1
0
Fork 0
forked from fte/fteqw
fteqw/engine/gl/gl_backend.c
Spoike a80214290d Oh noes! Everything is broken!
Rewrote much of the console code. Should be no obvious differences.
Nearly all conchar parsing goes via a single function. Still some left in the dedicated server code.
Added the ability to parse utf-8 text, disabled by default.
Added the ability to input unicode chars using whatever keymap the user has set up in windows (not enabled by default).
Reworked vbo stuff to be a little more versatile.
Added toggle console command.
Added freetype2 support (not compiled by default).

git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@3234 fc73d0e0-1445-4013-8a0c-d673dee63da5
2009-07-05 18:45:53 +00:00

2534 lines
57 KiB
C

#include "quakedef.h"
#include "glquake.h"
#include "shader.h"
#ifdef RGLQUAKE
#define MAX_TEXTURE_UNITS 8
typedef struct {
GLenum currenttextures[MAX_TEXTURE_UNITS];
GLenum texenvmode[MAX_TEXTURE_UNITS];
int currenttmu;
qboolean in2d;
} gl_state_t;
gl_state_t gl_state;
void GL_SetShaderState2D(qboolean is2d)
{
gl_state.in2d = is2d;
}
extern int *lightmap_textures;
extern int *deluxmap_textures;
void GL_SelectTexture (GLenum target)
{
gl_state.currenttmu = target - mtexid0;
if (qglClientActiveTextureARB)
{
qglClientActiveTextureARB(target);
qglActiveTextureARB(target);
}
else
qglSelectTextureSGIS(target);
}
void GL_CheckTMUIs0(void)
{
if (gl_state.currenttmu != 0)
{
Con_Printf("TMU is not 0\n");
GL_SelectTexture(mtexid0);
}
}
void GL_MBind( GLenum target, int texnum )
{
GL_SelectTexture( target );
if ( gl_state.currenttextures[gl_state.currenttmu] == texnum )
return;
gl_state.currenttextures[gl_state.currenttmu] = texnum;
bindTexFunc (GL_TEXTURE_2D, texnum);
}
void GL_Bind (int texnum)
{
if (gl_state.currenttextures[gl_state.currenttmu] == texnum)
return;
gl_state.currenttextures[gl_state.currenttmu] = texnum;
bindTexFunc (GL_TEXTURE_2D, texnum);
}
void GL_BindType (int type, int texnum)
{
if (gl_state.currenttextures[gl_state.currenttmu] == texnum)
return;
gl_state.currenttextures[gl_state.currenttmu] = texnum;
bindTexFunc (type, texnum);
}
void GL_TexEnv( GLenum mode )
{
if ( mode != gl_state.texenvmode[gl_state.currenttmu] )
{
qglTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, mode );
gl_state.texenvmode[gl_state.currenttmu] = mode;
}
}
//vid restarted.
void GL_FlushBackEnd(void)
{
int i;
for (i = 0; i < MAX_TEXTURE_UNITS; i++)
{
gl_state.currenttextures[i] = -1;
gl_state.texenvmode[i] = -1;
}
}
typedef vec3_t mat3_t[3];
#ifndef Q3SHADERS
qboolean varrayactive;
void R_IBrokeTheArrays(void)
{
}
void R_BackendInit(void)
{
}
#else
/*
Copyright (C) 2002-2003 Victor Luchits
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#define MAX_ARRAY_VERTS 8192
#define MAX_ARRAY_INDEXES 8192
#define MAX_ARRAY_NEIGHBORS 8192
#define MAX_ARRAY_TRIANGLES (8192/3)
#define M_TWO_PI (M_PI*2)
cvar_t r_detailtextures = SCVAR("r_detailtextures", "1");
cvar_t r_showtris = SCVAR("r_showtris", "1");
cvar_t r_shownormals = SCVAR("r_shownormals", "1");
mat3_t axisDefault={{1, 0, 0},
{0, 1, 0},
{0, 0, 1}};
void Matrix3_Transpose (mat3_t in, mat3_t out)
{
out[0][0] = in[0][0];
out[1][1] = in[1][1];
out[2][2] = in[2][2];
out[0][1] = in[1][0];
out[0][2] = in[2][0];
out[1][0] = in[0][1];
out[1][2] = in[2][1];
out[2][0] = in[0][2];
out[2][1] = in[1][2];
}
void Matrix3_Multiply_Vec3 (mat3_t a, vec3_t b, vec3_t product)
{
product[0] = a[0][0]*b[0] + a[0][1]*b[1] + a[0][2]*b[2];
product[1] = a[1][0]*b[0] + a[1][1]*b[1] + a[1][2]*b[2];
product[2] = a[2][0]*b[0] + a[2][1]*b[1] + a[2][2]*b[2];
}
int Matrix3_Compare(mat3_t in, mat3_t out)
{
return memcmp(in, out, sizeof(mat3_t));
}
extern model_t *currentmodel;
#define clamp(v,min,max) (v) = (((v)<(min))?(min):(((v)>(max))?(max):(v)))
extern qbyte FloatToByte( float x );
#define FTABLE_SIZE 1024
#define FTABLE_CLAMP(x) (((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1)))
#define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand()*((x)-floor(x)))
static float r_sintable[FTABLE_SIZE];
static float r_triangletable[FTABLE_SIZE];
static float r_squaretable[FTABLE_SIZE];
static float r_sawtoothtable[FTABLE_SIZE];
static float r_inversesawtoothtable[FTABLE_SIZE];
index_t *indexesArray;
int *neighborsArray;
vec3_t *trNormalsArray;
vec2_t *coordsArray;
vec2_t *lightmapCoordsArray;
vec3_t vertexArray[MAX_ARRAY_VERTS*2];
vec3_t normalsArray[MAX_ARRAY_VERTS];
vec3_t tempVertexArray[MAX_ARRAY_VERTS];
vec3_t tempNormalsArray[MAX_ARRAY_VERTS];
index_t tempIndexesArray[MAX_ARRAY_INDEXES];
index_t inIndexesArray[MAX_ARRAY_INDEXES];
int inNeighborsArray[MAX_ARRAY_NEIGHBORS];
vec3_t inTrNormalsArray[MAX_ARRAY_TRIANGLES];
vec2_t inCoordsArray[MAX_ARRAY_VERTS];
vec2_t inLightmapCoordsArray[MAX_ARRAY_VERTS];
byte_vec4_t inColorsArray[MAX_ARRAY_VERTS];
static vec2_t tUnitCoordsArray[MAX_TEXTURE_UNITS][MAX_ARRAY_VERTS];
static byte_vec4_t colorArray[MAX_ARRAY_VERTS];
int numVerts, numIndexes, numColors;
qboolean r_arrays_locked;
qboolean r_blocked;
int r_features;
static int r_lmtex;
static int r_texNums[SHADER_PASS_MAX];
static int r_numUnits;
index_t *currentIndex;
int *currentTrNeighbor;
float *currentTrNormal;
float *currentVertex;
float *currentNormal;
float *currentCoords;
float *currentLightmapCoords;
qbyte *currentColor;
static int r_identityLighting;
static float r_localShaderTime;
unsigned int r_numverts;
unsigned int r_numtris;
unsigned int r_numflushes;
int r_backendStart;
int r_dlighttexture;
extern qbyte *host_basepal;
extern qboolean gammaworks;
extern qbyte gammatable[256];
void R_FetchTopColour(int *retred, int *retgreen, int *retblue)
{
int i;
if (currententity->scoreboard)
{
i = currententity->scoreboard->ttopcolor;
