -(int)((vid.width - 320)>>1);
y = vid.height - sb_lines - 24 - (int)r_graphheight.value*2 - 2;
M_DrawTextBox (x, y, (w+7)/8, ((int)r_graphheight.value*2+7)/8 + 1);
y2 = y + 8;
y = vid.height - sb_lines - 8 - 2;
x = 8;
lost = CL_CalcNet();
for (a=NET_TIMINGS-w ; a<w ; a++)
{
i = (cls.netchan.outgoing_sequence-a) & NET_TIMINGSMASK;
R_LineGraph (x+w-1-a, y, packet_latency[i]);
}
sprintf(st, "%3i%% packet loss", lost);
Draw_String(8, y2, st);
}
/*
==============
R_ZGraph
==============
*/
void R_ZGraph (void)
{
int a, x, w, i;
static int height[256];
if (r_refdef.vrect.width <= 256)
w = r_refdef.vrect.width;
else
w = 256;
height[r_framecount&255] = ((int)r_origin[2]) & 31;
x = 0;
for (a=0 ; a<w ; a++)
{
i = (r_framecount-a) & 255;
R_LineGraph (x+w-1-a, r_refdef.vrect.height-2, height[i]);
}
}
/*
=============
R_PrintTimes
=============
*/
void R_PrintTimes (void)
{
float r_time2;
float ms;
r_time2 = Sys_DoubleTime ();
ms = 1000* (r_time2 - r_time1);
Con_Printf ("%5.1f ms %3i/%3i/%3i poly %3i surf\n",
ms, c_faceclip, r_polycount, r_drawnpolycount, c_surf);
c_surf = 0;
}
/*
=============
R_PrintDSpeeds
=============
*/
void R_PrintDSpeeds (void)
{
float ms, dp_time, r_time2, rw_time, db_time, se_time, de_time, dv_time;
r_time2 = Sys_DoubleTime ();
dp_time = (dp_time2 - dp_time1) * 1000;
rw_time = (rw_time2 - rw_time1) * 1000;
db_time = (db_time2 - db_time1) * 1000;
se_time = (se_time2 - se_time1) * 1000;
de_time = (de_time2 - de_time1) * 1000;
dv_time = (dv_time2 - dv_time1) * 1000;
ms = (r_time2 - r_time1) * 1000;
Con_Printf ("%3i %4.1fp %3iw %4.1fb %3is %4.1fe %4.1fv\n",
(int)ms, dp_time, (int)rw_time, db_time, (int)se_time, de_time,
dv_time);
}
/*
=============
R_PrintAliasStats
=============
*/
void R_PrintAliasStats (void)
{
Con_Printf ("%3i polygon model drawn\n", r_amodels_drawn);
}
void WarpPalette (void)
{
int i,j;
qbyte newpalette[768];
int basecolor[3];
basecolor[0] = 130;
basecolor[1] = 80;
basecolor[2] = 50;
// pull the colors halfway to bright brown
for (i=0 ; i<256 ; i++)
{
for (j=0 ; j<3 ; j++)
{
newpalette[i*3+j] = (host_basepal[i*3+j] + basecolor[j])/2;
}
}
VID_ShiftPalette (newpalette);
}
/*
===================
R_TransformFrustum
===================
*/
void R_TransformFrustum (void)
{
int i;
vec3_t v, v2;
for (i=0 ; i<4 ; i++)
{
v[0] = screenedge[i].normal[2];
v[1] = -screenedge[i].normal[0];
v[2] = screenedge[i].normal[1];
v2[0] = v[1]*vright[0] + v[2]*vup[0] + v[0]*vpn[0];
v2[1] = v[1]*vright[1] + v[2]*vup[1] + v[0]*vpn[1];
v2[2] = v[1]*vright[2] + v[2]*vup[2] + v[0]*vpn[2];
VectorCopy (v2, view_clipplanes[i].normal);
view_clipplanes[i].dist = DotProduct (modelorg, v2);
}
}
#if !id386
/*
================
TransformVector
================
*/
void TransformVector (vec3_t in, vec3_t out)
{
out[0] = DotProduct(in,vright);
out[1] = DotProduct(in,vup);
out[2] = DotProduct(in,vpn);
}
#endif
/*
================
R_TransformPlane
================
*/
void R_TransformPlane (mplane_t *p, float *normal, float *dist)
{
float d;
d = DotProduct (r_origin, p->normal);
*dist = p->dist - d;
// TODO: when we have rotating entities, this will need to use the view matrix
TransformVector (p->normal, normal);
}
/*
===============
R_SetUpFrustumIndexes
===============
*/
void R_SetUpFrustumIndexes (void)
{
int i, j, *pindex;
pindex = r_frustum_indexes;
for (i=0 ; i<4 ; i++)
{
for (j=0 ; j<3 ; j++)
{
if (view_clipplanes[i].normal[j] < 0)
{
pindex[j] = j;
pindex[j+3] = j+3;
}
else
{
pindex[j] = j+3;
pindex[j+3] = j;
}
}
// FIXME: do just once at start
pfrustum_indexes[i] = pindex;
pindex += 6;
}
}
/*
===============
R_SetupFrame
===============
*/
void SWR_SetupFrame (void)
{
static mleaf_t fakeleaf;
extern int r_dosirds;
extern int scr_chatmode;
int edgecount;
vrect_t vrect;
float w, h;
// don't allow cheats in multiplayer
if (r_numsurfs.value)
{
if ((surface_p - surfaces) > r_maxsurfsseen)
r_maxsurfsseen = surface_p - surfaces;
Con_Printf ("Used %d of %d surfs; %d max\n", surface_p - surfaces,
surf_max - surfaces, r_maxsurfsseen);
}
if (r_numedges.value)
{
edgecount = edge_p - r_edges;
if (edgecount > r_maxedgesseen)
r_maxedgesseen = edgecount;
Con_Printf ("Used %d of %d edges; %d max\n", edgecount,
r_numallocatededges, r_maxedgesseen);
}
r_refdef.ambientlight = r_ambient.value;
if (r_refdef.ambientlight < 0)
r_refdef.ambientlight = 0;
// if (!sv.active)
r_draworder.value = 0; // don't let cheaters look behind walls
R_CheckVariables ();
SWR_AnimateLight ();
r_framecount++;
numbtofpolys = 0;
// debugging
#if 0
r_refdef.vieworg[0]= 80;
r_refdef.vieworg[1]= 64;
r_refdef.vieworg[2]= 40;
r_refdef.viewangles[0]= 0;
r_refdef.viewangles[1]= 46.763641357;
r_refdef.viewangles[2]= 0;
#endif
// build the transformation matrix for the given view angles
VectorCopy (r_refdef.vieworg, modelorg);
VectorCopy (r_refdef.vieworg, r_origin);
AngleVectors (r_refdef.viewangles, vpn, vright, vup);
if (r_refdef.flags & 1)
{
r_oldviewleaf = r_viewleaf = &fakeleaf; //so we can use quake1 rendering routines for q2 bsps.