}
else
i = TOP_RANGE>>4;
if (i > 8)
{
i<<=4;
}
else
{
i<<=4;
i+=15;
}
i*=3;
*retred = host_basepal[i+0];
*retgreen = host_basepal[i+1];
*retblue = host_basepal[i+2];
if (!gammaworks)
{
*retred = gammatable[*retred];
*retgreen = gammatable[*retgreen];
*retblue = gammatable[*retblue];
}
}
void R_FetchBottomColour(int *retred, int *retgreen, int *retblue)
{
int i;
if (currententity->scoreboard)
{
i = currententity->scoreboard->tbottomcolor;
}
else
i = BOTTOM_RANGE>>4;
if (i > 8)
{
i<<=4;
}
else
{
i<<=4;
i+=15;
}
i*=3;
*retred = host_basepal[i+0];
*retgreen = host_basepal[i+1];
*retblue = host_basepal[i+2];
if (!gammaworks)
{
*retred = gammatable[*retred];
*retgreen = gammatable[*retgreen];
*retblue = gammatable[*retblue];
}
}
void R_InitDynamicLightTexture (void)
{
int x, y;
int dx2, dy, d;
qbyte data[64*64*4];
//
// dynamic light texture
//
for (x = 0; x < 64; x++)
{
dx2 = x - 32;
dx2 = dx2 * dx2 + 8;
for (y = 0; y < 64; y++)
{
dy = y - 32;
d = (int)(65536.0f * ((1.0f / (dx2 + dy * dy + 32.0f)) - 0.0005) + 0.5f);
if ( d < 50 ) d = 0; else if ( d > 255 ) d = 255;
data[(y*64 + x) * 4 + 0] = d;
data[(y*64 + x) * 4 + 1] = d;
data[(y*64 + x) * 4 + 2] = d;
data[(y*64 + x) * 4 + 3] = 255;
}
}
r_dlighttexture = GL_LoadTexture32("", 64, 64, (unsigned int*)data, true, false);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
}
void R_ResetTexState (void)
{
coordsArray = inCoordsArray;
lightmapCoordsArray = inLightmapCoordsArray;
currentCoords = coordsArray[0];
currentLightmapCoords = lightmapCoordsArray[0];
numColors = 0;
currentColor = inColorsArray[0];
}
void R_PushIndexes ( index_t *indexes, int *neighbors, vec3_t *trnormals, int numindexes, int features )
{
int i;
int numTris;
// this is a fast path for non-batched geometry, use carefully
// used on pics, sprites, .dpm, .md3 and .md2 models
if ( features & MF_NONBATCHED ) {
if ( numindexes > MAX_ARRAY_INDEXES ) {
numindexes = MAX_ARRAY_INDEXES;
}
// simply change indexesArray to point at indexes
numIndexes = numindexes;
indexesArray = indexes;
currentIndex = indexesArray + numIndexes;
if ( neighbors ) {
neighborsArray = neighbors;
currentTrNeighbor = neighborsArray + numIndexes;
}
if ( trnormals && (features & MF_TRNORMALS) ) {
numTris = numIndexes / 3;
trNormalsArray = trnormals;
currentTrNormal = trNormalsArray[0] + numTris;
}
}
else
{
// clamp
if ( numIndexes + numindexes > MAX_ARRAY_INDEXES ) {
numindexes = MAX_ARRAY_INDEXES - numIndexes;
}
numTris = numindexes / 3;
numIndexes += numindexes;
// the following code assumes that R_PushIndexes is fed with triangles...
for ( i=0; i<numTris; i++, indexes += 3, currentIndex += 3 )
{
currentIndex[0] = numVerts + indexes[0];
currentIndex[1] = numVerts + indexes[1];
currentIndex[2] = numVerts + indexes[2];
if ( neighbors ) {
currentTrNeighbor[0] = numTris + neighbors[0];
currentTrNeighbor[1] = numTris + neighbors[1];
currentTrNeighbor[2] = numTris + neighbors[2];
neighbors += 3;
currentTrNeighbor += 3;
}
if ( trnormals && (features & MF_TRNORMALS) ) {
VectorCopy ( trnormals[i], currentTrNormal );
currentTrNormal += 3;
}
}
}
}
void R_PushMesh ( mesh_t *mesh, int features )
{
int numverts;
if ( !mesh->indexes || !mesh->xyz_array )
{
return;
}
r_features = features;
R_PushIndexes ( mesh->indexes, mesh->trneighbors, mesh->trnormals, mesh->numindexes, features );
numverts = mesh->numvertexes;
if ( numVerts + numverts > MAX_ARRAY_VERTS )
{
numverts = MAX_ARRAY_VERTS - numVerts;
}
memcpy ( currentVertex, mesh->xyz_array, numverts * sizeof(vec3_t) );
currentVertex += numverts * 3;
if ( mesh->normals_array && (features & MF_NORMALS) ) {
memcpy ( currentNormal, mesh->normals_array, numverts * sizeof(vec3_t) );
currentNormal += numverts * 3;
}
if ( mesh->st_array && (features & MF_STCOORDS) )
{
if ( features & MF_NONBATCHED )
{
coordsArray = mesh->st_array;
currentCoords = coordsArray[0];
}
else
{
memcpy ( currentCoords, mesh->st_array, numverts * sizeof(vec2_t) );
}
currentCoords += numverts * 2;
}
if ( mesh->lmst_array && (features & MF_LMCOORDS) )
{
if ( features & MF_NONBATCHED )
{
lightmapCoordsArray = mesh->lmst_array;
currentLightmapCoords = lightmapCoordsArray[0];
}
else
{
memcpy ( currentLightmapCoords, mesh->lmst_array, numverts * sizeof(vec2_t) );
}
currentLightmapCoords += numverts * 2;
}
if ( mesh->colors_array && (features & MF_COLORS) )
{
memcpy ( currentColor, mesh->colors_array, numverts * sizeof(byte_vec4_t) );
currentColor += numverts * 4;
}
numVerts += numverts;
r_numverts += numverts;
}
qboolean R_MeshWillExceed(mesh_t *mesh)
{
if (numVerts + mesh->numvertexes > MAX_ARRAY_VERTS)
return true;
if (numIndexes + mesh->numindexes > MAX_ARRAY_INDEXES)
return true;
return false;
}
extern index_t r_quad_indexes[6];// = { 0, 1, 2, 0, 2, 3 };
void R_FinishMeshBuffer ( meshbuffer_t *mb );
static float frand(void)
{
return (rand()&32767)* (1.0/32767);
}
//static float crand(void)
//{
// return (rand()&32767)* (2.0/32767) - 1;
//}
/*
==============
R_BackendInit
==============
*/
void R_IBrokeTheArrays(void);
void R_BackendInit (void)
{
int i;
double t;
numVerts = 0;
numIndexes = 0;
numColors = 0;
indexesArray = inIndexesArray;
currentIndex = indexesArray;
neighborsArray = inNeighborsArray;
trNormalsArray = inTrNormalsArray;
coordsArray = inCoordsArray;
lightmapCoordsArray = inLightmapCoordsArray;
currentTrNeighbor = neighborsArray;
currentTrNormal = trNormalsArray[0];
currentVertex = vertexArray[0];
currentNormal = normalsArray[0];
currentCoords = coordsArray[0];
currentLightmapCoords = lightmapCoordsArray[0];
currentColor = inColorsArray[0];
r_arrays_locked = false;
r_blocked = false;
R_IBrokeTheArrays();
//FIZME: FTE already has some stuff along these lines, surly...
// if ( !r_ignorehwgamma->value )
// r_identityLighting = (int)(255.0f / pow(2, max(0, floor(r_overbrightbits->value))));
// else
r_identityLighting = 255;
for ( i = 0; i < FTABLE_SIZE; i++ ) {
t = (double)i / (double)FTABLE_SIZE;
r_sintable[i] = sin ( t * M_TWO_PI );
if (t < 0.25)
r_triangletable[i] = t * 4.0;
else if (t < 0.75)
r_triangletable[i] = 2 - 4.0 * t;
else
r_triangletable[i] = (t - 0.75) * 4.0 - 1.0;
if (t < 0.5)
r_squaretable[i] = 1.0f;
else
r_squaretable[i] = -1.0f;
r_sawtoothtable[i] = t;
r_inversesawtoothtable[i] = 1.0 - t;
}
R_InitDynamicLightTexture();
}
qboolean varrayactive;
void R_IBrokeTheArrays(void)
{
varrayactive = true;
qglVertexPointer( 3, GL_FLOAT, 0, vertexArray );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );
qglEnableClientState( GL_VERTEX_ARRAY );
}
/*
==============
R_BackendShutdown
==============
*/
void R_BackendShutdown (void)
{
}
/*
==============
R_FastSin
==============
*/
float R_FastSin ( float t )
{
return r_sintable[FTABLE_CLAMP(t)];
}
/*
==============
R_TableForFunc
==============
*/
static float *R_TableForFunc ( unsigned int func )
{
switch (func)
{
case SHADER_FUNC_SIN:
return r_sintable;
case SHADER_FUNC_TRIANGLE:
return r_triangletable;
case SHADER_FUNC_SQUARE:
return r_squaretable;
case SHADER_FUNC_SAWTOOTH:
return r_sawtoothtable;
case SHADER_FUNC_INVERSESAWTOOTH:
return r_inversesawtoothtable;
}
// assume noise
return NULL;
}
/*
==============
R_BackendStartFrame
==============
*/
void R_BackendStartFrame (void)
{
r_numverts = 0;
r_numtris = 0;
r_numflushes = 0;
// r_backendStart = Sys_Milliseconds();
}
/*
==============
R_BackendEndFrame
==============
*/
void R_BackendEndFrame (void)
{
if (r_speeds.value)
{
Con_Printf( "%4i wpoly %4i leafs %4i verts %4i tris %4i flushes\n",
c_brush_polys,
0/*c_world_leafs*/,
r_numverts,
r_numtris,
r_numflushes );
}
// time_backend = Sys_Milliseconds() - r_backendStart;
// r_backendStart = 0;
}
/*
==============
R_LockArrays
==============
*/
void R_LockArrays ( int numverts )
{
if ( r_arrays_locked )
return;
if ( qglLockArraysEXT != 0 ) {
qglLockArraysEXT( 0, numverts );
r_arrays_locked = true;
}
}
/*
==============
R_UnlockArrays
==============
*/
void R_UnlockArrays (void)
{
if ( !r_arrays_locked )
return;
if ( qglUnlockArraysEXT != 0 ) {
qglUnlockArraysEXT();
r_arrays_locked = false;
}
}
/*
==============
R_DrawTriangleStrips
This function looks for and sends tristrips.
Original code by Stephen C. Taylor (Aftershock 3D rendering engine)
==============
*/
void R_DrawTriangleStrips (index_t *indexes, int numindexes)
{
int toggle;
index_t a, b, c, *index;
c = 0;
index = indexes;
while ( c < numindexes ) {
toggle = 1;
qglBegin( GL_TRIANGLE_STRIP );
qglArrayElement( index[0] );
qglArrayElement( b = index[1] );
qglArrayElement( a = index[2] );
c += 3;
index += 3;
while ( c < numindexes ) {
if ( a != index[0] || b != index[1] ) {
break;
}
if ( toggle ) {
qglArrayElement( b = index[2] );
} else {
qglArrayElement( a = index[2] );
}
c += 3;
index += 3;
toggle = !toggle;
}
qglEnd();
}
}
/*
==============
R_ClearArrays
==============
*/
void R_ClearArrays (void)
{
numVerts = 0;
numIndexes = 0;
indexesArray = inIndexesArray;
currentIndex = indexesArray;
neighborsArray = inNeighborsArray;
trNormalsArray = inTrNormalsArray;
currentTrNeighbor = neighborsArray;
currentTrNormal = trNormalsArray[0];
currentVertex = vertexArray[0];
currentNormal = normalsArray[0];
R_ResetTexState ();
r_blocked = false;
}
/*
==============
R_FlushArrays
==============
*/
void R_FlushArrays (void)
{
if (!numVerts || !numIndexes)
{
return;
}
if (numColors > 1)
{
qglEnableClientState(GL_COLOR_ARRAY);
}
else if (numColors == 1)
{
qglColor4ubv(colorArray[0]);
}
qglEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (!r_arrays_locked)
{
R_DrawTriangleStrips(indexesArray, numIndexes);
}
else
{
qglDrawElements(GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, indexesArray);
}
r_numtris += numIndexes / 3;
qglDisableClientState(GL_TEXTURE_COORD_ARRAY);
if (numColors > 1)
{
qglDisableClientState(GL_COLOR_ARRAY);
}
r_numflushes++;
}
/*
==============
R_FlushArraysMtex
==============
*/
void R_FlushArraysMtex (void)
{
int i;
if (!numVerts || !numIndexes)
{
return;
}
if (numColors > 1)
{
qglEnableClientState(GL_COLOR_ARRAY);
}
else if (numColors == 1)
{
qglColor4ubv(colorArray[0]);
}
GL_MBind( mtexid0, r_texNums[0] );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY);
for (i = 1; i < r_numUnits; i++)
{
GL_MBind(mtexid0 + i, r_texNums[i]);
qglEnable (GL_TEXTURE_2D );
qglEnableClientState(GL_TEXTURE_COORD_ARRAY);
}
if (!r_arrays_locked)
{
R_DrawTriangleStrips (indexesArray, numIndexes);
}
else
{
qglDrawElements(GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, indexesArray);
}
r_numtris += numIndexes / 3;
for ( i = r_numUnits - 1; i >= 0; i-- )
{
GL_SelectTexture (mtexid0 + i);
if (i)
{
qglDisable (GL_TEXTURE_2D);
}
qglDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
if (numColors > 1)
{
qglDisableClientState(GL_COLOR_ARRAY);
}
r_numflushes++;
}
/*
================
R_DeformVertices
================
*/
void R_DeformVertices ( meshbuffer_t *mb )
{
int i, j, k, pw, ph, p;
float args[4], deflect;
float *quad[4], *table;
shader_t *shader;
deformv_t *deformv;
vec3_t tv, rot_centre;
shader = mb->shader;
deformv = &shader->deforms[0];
for (i = 0; i < shader->numdeforms; i++, deformv++)
{
switch (deformv->type)
{
case DEFORMV_NONE:
break;
case DEFORMV_WAVE:
args[0] = deformv->func.args[0];
args[1] = deformv->func.args[1];
args[3] = deformv->func.args[2] + deformv->func.args[3] * r_localShaderTime;
table = R_TableForFunc ( deformv->func.type );
for ( j = 0; j < numVerts; j++ )
{
deflect = deformv->args[0] * (vertexArray[j][0]+vertexArray[j][1]+vertexArray[j][2]) + args[3];
deflect = FTABLE_EVALUATE ( table, deflect ) * args[1] + args[0];
// Deflect vertex along its normal by wave amount
VectorMA ( vertexArray[j], deflect, normalsArray[j], vertexArray[j] );
}
break;
case DEFORMV_NORMAL:
args[0] = deformv->args[1] * r_localShaderTime;
for ( j = 0; j < numVerts; j++ )
{
args[1] = normalsArray[j][2] * args[0];
deflect = deformv->args[0] * R_FastSin ( args[1] );
normalsArray[j][0] *= deflect;
deflect = deformv->args[0] * R_FastSin ( args[1] + 0.25 );
normalsArray[j][1] *= deflect;
VectorNormalizeFast ( normalsArray[j] );
}
break;
case DEFORMV_MOVE:
table = R_TableForFunc ( deformv->func.type );
deflect = deformv->func.args[2] + r_localShaderTime * deformv->func.args[3];
deflect = FTABLE_EVALUATE (table, deflect) * deformv->func.args[1] + deformv->func.args[0];
for ( j = 0; j < numVerts; j++ )
VectorMA ( vertexArray[j], deflect, deformv->args, vertexArray[j] );
break;