r_viewleaf->contents = Q1CONTENTS_EMPTY;
}
#ifdef Q2BSPS
else if (cl.worldmodel->fromgame == fg_quake2)
{
mleaf_t *leaf;
r_viewleaf = &fakeleaf; //so we can use quake1 rendering routines for q2 bsps.
r_viewleaf->contents = Q1CONTENTS_EMPTY;
r_oldviewcluster = r_viewcluster;
r_oldviewcluster2 = r_viewcluster2;
leaf = SWMod_PointInLeaf (r_origin, cl.worldmodel);
r_viewcluster = r_viewcluster2 = leaf->cluster;
// check above and below so crossing solid water doesn't draw wrong
if (!leaf->contents)
{ // look down a bit
vec3_t temp;
VectorCopy (r_origin, temp);
temp[2] -= 16;
leaf = SWMod_PointInLeaf (temp, cl.worldmodel);
if ( !(leaf->contents & Q2CONTENTS_SOLID) &&
(leaf->cluster != r_viewcluster2) )
r_viewcluster2 = leaf->cluster;
}
else
{ // look up a bit
vec3_t temp;
VectorCopy (r_origin, temp);
temp[2] += 16;
leaf = SWMod_PointInLeaf (temp, cl.worldmodel);
if ( !(leaf->contents & Q2CONTENTS_SOLID) &&
(leaf->cluster != r_viewcluster2) )
r_viewcluster2 = leaf->cluster;
}
}
#endif
else
{
// current viewleaf
r_oldviewleaf = r_viewleaf;
r_viewleaf = Mod_PointInLeaf (r_origin, cl.worldmodel);
}
r_dowarpold = r_dowarp;
#ifdef SIDEVIEWS
r_dowarp = r_waterwarp.value && (r_viewleaf->contents <= Q1CONTENTS_WATER) && !r_secondaryview;
#else
r_dowarp = r_waterwarp.value && (r_viewleaf->contents <= Q1CONTENTS_WATER);
#endif
if (vid.width > MAXWIDTH || r_pixbytes != 1 || scr_chatmode)
r_dowarp = 0;
if (r_dosirds)
r_dowarp = 0;
if ((r_dowarp != r_dowarpold) || r_viewchanged)
{
if (r_dowarp)
{
if ((vid.width <= vid.maxwarpwidth) &&
(vid.height <= vid.maxwarpheight))
{
vrect.x = 0;
vrect.y = 0;
vrect.width = vid.width;
vrect.height = vid.height;
SWR_ViewChanged (&vrect, sb_lines, vid.aspect);
}
else
{
w = vid.width;
h = vid.height;
if (w > vid.maxwarpwidth)
{
h *= (float)vid.maxwarpwidth / w;
w = vid.maxwarpwidth;
}
if (h > vid.maxwarpheight)
{
h = vid.maxwarpheight;
w *= (float)vid.maxwarpheight / h;
}
vrect.x = 0;
vrect.y = 0;
vrect.width = (int)w;
vrect.height = (int)h;
SWR_ViewChanged (&vrect,
(int)((float)sb_lines * (h/(float)vid.height)),
vid.aspect * (h / w) *
((float)vid.width / (float)vid.height));
}
}
else
{
vrect.x = 0;
vrect.y = 0;
vrect.width = vid.width;
vrect.height = vid.height;
SWR_ViewChanged (&vrect, sb_lines, vid.aspect);
}
r_viewchanged = false;
}
// start off with just the four screen edge clip planes
R_TransformFrustum ();
// save base values
VectorCopy (vpn, base_vpn);
VectorCopy (vright, base_vright);
VectorCopy (vup, base_vup);
VectorCopy (modelorg, base_modelorg);
R_SetSkyFrame ();
R_SetUpFrustumIndexes ();
r_cache_thrash = false;
// clear frame counts
c_faceclip = 0;
d_spanpixcount = 0;
r_polycount = 0;
r_drawnpolycount = 0;
r_wholepolycount = 0;
r_amodels_drawn = 0;
r_outofsurfaces = 0;
r_outofedges = 0;
D_SetupFrame ();
}