case DEFORMV_BULGE:
pw = mb->mesh->patchWidth;
ph = mb->mesh->patchHeight;
args[0] = deformv->args[0] / (float)ph;
args[1] = deformv->args[1];
args[2] = r_localShaderTime / (deformv->args[2]*pw);
for ( k = 0, p = 0; k < ph; k++ )
{
deflect = R_FastSin ( (float)k * args[0] + args[2] ) * args[1];
for ( j = 0; j < pw; j++, p++ )
VectorMA ( vertexArray[p], deflect, normalsArray[p], vertexArray[p] );
}
break;
case DEFORMV_AUTOSPRITE:
if ( numIndexes < 6 )
break;
for ( k = 0; k < numIndexes; k += 6 )
{
mat3_t m0, m1, result;
quad[0] = (float *)(vertexArray + indexesArray[k+0]);
quad[1] = (float *)(vertexArray + indexesArray[k+1]);
quad[2] = (float *)(vertexArray + indexesArray[k+2]);
for ( j = 2; j >= 0; j-- )
{
quad[3] = (float *)(vertexArray + indexesArray[k+3+j]);
if ( !VectorCompare (quad[3], quad[0]) &&
!VectorCompare (quad[3], quad[1]) &&
!VectorCompare (quad[3], quad[2]) ) {
break;
}
}
VectorSubtract ( quad[0], quad[1], m0[0] );
VectorSubtract ( quad[2], quad[1], m0[1] );
CrossProduct ( m0[0], m0[1], m0[2] );
VectorNormalizeFast ( m0[2] );
VectorVectors ( m0[2], m0[1], m0[0] );
VectorCopy ( (&r_view_matrix[0]), m1[0] );
VectorCopy ( (&r_view_matrix[4]), m1[1] );
VectorCopy ( (&r_view_matrix[8]), m1[2] );
Matrix3_Multiply ( m1, m0, result );
for ( j = 0; j < 3; j++ )
rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25 + currententity->origin[j];
for ( j = 0; j < 4; j++ )
{
VectorSubtract ( quad[j], rot_centre, tv );
Matrix3_Multiply_Vec3 ( result, tv, quad[j] );
VectorAdd ( rot_centre, quad[j], quad[j] );
}
}
break;
case DEFORMV_AUTOSPRITE2:
if ( numIndexes < 6 )
break;
for ( k = 0; k < numIndexes; k += 6 )
{
int long_axis, short_axis;
vec3_t axis;
float len[3];
mat3_t m0, m1, m2, result;
quad[0] = (float *)(vertexArray + indexesArray[k+0]);
quad[1] = (float *)(vertexArray + indexesArray[k+1]);
quad[2] = (float *)(vertexArray + indexesArray[k+2]);
for ( j = 2; j >= 0; j-- )
{
quad[3] = (float *)(vertexArray + indexesArray[k+3+j]);
if ( !VectorCompare (quad[3], quad[0]) &&
!VectorCompare (quad[3], quad[1]) &&
!VectorCompare (quad[3], quad[2]) )
{
break;
}
}
// build a matrix were the longest axis of the billboard is the Y-Axis
VectorSubtract ( quad[1], quad[0], m0[0] );
VectorSubtract ( quad[2], quad[0], m0[1] );
VectorSubtract ( quad[2], quad[1], m0[2] );
len[0] = DotProduct ( m0[0], m0[0] );
len[1] = DotProduct ( m0[1], m0[1] );
len[2] = DotProduct ( m0[2], m0[2] );
if ( (len[2] > len[1]) && (len[2] > len[0]) )
{
if ( len[1] > len[0] )
{
long_axis = 1;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 1;
}
}
else if ( (len[1] > len[2]) && (len[1] > len[0]) )
{
if ( len[2] > len[0] )
{
long_axis = 2;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 2;
}
}
else //if ( (len[0] > len[1]) && (len[0] > len[2]) )
{
if ( len[2] > len[1] )
{
long_axis = 2;
short_axis = 1;
}
else
{
long_axis = 1;
short_axis = 2;
}
}
if ( DotProduct (m0[long_axis], m0[short_axis]) )
{
VectorNormalize2 ( m0[long_axis], axis );
VectorCopy ( axis, m0[1] );
if ( axis[0] || axis[1] )
{
VectorVectors ( m0[1], m0[2], m0[0] );
}
else
{
VectorVectors ( m0[1], m0[0], m0[2] );
}
}
else
{
VectorNormalize2 ( m0[long_axis], axis );
VectorNormalize2 ( m0[short_axis], m0[0] );
VectorCopy ( axis, m0[1] );
CrossProduct ( m0[0], m0[1], m0[2] );
}
for ( j = 0; j < 3; j++ )
rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25;
if ( currententity )
{
VectorAdd ( currententity->origin, rot_centre, tv );
}
else
{
VectorCopy ( rot_centre, tv );
}
VectorSubtract ( r_origin, tv, tv );
// filter any longest-axis-parts off the camera-direction
deflect = -DotProduct ( tv, axis );
VectorMA ( tv, deflect, axis, m1[2] );
VectorNormalizeFast ( m1[2] );
VectorCopy ( axis, m1[1] );
CrossProduct ( m1[1], m1[2], m1[0] );
Matrix3_Transpose ( m1, m2 );
Matrix3_Multiply ( m2, m0, result );
for ( j = 0; j < 4; j++ )
{
VectorSubtract ( quad[j], rot_centre, tv );
Matrix3_Multiply_Vec3 ( result, tv, quad[j] );
VectorAdd ( rot_centre, quad[j], quad[j] );
}
}
break;
case DEFORMV_PROJECTION_SHADOW:
break;
default:
break;
}
}
}
void RB_CalcEnvironmentTexCoords( float *st )
{
int i;
float *v, *normal;
vec3_t viewer, reflected;
float d;
vec3_t rorg;
v = vertexArray[0];
normal = normalsArray[0];
RotateLightVector(currententity->axis, currententity->origin, r_origin, rorg);
for (i = 0 ; i < numVerts ; i++, v += 3, normal += 3, st += 2 )
{
VectorSubtract (rorg, v, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
/*
==============
R_VertexTCBase
==============
*/
float *R_VertexTCBase ( int tcgen, int unit )
{
int i;
// vec3_t t, n;
float *outCoords;
// vec3_t transform;
// mat3_t inverse_axis;
// mat3_t axis;
outCoords = tUnitCoordsArray[unit][0];
if ( tcgen == TC_GEN_BASE )
{
memcpy ( outCoords, coordsArray[0], sizeof(float) * 2 * numVerts );
}
else if ( tcgen == TC_GEN_LIGHTMAP )
{
memcpy ( outCoords, lightmapCoordsArray[0], sizeof(float) * 2 * numVerts );
}
else if ( tcgen == TC_GEN_ENVIRONMENT )
{
RB_CalcEnvironmentTexCoords(outCoords); //use genuine q3 code, to get it totally identical (for cell shading effects)
//plus, it looks like less overhead too
//I guess it depends on the size of the mesh
}
else if ( tcgen == TC_GEN_VECTOR )
{
for ( i = 0; i < numVerts; i++, outCoords += 2 )
{
static vec3_t tc_gen_s = { 1.0f, 0.0f, 0.0f };
static vec3_t tc_gen_t = { 0.0f, 1.0f, 0.0f };
outCoords[0] = DotProduct ( tc_gen_s, vertexArray[i] );
outCoords[1] = DotProduct ( tc_gen_t, vertexArray[i] );
}
}
return tUnitCoordsArray[unit][0];
}
/*
==============
R_ShaderpassTex
==============
*/
int R_ShaderpassTex ( shaderpass_t *pass )
{
if (pass->flags & (SHADER_PASS_ANIMMAP|SHADER_PASS_LIGHTMAP|SHADER_PASS_VIDEOMAP|SHADER_PASS_DELUXMAP))
{
if (pass->flags & SHADER_PASS_ANIMMAP)
{
return pass->anim_frames[(int)(pass->anim_fps * r_localShaderTime) % pass->anim_numframes];
}
else if ((pass->flags & SHADER_PASS_LIGHTMAP) && r_lmtex >= 0)
{
return lightmap_textures[r_lmtex];
}
else if ((pass->flags & SHADER_PASS_DELUXMAP) && r_lmtex >= 0)
{
return lightmap_textures[r_lmtex+1];
}
else if ((pass->flags & SHADER_PASS_VIDEOMAP))
{
return Media_UpdateForShader(pass->anim_frames[0], pass->cin);
}
}
return pass->anim_frames[0] ? pass->anim_frames[0] : 0;
}
/*
================
R_ModifyTextureCoords
================
*/
void R_ModifyTextureCoords ( shaderpass_t *pass, int unit )
{
int i, j;
float *table;
float t1, t2, sint, cost;
float *tcArray, *buffer;
tcmod_t *tcmod;
r_texNums[unit] = R_ShaderpassTex(pass);
// we're smart enough not to copy data and simply switch the pointer
if (!pass->numtcmods)
{
if (pass->tcgen == TC_GEN_BASE)
{
qglTexCoordPointer(2, GL_FLOAT, 0, coordsArray);
}
else if (pass->tcgen == TC_GEN_LIGHTMAP)
{
qglTexCoordPointer(2, GL_FLOAT, 0, lightmapCoordsArray);
}
else if (pass->tcgen == TC_GEN_NORMAL)
{
qglTexCoordPointer(3, GL_FLOAT, 0, normalsArray);
}
else
{
qglTexCoordPointer(2, GL_FLOAT, 0, R_VertexTCBase(pass->tcgen, unit));
}
return;
}
buffer = R_VertexTCBase (pass->tcgen, unit);
qglTexCoordPointer(2, GL_FLOAT, 0, buffer);
for (i = 0, tcmod = pass->tcmods; i < pass->numtcmods; i++, tcmod++)
{
tcArray = buffer;
switch (tcmod->type)
{
case SHADER_TCMOD_ROTATE:
cost = tcmod->args[0] * r_localShaderTime;
sint = R_FastSin(cost);
cost = R_FastSin(cost + 0.25);
for (j = 0; j < numVerts; j++, tcArray += 2)
{
t1 = cost * (tcArray[0] - 0.5f) - sint * (tcArray[1] - 0.5f) + 0.5f;
t2 = cost * (tcArray[1] - 0.5f) + sint * (tcArray[0] - 0.5f) + 0.5f;
tcArray[0] = t1;
tcArray[1] = t2;
}
break;
case SHADER_TCMOD_SCALE:
t1 = tcmod->args[0];
t2 = tcmod->args[1];
for (j = 0; j < numVerts; j++, tcArray += 2)
{
tcArray[0] = tcArray[0] * t1;
tcArray[1] = tcArray[1] * t2;
}
break;
case SHADER_TCMOD_TURB:
t1 = tcmod->args[2] + r_localShaderTime * tcmod->args[3];
t2 = tcmod->args[1];
for (j = 0; j < numVerts; j++, tcArray += 2)
{
tcArray[0] = tcArray[0] + R_FastSin (tcArray[0]*t2+t1) * t2;
tcArray[1] = tcArray[1] + R_FastSin (tcArray[1]*t2+t1) * t2;
}
break;
case SHADER_TCMOD_STRETCH:
table = R_TableForFunc(tcmod->args[0]);
t2 = tcmod->args[3] + r_localShaderTime * tcmod->args[4];
t1 = FTABLE_EVALUATE(table, t2) * tcmod->args[2] + tcmod->args[1];
t1 = t1 ? 1.0f / t1 : 1.0f;
t2 = 0.5f - 0.5f * t1;
for (j = 0; j < numVerts; j++, tcArray += 2)
{
tcArray[0] = tcArray[0] * t1 + t2;
tcArray[1] = tcArray[1] * t1 + t2;
}
break;
case SHADER_TCMOD_SCROLL:
t1 = tcmod->args[0] * r_localShaderTime;
t2 = tcmod->args[1] * r_localShaderTime;
for (j = 0; j < numVerts; j++, tcArray += 2)
{
tcArray[0] = tcArray[0] + t1;
tcArray[1] = tcArray[1] + t2;
}
break;
case SHADER_TCMOD_TRANSFORM:
for (j = 0; j < numVerts; j++, tcArray += 2)
{
t1 = tcArray[0];
t2 = tcArray[1];
tcArray[0] = t1 * tcmod->args[0] + t2 * tcmod->args[2] + tcmod->args[4];
tcArray[1] = t2 * tcmod->args[1] + t1 * tcmod->args[3] + tcmod->args[5];
}
break;
default:
break;
}
}
}
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
#define VectorScalef(a, b, c) c[0]=a[0]*b;c[1]=a[1]*b;c[2]=a[2]*b
/*
================
R_ModifyColor
================
*/
void R_ModifyColor ( meshbuffer_t *mb, shaderpass_t *pass )
{
int i, b;
float *table, c, a;
vec3_t t, v;
shader_t *shader;
qbyte *bArray, *vArray;
qboolean fogged, noArray;
shaderfunc_t *rgbgenfunc, *alphagenfunc;
shader = mb->shader;
fogged = mb->fog && (shader->sort >= SHADER_SORT_UNDERWATER) &&
!(pass->flags & SHADER_PASS_DEPTHWRITE) && !shader->fog_dist;
noArray = (pass->flags & SHADER_PASS_NOCOLORARRAY) && !fogged;
rgbgenfunc = &pass->rgbgen_func;
alphagenfunc = &pass->alphagen_func;
if (noArray)
{
numColors = 1;
}
else
{
numColors = numVerts;
}
bArray = colorArray[0];
vArray = inColorsArray[0];
switch (pass->rgbgen)
{
default:
case RGB_GEN_IDENTITY:
memset ( bArray, 255, sizeof(byte_vec4_t)*numColors );
break;
case RGB_GEN_IDENTITY_LIGHTING:
memset ( bArray, r_identityLighting, sizeof(byte_vec4_t)*numColors );
break;
case RGB_GEN_CONST:
for ( i = 0; i < numColors; i++, bArray += 4 ) {
bArray[0] = FloatToByte (rgbgenfunc->args[0]);
bArray[1] = FloatToByte (rgbgenfunc->args[1]);
bArray[2] = FloatToByte (rgbgenfunc->args[2]);
}
break;
case RGB_GEN_WAVE:
table = R_TableForFunc(rgbgenfunc->type);
c = rgbgenfunc->args[2] + r_localShaderTime * rgbgenfunc->args[3];
c = FTABLE_EVALUATE(table, c) * rgbgenfunc->args[1] + rgbgenfunc->args[0];
clamp(c, 0.0f, 1.0f);
memset ( bArray, FloatToByte (c), sizeof(byte_vec4_t)*numColors );
break;
case RGB_GEN_ENTITY:
((qbyte*)&b)[0] = currententity->shaderRGBAf[0];
((qbyte*)&b)[1] = currententity->shaderRGBAf[1];
((qbyte*)&b)[2] = currententity->shaderRGBAf[2];
((qbyte*)&b)[3] = currententity->shaderRGBAf[3];
for (i = 0; i < numColors; i++, bArray += 4)
{
*(int *)bArray = b;
}
break;
case RGB_GEN_ONE_MINUS_ENTITY:
((qbyte*)&b)[0] = 255-currententity->shaderRGBAf[0];
((qbyte*)&b)[1] = 255-currententity->shaderRGBAf[1];
((qbyte*)&b)[2] = 255-currententity->shaderRGBAf[2];
((qbyte*)&b)[3] = 255-currententity->shaderRGBAf[3];
for (i = 0; i < numColors; i++, bArray += 4)
{
*(int *)bArray = b;
}
break;
case RGB_GEN_VERTEX:
case RGB_GEN_EXACT_VERTEX:
memcpy (bArray, vArray, sizeof(byte_vec4_t)*numColors);
break;
case RGB_GEN_TOPCOLOR: //multiply vertex by topcolor (for player models)
{
int rc, gc, bc;
R_FetchTopColour(&rc, &gc, &bc);
R_LightArrays((byte_vec4_t*)vArray, numColors, normalsArray);
for (i = 0; i < numColors; i++, bArray += 4, vArray += 4)
{
bArray[0] = (vArray[0]*rc)>>8;
bArray[1] = (vArray[1]*gc)>>8;
bArray[2] = (vArray[2]*bc)>>8;
}
break;
}
case RGB_GEN_BOTTOMCOLOR: //multiply vertex by bottomcolor (for player models)
{
int rc, gc, bc;
R_FetchBottomColour(&rc, &gc, &bc);
R_LightArrays((byte_vec4_t*)vArray, numColors, normalsArray);
for (i = 0; i < numColors; i++, bArray += 4, vArray += 4)
{
bArray[0] = (vArray[0]*rc)>>8;
bArray[1] = (vArray[1]*gc)>>8;
bArray[2] = (vArray[2]*bc)>>8;
}
break;
}
case RGB_GEN_ONE_MINUS_VERTEX:
for (i = 0; i < numColors; i++, bArray += 4, vArray += 4)
{
bArray[0] = 255 - vArray[0];
bArray[1] = 255 - vArray[1];
bArray[2] = 255 - vArray[2];
}
break;
case RGB_GEN_LIGHTING_DIFFUSE:
if (!currententity)
{
memset (bArray, 255, sizeof(byte_vec4_t)*numColors);
}
else
{
R_LightArrays((byte_vec4_t*)bArray, numColors, normalsArray);
}
break;
}
bArray = colorArray[0];
vArray = inColorsArray[0];
switch (pass->alphagen)
{
default:
case ALPHA_GEN_IDENTITY:
for (i = 0; i < numColors; i++, bArray += 4)
{
bArray[3] = 255;
}
break;
case ALPHA_GEN_CONST:
b = FloatToByte ( alphagenfunc->args[0] );
for (i = 0; i < numColors; i++, bArray += 4)
{
bArray[3] = b;
}
break;
case ALPHA_GEN_WAVE:
table = R_TableForFunc ( alphagenfunc->type );
a = alphagenfunc->args[2] + r_localShaderTime * alphagenfunc->args[3];
a = FTABLE_EVALUATE ( table, a ) * alphagenfunc->args[1] + alphagenfunc->args[0];
b = FloatToByte ( bound (0.0f, a, 1.0f) );
for (i = 0; i < numColors; i++, bArray += 4)
{
bArray[3] = b;
}
break;
case ALPHA_GEN_PORTAL:
VectorAdd(vertexArray[0], currententity->origin, v);
VectorSubtract(r_origin, v, t);
a = VectorLength ( t ) * (1.0 / 255.0);
clamp ( a, 0.0f, 1.0f );
b = FloatToByte ( a );
for (i = 0; i < numColors; i++, bArray += 4)
{
bArray[3] = b;
}
break;
case ALPHA_GEN_VERTEX:
for (i = 0; i < numColors; i++, bArray += 4, vArray += 4)
{
bArray[3] = vArray[3];
}
break;
case ALPHA_GEN_ENTITY:
if (pass->rgbgen != RGB_GEN_ENTITY)
{//rgbgenentity copies across ints rather than chars. it comes padded with the alpha too.
unsigned char value = bound(0, currententity->shaderRGBAf[3]*255, 255);
for ( i = 0; i < numColors; i++, bArray += 4 )
{
bArray[3] = value;
}
}
break;
case ALPHA_GEN_SPECULAR:
{
mat3_t axis;
AngleVectors(currententity->angles, axis[0], axis[1], axis[2]);
VectorSubtract(r_origin, currententity->origin, t);
if (!Matrix3_Compare(axis, axisDefault))
{
Matrix3_Multiply_Vec3(axis, t, v );
}
else
{
VectorCopy(t, v);
}
for (i = 0; i < numColors; i++, bArray += 4)
{
VectorSubtract(v, vertexArray[i], t);
a = DotProduct(t, normalsArray[i] ) * Q_rsqrt(DotProduct(t,t));
a = a * a * a * a * a;
bArray[3] = FloatToByte(bound (0.0f, a, 1.0f));
}
}
break;
}
if ( fogged )
{
float dist, vdist;
mplane_t *fogplane;
vec3_t diff, viewtofog, fog_vpn;
fogplane = mb->fog->visibleplane;
if (!fogplane)
return;
dist = PlaneDiff ( r_origin, fogplane );
if ( shader->flags & SHADER_SKY )
{
if ( dist > 0 )
VectorScale( fogplane->normal, -dist, viewtofog );
else
VectorClear( viewtofog );
}
else
{
VectorCopy ( currententity->origin, viewtofog );
}
VectorScalef ( vpn, mb->fog->shader->fog_dist, fog_vpn );
bArray = colorArray[0];
for ( i = 0; i < numColors; i++, bArray += 4 )
{
VectorAdd ( vertexArray[i], viewtofog, diff );
// camera is inside the fog
if ( dist < 0 ) {
VectorSubtract ( diff, r_origin, diff );
c = DotProduct ( diff, fog_vpn );
a = (1.0f - bound ( 0, c, 1.0f )) * (1.0 / 255.0);
}
else
{
vdist = PlaneDiff ( diff, fogplane );
if ( vdist < 0 )
{
VectorSubtract ( diff, r_origin, diff );
c = vdist / ( vdist - dist );
c *= DotProduct ( diff, fog_vpn );
a = (1.0f - bound ( 0, c, 1.0f )) * (1.0 / 255.0);
}
else
{
a = 1.0 / 255.0;
}
}
if (pass->blendmode == GL_ADD ||
((pass->blendsrc == GL_ZERO) && (pass->blenddst == GL_ONE_MINUS_SRC_COLOR)) ) {
bArray[0] = FloatToByte ( (float)bArray[0]*a );
bArray[1] = FloatToByte ( (float)bArray[1]*a );
bArray[2] = FloatToByte ( (float)bArray[2]*a );
}
else
{
bArray[3] = FloatToByte ( (float)bArray[3]*a );
}
}
}
}
/*
================
R_SetShaderState
================
*/
void R_SetShaderState ( shader_t *shader )
{
// Face culling
if ( !gl_cull.value || (r_features & MF_NOCULL) )
{
qglDisable ( GL_CULL_FACE );
}
else
{
if ( shader->flags & SHADER_CULL_FRONT )
{
qglEnable ( GL_CULL_FACE );
qglCullFace ( GL_FRONT );
}
else if ( shader->flags & SHADER_CULL_BACK )
{
qglEnable ( GL_CULL_FACE );
qglCullFace ( GL_BACK );
}
else
{
qglDisable ( GL_CULL_FACE );
}
}
if ( shader->flags & SHADER_POLYGONOFFSET )
{
qglEnable ( GL_POLYGON_OFFSET_FILL );
}
else
{
qglDisable ( GL_POLYGON_OFFSET_FILL );
}
}
/*
================
R_SetShaderpassState
================
*/
void R_SetShaderpassState ( shaderpass_t *pass, qboolean mtex )
{
if ( (mtex && (pass->blendmode != GL_REPLACE)) || (pass->flags & SHADER_PASS_BLEND) )
{
qglEnable ( GL_BLEND );
qglBlendFunc ( pass->blendsrc, pass->blenddst );
}
else
{
qglDisable ( GL_BLEND );
}
if ( pass->flags & SHADER_PASS_ALPHAFUNC )
{
qglEnable ( GL_ALPHA_TEST );
if ( pass->alphafunc == SHADER_ALPHA_GT0 )
{
qglAlphaFunc ( GL_GREATER, 0 );
}
else if ( pass->alphafunc == SHADER_ALPHA_LT128 )
{
qglAlphaFunc ( GL_LESS, 0.5f );
}
else if ( pass->alphafunc == SHADER_ALPHA_GE128 )
{
qglAlphaFunc ( GL_GEQUAL, 0.5f );
}
}
else
{
qglDisable ( GL_ALPHA_TEST );
}
// nasty hack!!!
if ( !gl_state.in2d )
{
extern int gldepthfunc;
if (gldepthfunc == GL_LEQUAL)
qglDepthFunc ( pass->depthfunc );
else
{
switch(pass->depthfunc)
{
case GL_LESS:
qglDepthFunc ( GL_GREATER );
break;
case GL_LEQUAL:
qglDepthFunc ( GL_GEQUAL );
break;
case GL_GREATER:
qglDepthFunc ( GL_LESS );
break;
case GL_GEQUAL:
qglDepthFunc ( GL_LEQUAL );
break;
case GL_NEVER:
case GL_EQUAL:
case GL_ALWAYS:
case GL_NOTEQUAL:
default:
qglDepthFunc ( pass->depthfunc );
}
}
if ( pass->flags & SHADER_PASS_DEPTHWRITE )
{
qglDepthMask ( GL_TRUE );
}
else
{
qglDepthMask ( GL_FALSE );
}
}
else
{
qglDepthFunc ( GL_ALWAYS );
qglDepthMask ( GL_FALSE );
}
}
/*
================
R_RenderMeshGeneric
================
*/
void R_RenderMeshGeneric ( meshbuffer_t *mb, shaderpass_t *pass )
{
R_SetShaderpassState ( pass, false );
R_ModifyTextureCoords ( pass, 0 );
R_ModifyColor ( mb, pass );
if ( pass->blendmode == GL_REPLACE )
GL_TexEnv( GL_REPLACE );
else
GL_TexEnv ( GL_MODULATE );
GL_Bind ( r_texNums[0] );
R_FlushArrays ();
}
/*
================
R_RenderMeshMultitextured
================
*/
void R_RenderMeshMultitextured ( meshbuffer_t *mb, shaderpass_t *pass )
{
int i;
r_numUnits = pass->numMergedPasses;
GL_SelectTexture( mtexid0 );
GL_TexEnv( pass->blendmode );
R_SetShaderpassState ( pass, true );
R_ModifyTextureCoords ( pass, 0 );
R_ModifyColor ( mb, pass );
for ( i = 1, pass++; i < r_numUnits; i++, pass++ )
{
GL_SelectTexture( mtexid0 + i );
GL_TexEnv( pass->blendmode );
R_ModifyTextureCoords ( pass, i );
}
R_FlushArraysMtex ();
}
/*
================
R_RenderMeshCombined
================
*/
void R_RenderMeshCombined ( meshbuffer_t *mb, shaderpass_t *pass )
{
int i;
r_numUnits = pass->numMergedPasses;
R_SetShaderpassState ( pass, true );
R_ModifyColor ( mb, pass );
GL_SelectTexture( mtexid0 );
if ( pass->blendmode == GL_REPLACE )
GL_TexEnv( GL_REPLACE );
else
GL_TexEnv( GL_MODULATE );
R_ModifyTextureCoords ( pass, 0 );
for ( i = 1, pass++; i < r_numUnits; i++, pass++ )
{
GL_SelectTexture( mtexid0 + i );
switch ( pass->blendmode )
{
case GL_DOT3_RGB_ARB:
GL_TexEnv (GL_COMBINE_EXT);
qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, pass->blendmode);
break;
case GL_REPLACE:
case GL_MODULATE:
case GL_ADD:
// these modes are best set with TexEnv, Combine4 would need much more setup
GL_TexEnv (pass->blendmode);
break;
case GL_DECAL:
// mimics Alpha-Blending in upper texture stage, but instead of multiplying the alpha-channel, theyre added
// this way it can be possible to use GL_DECAL in both texture-units, while still looking good
// normal mutlitexturing would multiply the alpha-channel which looks ugly
GL_TexEnv (GL_COMBINE_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_INTERPOLATE_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_ADD);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE2_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_RGB_EXT, GL_SRC_ALPHA);
break;
default:
GL_TexEnv (GL_COMBINE4_NV);
qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_ADD);
qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_ADD);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);
switch ( pass->blendsrc )
{
case GL_ONE:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_ZERO:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
break;
case GL_DST_COLOR:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_DST_COLOR:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_SRC_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_SRC_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_DST_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_DST_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
break;
}
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE2_RGB_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_RGB_EXT, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE2_ALPHA_EXT, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_ALPHA_EXT, GL_SRC_ALPHA);
switch (pass->blenddst)
{
case GL_ONE:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_ZERO:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_ZERO);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
break;
case GL_SRC_COLOR:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_SRC_COLOR:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_COLOR);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_SRC_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_SRC_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
break;
case GL_DST_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
break;
case GL_ONE_MINUS_DST_ALPHA:
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_ALPHA);
qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_PREVIOUS_EXT);
qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
break;
}
break;
}
R_ModifyTextureCoords ( pass, i );
}
R_FlushArraysMtex ();
}
void R_RenderMeshProgram ( meshbuffer_t *mb, shaderpass_t *pass )
{
shader_t *s;
int i;
vec3_t param3;
int r, g, b;
r_numUnits = pass->numMergedPasses;
R_SetShaderpassState ( pass, true );
R_ModifyColor ( mb, pass );
GL_SelectTexture( mtexid0 );
if ( pass->blendmode == GL_REPLACE )
GL_TexEnv( GL_REPLACE );
else
GL_TexEnv( GL_MODULATE );
R_ModifyTextureCoords ( pass, 0 );
for ( i = 1, pass++; i < r_numUnits; i++, pass++ )
{
GL_SelectTexture( mtexid0 + i );
R_ModifyTextureCoords ( pass, i );
}
s = mb->shader;
GLSlang_UseProgram(s->programhandle);
for (i = 0; i < s->numprogparams; i++)
{
switch(s->progparm[i].type)
{
case SP_EYEPOS:
{
vec3_t t, v;
VectorSubtract(r_origin, currententity->origin, t);
if (!Matrix3_Compare(currententity->axis, axisDefault))
{
Matrix3_Multiply_Vec3(currententity->axis, t, v );
}
else
{
VectorCopy(t, v);
}
qglUniform3fvARB(s->progparm[i].handle, 1, v);
}
break;
case SP_TIME:
qglUniform1fARB(s->progparm[i].handle, r_localShaderTime);
break;
case SP_ENTCOLOURS:
qglUniform4fvARB(s->progparm[i].handle, 1, currententity->shaderRGBAf);
break;
case SP_TOPCOLOURS:
R_FetchTopColour(&r, &g, &b);
param3[0] = r/255;
param3[1] = g/255;
param3[2] = b/255;
qglUniform3fvARB(s->progparm[i].handle, 1, param3);
break;
case SP_BOTTOMCOLOURS:
R_FetchBottomColour(&r, &g, &b);
param3[0] = r/255;
param3[1] = g/255;
param3[2] = b/255;
qglUniform3fvARB(s->progparm[i].handle, 1, param3);
break;
default:
Host_EndGame("Bad shader program parameter type (%i)", s->progparm[i].type);
break;
}
}
R_FlushArraysMtex ();
GLSlang_UseProgram(0);
}
/*
================
R_RenderMeshBuffer
================
*/
void R_RenderMeshBuffer ( meshbuffer_t *mb, qboolean shadowpass )
{
int i;
shader_t *shader;
shaderpass_t *pass;
if ( !numVerts )
{
return;
}
// R_IBrokeTheArrays();
// qglVertexPointer( 3, GL_FLOAT, 16, vertexArray ); // padded for SIMD
// qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );
// qglEnableClientState( GL_VERTEX_ARRAY );
shader = mb->shader;
r_lmtex = mb->infokey;
if ( currententity && !gl_state.in2d )
{
r_localShaderTime = r_refdef.time - currententity->shaderTime;
} else
{
r_localShaderTime = realtime;
}
R_SetShaderState ( shader );
if ( shader->numdeforms )
{
R_DeformVertices ( mb );
}
if ( !numIndexes || shadowpass )
{
return;
}
R_LockArrays ( numVerts );
for ( i = 0, pass = shader->passes; i < shader->numpasses; )
{
if ( !(pass->flags & SHADER_PASS_DETAIL) || r_detailtextures.value )
{
pass->flush ( mb, pass );
}
i += pass->numMergedPasses;
pass += pass->numMergedPasses;
}
R_FinishMeshBuffer ( mb );
}
/*
================
R_RenderFogOnMesh
================
*/
int r_fogtexture;
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
void R_RenderFogOnMesh ( shader_t *shader, struct mfog_s *fog )
{
#define FOG_TEXTURE_HEIGHT 32
int i;
vec3_t diff, viewtofog, fog_vpn;
float dist, vdist;
shader_t *fogshader;
mplane_t *fogplane;
if ( !fog->numplanes || !fog->shader || !fog->visibleplane )
{
return;
}
R_ResetTexState ();
fogshader = fog->shader;
fogplane = fog->visibleplane;
GL_Bind( r_fogtexture );
qglBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
GL_TexEnv(GL_MODULATE);
if ( !shader || !shader->numpasses || shader->fog_dist || (shader->flags & SHADER_SKY) )
{
extern int gldepthfunc;
qglDepthFunc ( gldepthfunc );
}
else
{
qglDepthFunc ( GL_EQUAL );
}
qglColor4ubv ( fogshader->fog_color );
// distance to fog
dist = PlaneDiff ( r_origin, fogplane );
if ( shader && shader->flags & SHADER_SKY )
{
if ( dist > 0 )
VectorMA( r_origin, -dist, fogplane->normal, viewtofog );
else
VectorCopy( r_origin, viewtofog );
}
else
{
VectorCopy( currententity->origin, viewtofog );
}
VectorScale ( vpn, fogshader->fog_dist, fog_vpn );
for ( i = 0; i < numVerts; i++, currentCoords += 2 )
{
VectorAdd ( viewtofog, vertexArray[i], diff );
vdist = PlaneDiff ( diff, fogplane );
VectorSubtract ( diff, r_origin, diff );
if ( dist < 0 )
{ // camera is inside the fog brush
currentCoords[0] = DotProduct ( diff, fog_vpn );
}
else
{
if ( vdist < 0 )
{
currentCoords[0] = vdist / ( vdist - dist );
currentCoords[0] *= DotProduct ( diff, fog_vpn );
}
else
{
currentCoords[0] = 0.0f;
}
}
currentCoords[1] = -vdist * fogshader->fog_dist + 1.5f/(float)FOG_TEXTURE_HEIGHT;
}
if ( shader && !shader->numpasses )
{
R_LockArrays ( numVerts );
}
R_FlushArrays ();
}
/*
================
R_DrawTriangleOutlines
================
*/
void R_DrawTriangleOutlines (void)
{
R_ResetTexState ();
qglDisable( GL_TEXTURE_2D );
qglDisable( GL_DEPTH_TEST );
qglColor4f( 1, 1, 1, 1 );
qglDisable ( GL_BLEND );
qglPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
R_FlushArrays ();
qglPolygonMode (GL_FRONT_AND_BACK, GL_FILL);
qglEnable( GL_DEPTH_TEST );
qglEnable( GL_TEXTURE_2D );
}
/*
================
R_DrawNormals
================
*/
void R_DrawNormals (void)
{
int i;
R_ResetTexState();
qglDisable(GL_TEXTURE_2D);
qglColor4f(1, 1, 1, 1);
qglDisable(GL_BLEND);
if (gl_state.in2d)
{
qglBegin(GL_POINTS);
for (i = 0; i < numVerts; i++)
{
qglVertex3fv(vertexArray[i]);
}
qglEnd();
}
else
{
qglDisable(GL_DEPTH_TEST);
qglBegin(GL_LINES);
for (i = 0; i < numVerts; i++)
{
qglVertex3fv(vertexArray[i]);
qglVertex3f(vertexArray[i][0] + normalsArray[i][0],
vertexArray[i][1] + normalsArray[i][1],
vertexArray[i][2] + normalsArray[i][2]);
}
qglEnd();
qglEnable(GL_DEPTH_TEST);
}
qglEnable(GL_TEXTURE_2D);
}
/*
=================
R_AddDynamicLights
=================
*/
void R_AddDynamicLights ( meshbuffer_t *mb )
{
dlight_t *light;
int i, j, lnum;
vec3_t point, tvec, dlorigin;
vec3_t vright, vup;
vec3_t dir1, dir2, normal, right, up, oldnormal;
float *v[3], dist, scale;
index_t *oldIndexesArray, index[3];
int dlightNumIndexes, oldNumIndexes;
oldNumIndexes = numIndexes;
oldIndexesArray = indexesArray;
VectorClear ( oldnormal );
GL_Bind ( r_dlighttexture );
qglDepthFunc ( GL_EQUAL );
qglBlendFunc ( GL_DST_COLOR, GL_ONE );
GL_TexEnv(GL_MODULATE);
light = cl_dlights;
for ( lnum = 0; lnum < 32; lnum++, light++ )
{
if ( !(mb->dlightbits & (1<<lnum) ) )
continue; // not lit by this light
if (!light->radius)
continue; //urm
VectorSubtract ( light->origin, currententity->origin, dlorigin );
if ( !Matrix3_Compare (currententity->axis, axisDefault) )
{
VectorCopy ( dlorigin, point );
Matrix3_Multiply_Vec3 ( currententity->axis, point, dlorigin );
}
qglColor4f (light->color[0]*2, light->color[1]*2, light->color[2]*2, 1);//light->color[3]);
R_ResetTexState ();
dlightNumIndexes = 0;
for ( i = 0; i < oldNumIndexes; i += 3 )
{
index[0] = oldIndexesArray[i+0];
index[1] = oldIndexesArray[i+1];
index[2] = oldIndexesArray[i+2];
v[0] = (float *)(vertexArray + index[0]);
v[1] = (float *)(vertexArray + index[1]);
v[2] = (float *)(vertexArray + index[2]);
// calculate two mostly perpendicular edge directions
VectorSubtract ( v[0], v[1], dir1 );
VectorSubtract ( v[2], v[1], dir2 );
// we have two edge directions, we can calculate a third vector from
// them, which is the direction of the surface normal
CrossProduct ( dir1, dir2, normal );
VectorNormalize ( normal );
VectorSubtract ( v[0], dlorigin, tvec );
dist = DotProduct ( tvec, normal );
if ( dist < 0 )
dist = -dist;
if ( dist >= light->radius ) {
continue;
}
VectorMA ( dlorigin, -dist, normal, point );
scale = 1 / (light->radius - dist);
if ( !VectorCompare (normal, oldnormal) ) {
MakeNormalVectors ( normal, right, up );
VectorCopy ( normal, oldnormal );
}
VectorScale ( right, scale, vright );
VectorScale ( up, scale, vup );
for ( j = 0; j < 3; j++ )
{
// Get our texture coordinates
// Project the light image onto the face
VectorSubtract( v[j], point, tvec );
coordsArray[index[j]][0] = DotProduct( tvec, vright ) + 0.5f;
coordsArray[index[j]][1] = DotProduct( tvec, vup ) + 0.5f;
}
tempIndexesArray[dlightNumIndexes++] = index[0];
tempIndexesArray[dlightNumIndexes++] = index[1];
tempIndexesArray[dlightNumIndexes++] = index[2];
}
if ( dlightNumIndexes )
{
R_PushIndexes ( tempIndexesArray, NULL, NULL, dlightNumIndexes, MF_NONBATCHED );
R_FlushArrays ();
dlightNumIndexes = 0;
}
}
numIndexes = oldNumIndexes;
indexesArray = oldIndexesArray;
}
/*
================
R_FinishMeshBuffer
Render dynamic lights, fog, triangle outlines, normals and clear arrays
================
*/
void R_FinishMeshBuffer ( meshbuffer_t *mb )
{
shader_t *shader;
qboolean fogged;
qboolean dlight;
shader = mb->shader;
if ((mb->dlightbits != 0) && !(shader->flags & SHADER_FLARE))
dlight = (currententity->model->type == mod_brush && currententity->model->fromgame == fg_quake3);
else
dlight = false;
fogged = mb->fog && ((shader->sort < SHADER_SORT_UNDERWATER &&
(shader->flags & (SHADER_DEPTHWRITE|SHADER_SKY))) || shader->fog_dist);
if ( dlight || fogged ) {
GL_DisableMultitexture ( );
qglTexCoordPointer( 2, GL_FLOAT, 0, inCoordsArray[0] );
qglEnable ( GL_BLEND );
qglDisable ( GL_ALPHA_TEST );
qglDepthMask ( GL_FALSE );
if (dlight) //HACK: the extra check is because we play with the lightmaps in q1/q2
{
R_AddDynamicLights ( mb );
}
if (fogged)
{
R_RenderFogOnMesh ( shader, mb->fog );
}
qglDepthMask ( GL_TRUE );
}
if ( r_showtris.value || r_shownormals.value ) {
GL_DisableMultitexture ( );
if ( r_showtris.value ) {
R_DrawTriangleOutlines ();
}
if ( r_shownormals.value ) {
R_DrawNormals ();
}
}
R_UnlockArrays ();
R_ClearArrays ();
}
#endif
#endif